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Before we get started...

Website updated with Spring quarter grading policy

    30% homework, 20% lab, 50% course project

Website updated with new late homework policy

    3 late days allowed in Spring quarter
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Reasoning about mobility is important.

Image: RedTeamRacing.com

Search space design is often difficult.
Image: [Howard09a]
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Search Space Lectures Outline

Introductory Topology

Configuration Spaces

Search Space Design

Search Space Design with 
Differential Constraints

Applications 

Current and Active Research

Covers topics in 
Chapters 3, 4, 5, and 
14 in S. LaValle’s 
Planning Algorithms

Pa
rt

 I
Pa

rt
 II



ME/CS 132April 5, 2011 5

Recap of Motion Simulation

Nomenclature

    State, Action, Transition Equation

Kinematic Constraints and Models

Dynamic Constraints and Models

Motion Integration

    LTI, Euler and Runge-Kutta

+x
+y

(x, y)
θ

L

φ

ρ

vx|body
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Introductory Topology

6
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Sets and Spaces

Open Set

Closed Set

Topological Spaces: A collection of open sets of X

 Three Axioms of Topological Spaces:
   1) X and ∅ are open sets
   2) The intersection of any finite number of open 
sets is an open set
   3) The union of any open sets is an open set

includes boundary points

does not include boundary points
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Manifolds

A topological space                is a 
manifold if for every             there 
exists an open set              that:

   1) 
   2)      is homeomorphic to  
   3)     is fixed for all

A Cartesian product is a new 
topological space

dimensionality

any point behaviors like it should in 

which is not a 
manifold?
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Higher Dimensional Manifolds

unit sphere defined as

higher dimensional spheres are defined as

n-dimensional real projective space         is the set of all 
lines in          that pass through the origin 

“homeomorphic” (equivalent topology) if all 
pairs of antipodal points can be identified

important later
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Homotopy is about path equivalence

A path is homotopic if one can be continuously warped 
into another

10

Homotopy
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Configuration Spaces
Geometric Transformations

11
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Brief Review of Transforms

2D Homogeneous transforms

Rotation by θ and a translation by 
x and y (in that order)

+y

+x

+x�+y�

θ

xt yt

s(var) → sin(var)

c(var) → cos(var)
note shorthand:




c(θ) −s(θ) xt

s(θ) c(θ) yt
0 0 1








x
y
1



 =




x c(θ)− y s(θ) + xt

x s(θ) + y c(θ) + yt
1



 = x�
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Brief Review of Transforms (cont.)

3D Homogeneous transforms

Rotation by γ (roll), rotation by β 
(pitch), rotation by α (yaw), and 
a translation by x, y, and z (in 
that order)

+y

+x

+z +y

+x

+z

γ

+y

+x

+z
β

+y

+x
+z α

+x�

+y�

+z�

rotate 
about x

rotate about y

rotate 
about z

translate in x, y, and z

s(var) → sin(var)

c(var) → cos(var)
note shorthand:

Rz(α) =




c(α) −s(α) 0
s(α) c(α) 0
0 0 1





Ry(β) =




c(β) 0 s(β)
0 1 0

−s(β) 0 c(β)




Rx(γ) =




1 0 0
0 c(γ) −s(γ)
0 s(γ) c(γ)





ME/CS 132April 5, 2011 14

Brief Review of Transforms (cont.)

3D Homogeneous transforms

Rotation by γ (roll), rotation by β 
(pitch), rotation by α (yaw), and 
a translation by x, y, and z (in 
that order)





c(α)c(β) c(α)s(β)s(γ)− s(α)c(γ) c(α)s(β)c(γ) + s(α)s(γ) xt

s(α)c(β) s(α)s(β)s(γ) + c(α)c(γ) s(α)s(β)c(γ)− c(α)s(γ) yt
−s(β) c(β)s(γ) c(β)c(γ) zt

0 0 0 1









x
y
z
1



 = x�

s(var) → sin(var)

c(var) → cos(var)
note shorthand:

+y

+x

+z +y

+x

+z

γ

+y

+x

+z
β

+y

+x
+z α

+x�

+y�

+z�

rotate 
about x

rotate about y

rotate 
about z

translate in x, y, and z
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Issues with Euler Representations

Non-zero angles can result in 
the identity matrix

Non-unique solutions for 
transforms (destroys topology!)





c(α)c(β) c(α)s(β)s(γ)− s(α)c(γ) c(α)s(β)c(γ) + s(α)s(γ) xt

s(α)c(β) s(α)s(β)s(γ) + c(α)c(γ) s(α)s(β)c(γ)− c(α)s(γ) yt
−s(β) c(β)s(γ) c(β)c(γ) zt

0 0 0 1









x
y
z
1



 = x�

s(var) → sin(var)

c(var) → cos(var)
note shorthand:

α = β = γ = π

α = β = γ = 0
same as

+y

+x

+z +y

+x

+z

γ

+y

+x

+z
β

+y

+x
+z α

+x�

+y�

+z�

rotate 
about x

rotate about y

rotate 
about z

translate in x, y, and z
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Quaternions

Four vector with scalar and imaginary components

Properties:

h = a+ bi+ cj + dk

a, b, c, d ∈ R

i2 = j2 = k2 = ijk = −1

ν =
�
b c d

�

h1h2 = {a1a2 − ν1 · ν2, a1ν2 + a2ν1 + ν1 × ν2}

h ∈ H

space of all Quaternions
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Unit Quaternions

Restrict the set of all quaternions to be of unit length

Representing rotations:

h = a+ bi+ cj + dk

a2 + b2 + c2 + d2 = 1

R(h) =




2(a2 + b2)− 1 2(bc− ad) 2(bd+ ac)
2(bc+ ad) 2(a2 + c2)− 1 2(cd− ab)
2(bd− ac) 2(cd+ ab) 2(a2 + d2)− 1





h = cos

�
θ

2

�
+ v1sin

�
θ

2

�
i+ v2sin

�
θ

2

�
j + v3sin

�
θ

2

�
k

homeomorphic 
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Unit Quaternions

Not even this representation is truly unique

h = cos

�
θ

2

�
+ v1sin

�
θ

2

�
i+ v2sin

�
θ

2

�
j + v3sin

�
θ

2

�
k

Rotations about h and -h are identical 
(antipodes)
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Configuration Spaces
Search Space Manifolds

19
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SE(2) Configuration Space

Translation in (x,y) is a two-
dimensional manifold

Rotation in SO(2) is a one-
dimensional manifold that wraps 
around (0,2π)

Configuration space is similar to a 
three-dimensional cylinder

M1 = R2 M2 = S1

C = M1 ×M2 = R2 × S1

+θ

+y

+x
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SE(3) Configuration Space

Translation in (x,y,z) is a three-
dimensional manifold

Rotation in SO(3) is a three-
dimensional manifold with 
antipodal points in the 
Quaternion representation

Configuration space for SE(3) as 
the product of the translational 
and rotational manifolds

M1 = R3

C = M1 ×M2 = R3 × RP3

the antipodal points are identified 
with the unit quaternion 
representation
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Search Space Design
Concepts

22
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Metric Spaces

Metric Space is a function used to 
measure the distance between two 
points in  

A Metric space is a topological 
space with a function ρ that has four 
properties:
   1) Non-negativity:
   2) Reflexivity:
   3) Symmetry:
   4) Triangle Inequality:

ME/CS 132April 5, 2011 24

LP Metrics

LP Metric are used in       for any

 

Three common types of LP Metrics include

(Manhattan Metric) (Euclidean Metric) (L∞ Metric)
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Metrics for Cartesian Products

Metric spaces can be designed for Cartesian products 
through linear combinations or Euclidean norms

 
These metric spaces require weighing parameters    to 
balance the contribution of different aspects of the 
metric spaces 
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Useful Motion Planning Metrics

SO(2) Metric using θ

SO(3) Metric using Quaternions

spherical linear interpolation (slerp) used to determine the 
proper angular displacement of the quaternion

quaternion coefficients

ρ (h1, h2) = min{ρs (h1, h2) , ρs (h1,−h2)}
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Completeness

The capacity for a motion planner 
to find a solution if one exists

Resolution Completeness:  
As density increases a solution will be found 
if one exists

The search may not terminate if no solution 
exist

Probabilistic Completeness:       
As the number of samples approaches ∞ the 
probability of finding a solution (if it exists) 
approaches unity

goal state

start state

“obstacle”
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Resolution Completeness

goal state

start state

“obstacle”

start state

“obstacle”

goal state

Increasing Density
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Probabilistic Completeness

start state

“obstacle”

Increasing Samples

start state

“obstacle”

goal state goal state
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Dispersion

Dispersion is a measure of the 
largest gap in the search space

Used to help quantify resolution 
of a search space

Lower dispersion is desirable

δ(P ) = sup
x∈X

{min
p∈P

{ρ(x, p)}}

least upper bound 
(max if X is closed)

L2

metric
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Search Space Design
Grids and Lattices

31
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Grid 1-Neighborhoods

1-Neighborhood (2n total neighbors)

N1(q) = {q +∆q, . . . , q +∆qn, q −∆q1, . . . , q −∆qn}

for an n-dimensional C-space (n ≥ 1)

q = {−1}

q = {1}

q = {0}
q = {0, 0}q = {−1, 0}

q = {1, 0}

q = {0, 1}

q = {0,−1}
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Grid 2-Neighborhoods

2-Neighborhood

for an n-dimensional C-space (n ≥ 2)

q = {0, 0}

q = {−1, 0}
q = {1, 0}

q = {0, 1}

q = {0,−1}q = {−1,−1}
q = {1,−1}

q = {1, 1}
q = {−1, 1}

N2(q) = {q ±∆qi ±∆qj |1 ≤ i, j ≤ n, i �= j} ∪N1(q)

n = 3

n = 2
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Grid k-Neighborhoods

k-Neighborhood

    3n-1 total neighbors

for an n-dimensional C-space (n ≥ k)

n = 3

n = 2n = 1
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Expressiveness vs. Efficiency

High expressiveness can slow search

Low expressiveness can miss solutions

goal state

start state

“obstacle”

start state

“obstacle”

goal state
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Expressiveness vs. Efficiency

High expressiveness can slow search

Low expressiveness can miss solutions

goal state

start state start state

goal state
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Iterative refinement until a solution is found

   Restart search with a denser representation

Adapt search space to the environment

    More on this in Search Spaces Part II

37

Resolving Resolution Issues

goal state

start state

goal state

start state

goal state

start state

ME/CS 132April 5, 2011 38

SE(2) Grid Search Space Example

+x

+y

+θ

(0, 0, 0)

π/2

π/2

π/2

0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2

0.2

1-Neighborhood connectivity
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SE(2) Grid Search Space Example

+x

+y

+θ

(0, 0, 0)

π/2

π/2

π/2

0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2

0.2

1-Neighborhood connectivity

qG = (1.0, 0.2,π/2)qI = (0.0, 0.0, 0.0)
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SE(2) Grid Search Space Example

+x

+y

+θ

(0, 0, 0)

π/2

π/2

π/2

0.2 0.2 0.2 0.2 0.2 0.2 0.2

0.2

0.2

1-Neighborhood connectivity

qI = (0.0, 0.0, 0.0) qG = (0.6, 0.0, 3π/2)
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Search Space Design
Rapidly Exploring Dense Trees

41
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Technique uses random or deterministic sampling to grow 
edges of the search space from branches [LaValle99a]

42

Rapidly Exploring Dense Trees

Increasing Iterations

SIMPLE_RDT(q0)
 1 G.init(q0);
 2 for i = 1 to k do
 3   G.add_vertex(α(i));
 4   qn ← NEAREST(S(G),α(i));
 5   G.add_edge(qn,α(i));

Algorithm from Figure 5.16 in [LaValle 06a]
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RDT at Various Stages During Exploration

43

Rapidly Exploring Dense Trees

Image from Figure 5.19 in [LaValle 06a] Image from Figure 5.19 in [LaValle 06a]

45 Iterations 2345 Iterations
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In the presence of obstacles edges expand only to the 
obstacle boundary

44

Rapidly Exploring Dense Trees

RDT(q0)
 1 G.init(q0);
 2 for i = 1 to k do
 3   qn ← NEAREST(S,α(i));
 4   qs ← STOPPING-CONFIG(qn,α(i));
 5   if( qs ≠ qn ) then
 6     G.add_vertex(qs);
 7     G.add_edge(qn,qs);

Algorithm from Figure 5.21 in [LaValle 06a]

“obstacle”
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Single-Tree Search

Bi-Directional Search

45

Rapidly Exploring Dense Trees

Tree Expansion

Tree Expansion

Tree Expansion
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Search Space Design
Roadmaps

46
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Motion planning with Probabilistic Roadmaps 
[Kavraki96a] are a two-step process

Preprocessing Phase

   Node Selection

   Edge Generation

Query Phase

   Graph Search

47

Probabilistic Roadmap (PRM)

“obstacle”

rejected

new node
new 
edge(s)

new node neighborhood 
(radius method)
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Visibility Roadmap [Siméon00a] 
similar in concept to a 
Probabilistic Roadmap

Connectivity attempted to all nodes

Selection based on more restrictive 
rules

   Guards cannot see other guards

   Connectors connect distinct regions

       

48

Visibility Roadmap 

“obstacle”

“guards”

“connectors”

q1
V (q1)

V (q2)

q2

q3 V (q3)

q4

q5

q6
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Summary

Combining ideas from topology and geometric 
transformations allows us to define a configuration 
space for a system in 2 and 3 dimensions

Search space design is generally about achieving 
completeness while and computational cost

Deterministic and probabilistic search spaces have 
different degrees of guaranteed completeness

Introduced grids, rapidly-exploring dense trees, and 
roadmaps for search space design

49
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Next Lecture (4/7)

Search Spaces II

    Search Spaces with Differential Constraints

    Applications

Costing

    C-Space Expansion

    Binary Valued Obstacle Representations

    Continuous Valued Obstacle Representation

50
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