ME/CS 132: Advanced Robotics: Navigation and Vision

Lecture #2: Motion Simulation

Yoshiaki Kuwata 3/31/2011

Lecture Overview

• More vehicle dynamics models

- Why motion simulation?
- Analytical integration
 - LTI system
- Numerical integration schemes
 - Euler integration
 - Runge-Kutta integration

Point-mass Spacecraft Model

- Vehicle is treated as a point Notation in LaValle's book: $F = ma = m\ddot{q}$
- Assume 6 thrusters attached on 6 planes can apply force in each of ±X, ±Y, ±Z.

- Note
$$f_{x^+}, f_{x^-}, f_{y^+}, f_{y^-}, f_{z^+}, f_{z^-} \geq 0$$

• State space model: $\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), \boldsymbol{u}(t))$

$$\begin{array}{c} - \text{ State} \\ \boldsymbol{x} = \begin{bmatrix} \boldsymbol{q} \\ \dot{\boldsymbol{q}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{z} \\ \dot{\boldsymbol{x}} \\ \dot{\boldsymbol{y}} \\ \dot{\boldsymbol{z}} \end{bmatrix} \\ \boldsymbol{u} = \begin{bmatrix} f_{x^+} \\ f_{x^-} \\ f_{y^+} \\ f_{y^-} \\ f_{z^+} \\ f_{z^-} \end{bmatrix} \\ \boldsymbol{x} = \begin{bmatrix} \dot{\boldsymbol{x}} \\ \dot{\boldsymbol{y}} \\ \dot{\boldsymbol{z}} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix} + \frac{1}{m} \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ f_{x^+} - f_{x^-} \\ f_{y^+} - f_{y^-} \\ f_{z^+} - f_{z^-} - mg \end{bmatrix}$$

$$oldsymbol{F} = egin{bmatrix} f_{x^+} - f_{x^-} \ f_{y^+} - f_{y^-} \ f_{z^+} - f_{z^-} - mg \end{bmatrix}$$

• Sometimes LTI system is "defined" as

$$\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), \boldsymbol{u}(t)) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t)$$

- However, it is derived from the superposition principle
 - If applying $u_1(t), t \in [0, t_f]$ from state $x(0) = x_0$ gives a trajectory $x_1(t), t \in [0, t_f]$, and
 - if applying $\boldsymbol{u}_2(t), \ t\in[0,t_f]$ gives a trajectory $\boldsymbol{x}_2(t), \ t\in[0,t_f]$, then
 - applying $\alpha \boldsymbol{u}_1(t) + \beta \boldsymbol{u}_2(t), t \in [0, t_f]$ gives a trajectory $\alpha \boldsymbol{x}_1(t) + \beta \boldsymbol{x}_2(t), t \in [0, t_f]$
 - If the dimension of the state is finite, then it can be shown that the LTI system can be expressed as $\dot{x}(t) = Ax(t) + Bu(t)$ (proof: not trivial)

Dynamics of Quadrotor: Definitions

- State
 - Position (x,y,z) in the inertial frame
 & velocity in the inertial frame
 - Euler angles (ϕ , θ , ψ) and their time derivatives in the body frame
- Aircraft body frame convention
 - +x_B pointing forward
 - +y_B pointing right
 - $+ z_B$ pointing down
 - roll ϕ : rotation around +x_B axis
 - pitch θ : +y_B axis
 - yaw ψ : +z_B axis

$$oldsymbol{\omega}_B = rac{d}{dt} egin{bmatrix} \phi \ heta \ \psi \end{bmatrix} = egin{bmatrix} d \ d \ \phi \ \psi \end{bmatrix}$$

4-Jan-2011

Transport Theorem

- Derivative of a vector in the coordinate frame that is rotating
 - body frame B

Transport Theorem: proof

- Express the vector in the body frame: $\boldsymbol{x} = x_i \boldsymbol{\underline{i}} + x_j \boldsymbol{\underline{j}} + x_k \boldsymbol{\underline{k}}$
- Apply chain rule:

$$\frac{d\boldsymbol{x}}{dt} = \frac{dx_i}{dt}\boldsymbol{i} + \frac{dx_j}{dt}\boldsymbol{j} + \frac{dx_k}{dt}\boldsymbol{k} + x_i\frac{d\boldsymbol{i}}{dt} + x_j\frac{d\boldsymbol{j}}{dt} + x_k\frac{d\boldsymbol{k}}{dt}$$

• Rotation of the unit vector

$$\frac{d\boldsymbol{i}}{dt} = (\omega_k \boldsymbol{j} - \omega_j \boldsymbol{k}), \quad \frac{d\boldsymbol{j}}{dt} = (\omega_i \boldsymbol{k} - \omega_k \boldsymbol{i}), \quad \frac{d\boldsymbol{k}}{dt} = (\omega_j \boldsymbol{i} - \omega_i \boldsymbol{j})$$

• Then this becomes $x_{i}(\omega_{k}\boldsymbol{j} - \omega_{j}\boldsymbol{k}) + x_{j}(\omega_{i}\boldsymbol{k} - \omega_{k}\boldsymbol{i}) + x_{k}(\omega_{j}\boldsymbol{i} - \omega_{i}\boldsymbol{j})$ $= (x_{k}\omega_{j} - x_{j}\omega_{k})\boldsymbol{i} + (x_{i}\omega_{k} - x_{k}\omega_{i})\boldsymbol{j} + (x_{j}\omega_{i} - x_{i}\omega_{j})\boldsymbol{k}$ $= \boldsymbol{\omega} \times \boldsymbol{x}$

• Finally
$$\frac{d \boldsymbol{x}}{d t} = \dot{\boldsymbol{x}}_B + \boldsymbol{\omega} imes \boldsymbol{x}$$

Dynamics of Quadrotor: EOM

• What are F and N?

Dynamics of Quadrotor: Forces

Dynamics of Quadrotor

• The rotation matrix from inertial frame to body frame in 3D

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R_1(\phi)R_2(\theta)R_3(\psi) \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

 $= \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta\\ -\cos\phi\sin\psi + \sin\phi\sin\theta\cos\psi & \cos\phi\cos\psi + \sin\phi\sin\theta\sin\psi & \sin\phi\cos\theta\\ \sin\phi\sin\psi + \cos\phi\sin\theta\cos\psi & -\sin\phi\cos\psi + \cos\phi\sin\theta\sin\psi & \cos\phi\cos\theta \end{bmatrix} \begin{bmatrix} X\\ Y\\ Z \end{bmatrix}$

- Rotor planes are tilted from the body frame
 → more rotation matrices
- So it's clearly very non-linear

Motion Simulation

Why Motion Simulation?

- Testing/Debugging
 - Verify the algorithm & the software implementation
 - → before testing on the real hardware
 - Can do many things that are difficult on hardware
 - Can pause/restart the motion
 - Can replay the exact same scenario
 - Can run numerous test instances
 - Can be much cheaper

Why Motion Simulation?

- Predictive planning
 - Motion planner can use a simulator to generate trajectories
 More deliberative planner than reactive
 - Typically better performance than simply reacting

Why Motion Simulation?

- No analytical solution available
- Mars EDL (Entry, Descent, and Landing)
 - Want to predict where the spacecraft will land
 - Several sources of uncertainties
 - Uncertainties in the entry states (position, velocity, attitude)
 - Vehicle aerodynamics
 - Navigation error build-up from inertial sensor noise
 - Variability in atmospheric density and winds
 - Non-linear

Motion Simulation

• System dynamics written as an ODE (ordinary differential equation) $\dot{\mathbf{r}}(t) = f(\mathbf{r}(t), \mathbf{u}(t))$

 $\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), \boldsymbol{u}(t))$

 $\dot{q}(t) = f(q(t), u(t))$ LaValle's book (q: configuration)

• "Compute the state trajectory $\boldsymbol{x}(t)$, $t \in [0, t_f]$ given the initial state $\boldsymbol{x}(0) = \boldsymbol{x}_0$ and a control input profile $\boldsymbol{u}(t)$, $t \in [0, t_f]$, by integrating the system dynamics $\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), \boldsymbol{u}(t))$ "

"Initial value problem"

Analytical Integration

Analytical Integration

Certain class of ODEs have analytical solutions

- Separable

$$\dot{x}(t) = f(x,t) = \frac{g(t)}{h(x)}$$

 $h(x) dx = g(t) dt$
 $\int h(x) dx = \int g(t) dt + C$

• Example: linear autonomous system

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t), \quad \boldsymbol{x}(0) = \boldsymbol{x}_0$$

$$\Rightarrow \quad \boldsymbol{x}(t) = \exp(At)\boldsymbol{x}_0$$
where
$$\exp(At) = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \cdots$$

- Note that MATLAB "exp" function is element-wise
- Use "expm" to compute the matrix exponential

Example: MATLAB

>> syms a b c d; exp([a, b; c d])

ans =

[exp(a), exp(b)] [exp(c), exp(d)]

>> exp([0, 1; 0, 0])	>> expm([0, 1; 0, 0])
ans =	ans =

1.00002.71831.00001.0000

1 1

0

1

Example: LTI systems

• LTI system

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t), \quad \boldsymbol{x}(0) = \boldsymbol{x}_0$$

• If A and B are scalar, and u(t) is given, then the solution is

- Bicycle model
 - Input: steering angle

$$\dot{y} = v \sin \theta$$
$$\dot{\theta} = \frac{v}{L} \tan \delta$$

 $\dot{x} = v \cos \theta$

$$\left\{ egin{array}{l} \dot{x} = v \ \dot{y} = v heta \ \dot{y} = v heta \ \dot{ heta} = rac{v}{L} \delta \end{array}
ight.$$

- Linearized model
 - Assume constant speed
 - Small angle approximation

$$heta, \delta \ll 1: \quad \cos \theta \simeq 1$$

 $\sin \theta \simeq \theta$
 $\tan \delta \simeq \theta$

$$\begin{cases} x(t) = vt \\ \frac{d}{dt} \begin{bmatrix} y \\ \theta \end{bmatrix} = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y \\ \theta \end{bmatrix} + \begin{bmatrix} 0 \\ v/L \end{bmatrix} \delta$$

$$A = \begin{bmatrix} 0 & v \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ v/L \end{bmatrix}$$

Note:
$$A^2 = O$$

• Can write down the matrix exponential of A by hand

$$\exp(At) = I + At + \frac{(At)^2}{2!} \dots = I + At = \begin{bmatrix} 1 & vt \\ 0 & 1 \end{bmatrix}$$

- Then, the solution is $\begin{aligned} \mathbf{x}(t) &= e^{At}\mathbf{x}(0) + \int_{0}^{t} e^{A(t-\tau)}B\mathbf{u}(\tau)d\tau \\ \begin{bmatrix} y(t) \\ \theta(t) \end{bmatrix} &= \begin{bmatrix} 1 & vt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{0} \\ \theta_{0} \end{bmatrix} + \begin{bmatrix} 1 & vt \\ 0 & 1 \end{bmatrix} \int_{0}^{t} \begin{bmatrix} 1 & -v\tau \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ v/L \end{bmatrix} \delta(\tau)d\tau \\ &= \begin{bmatrix} 1 & vt \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_{0} \\ \theta_{0} \end{bmatrix} + \begin{bmatrix} 1 & vt \\ 0 & 1 \end{bmatrix} \int_{0}^{t} \begin{bmatrix} -v^{2}\tau/L \\ v/L \end{bmatrix} \delta(\tau)d\tau
 \end{aligned}$
- If the steering input is sinusoidal $\delta(t) = \delta_{\max} \sin \omega t$

$$\int_{0}^{t} \delta(\tau) d\tau = \frac{\delta_{\max}}{\omega} (1 - \cos \omega t)$$
$$\int_{0}^{t} \tau \delta(\tau) d\tau = \frac{\delta_{\max}}{\omega^{2}} (\sin \omega t - \omega t \cos \omega t)$$

MATLAB δ (deg) Initial condition _ -10 L 0 • x = 0 • y = 1 (**deg**) 0 • $\theta = 0.1$ -Parameters • w = 0.5 • δ_{max}= 0.1 -Valid when б к $\theta, \delta \ll 1: \cos \theta \simeq 1$ $\sin\theta\simeq\theta$ $\tan\delta\simeq\delta$ Ê 10 t (sec)

Side note: Continuous → Discrete

- It is sometime convenient to use a discrete form when implementing on digital computer
 - Kalman filter's dynamics equation

$$\boldsymbol{x}_{k+1} = A_d \boldsymbol{x}_k + B_d \boldsymbol{u}_k$$

- How do the matrices A & B relate to those of the continuous form?

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + B\boldsymbol{u}(t), \quad \boldsymbol{x}(0) = \boldsymbol{x}_0$$

- Use the result from the previous slide

$$\boldsymbol{x}(\Delta t) = e^{A\Delta t}\boldsymbol{x}(0) + \int_0^{\Delta t} e^{A(\Delta t - \tau)} B\boldsymbol{u}(\tau) d\tau$$

- If the control input u(t) is constant over $0 \le t \le \Delta t$ ("zero-order hold")

$$\boldsymbol{x}(\Delta t) = \underline{e^{A\Delta t}}\boldsymbol{x}(0) + \left(e^{A\Delta t}\int_{0}^{\Delta t} e^{-A\tau}d\tau B\right)\boldsymbol{u}(0)$$

Example: Continuous vs Discrete

- 1-D double integrator with force as the control input $m\ddot{x}(t)=u(t)$
- Continuous form

$$\boldsymbol{x}(t) = \begin{bmatrix} r(t) \\ v(t) \end{bmatrix} \qquad \quad \frac{d}{dt} \begin{bmatrix} r \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} r \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \end{bmatrix} u(t)$$
$$\dot{\boldsymbol{x}}(t) = f(\boldsymbol{x}(t), u(t))$$

• Discrete form (assuming u(t) is constant from t_k to t_{k+1})

$$\boldsymbol{x}_{k} = \begin{bmatrix} r_{k} \\ v_{k} \end{bmatrix} \qquad \begin{bmatrix} r_{k+1} \\ v_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} r_{k} \\ v_{k} \end{bmatrix} + \begin{bmatrix} \frac{\Delta t^{2}}{2m} \\ \frac{\Delta t}{m} \end{bmatrix} u_{k}$$
$$x_{k+1} = f_{d}(x_{k}, u_{k})$$

• There is a nice formula to convert one from the other for LTI systems, but not addressed in this class

Different Sets of Control Inputs

- Actual interface to the vehicle might be
 - Steering voltage
 - Gas & break voltage
- Users might want to command with
 - steering angle
 - turn rate
 - curvature

$$\kappa = \frac{1}{r} = \frac{\dot{\theta}}{v} = \frac{\tan \delta}{L}$$

 $\dot{\theta} = \frac{v}{\tau} \tan \delta$

Conversion could be nonlinear

- In the previous slides, the **control input** sequence was defined as a function of time u(t), $t \in [0, t_f]$
 - Controller blindly applies the pre-determined input no matter what \rightarrow "Open-loop simulation"
- The control input could be defined as a function of states ${m u}(t)=\pi({m x}(t))$
 - Controller might adjust the input depending on the states
 → can reject disturbances
 - $\pi(\cdot)$ is called state feedback "Control law"
 - If the control law is linear, $\pmb{u}(t) = K \pmb{x}(t)$. K is called "feedback gain"
- "Compute the state trajectory x(t), $t \in [0, t_f]$, given the initial state $x(0) = x_0$ and a control law $u(t) = \pi(x(t), t)$."
- Analytical integration more difficult with nonlinear control laws

Numerical Integration

- Not needed if the system dynamics are simple and have a analytical/closed-form solution
 - Might not apply to real systems due to nonlinear dynamics, uncertain terms, complex control law, saturation, etc.
- Start from some initial condition

$$x(0) = x_0$$

• Break t into small intervals of size Δt , and iterate

$$\dot{x}(t) = f(x(t), u(t))$$

$$\iff x(t_{k+1}) = x(t_k) + \int_{t_k}^{t_{k+1}} f(x(t), u(t)) dt$$

$$\Rightarrow \approx f(x(t_k), u(t_k))(t_{k+1} - t_k)$$
With a small Δt
Slope
Step size Δt

ME/CS 132

Numerical Integration of ODEs

- Basic algorithm flow
 - 1. Set the initial condition $x(t_k) = x(0) = x_0$
 - 2. Numerically approximate the slope in $t \in [t_k, t_{k+1}]$ using the system equation $\dot{x}(t) = f(x(t), u(t)) \rightarrow$ call it \bar{f}
 - 3. Add $x(t_{k+1}) = x(t_k) + \bar{f}\Delta t$
 - 4. Increment *k* and go to step 2
- Two very popular integration scheme
 - Euler integration
 - First-order \rightarrow Error term is O(dt^2)
 - Enough for most simple applications
 - Runge-Kutta integration
 - Second-order \rightarrow Error term is O(dt^3)
 - Fourth-order \rightarrow Error term is O(dt^5)
 - The difference is only in the way $ar{f}$ is approximated

• Use the slope at t_k as the slope between t_k and t_{k+1}

• Backward Euler: Use the slope at t_{k+1} as the slope between t_k and t_{k+1}

- Developed by two mathematicians Runge and Kutta around 1900
- 4-th order Runge-Kutta is widely used

$$\begin{aligned} x(\Delta t) &\approx x(0) + \frac{\Delta t}{6} (w_1 + 2w_2 + 2w_3 + w_4) \\ w_1 &= f(x(0), u(0)) \\ w_2 &= f(x(0) + \frac{1}{2}\Delta t \ w_1, \ u(\frac{1}{2}\Delta t)) \\ w_3 &= f(x(0) + \frac{1}{2}\Delta t \ w_2, \ u(\frac{1}{2}\Delta t)) \\ w_4 &= f(x(0) + \Delta t \ w_3, \ u(\Delta t)). \end{aligned}$$
 [LaValle's Book, Ch 14.3.2]

- What is it trying to do?
 - Try to approximate the slope by sampling several points and averaging them with proper weights

• Refinement of the Euler method: use the slope at t_k and t_{k+1}

4th order RK

- 2nd order RK: $x(t_{k+1}) = x(t_k) + \frac{\Delta t}{2}(w_1 + w_2)$ $w_1 = f(x(t_k), u(t_k)) \quad \leftarrow \text{Slope at } t_k$ $w_2 = f(x(t_k) + w_1 \Delta t, u(t_{k+1})) \quad \leftarrow \text{Slope at } t_{k+1}$ using w_1 & Euler
 - $\begin{aligned} x(t_{k+1}) &= x(t_k) + \frac{\Delta t}{6} (w_1 + 2w_2 + 2w_3 + w_4) \\ w_1 &= f(x(t_k), u(t_k)) \\ w_2 &= f\left(x(t_k) + \frac{1}{2}w_1 \Delta t, u(t_k + \frac{1}{2}\Delta t)\right) \\ w_3 &= f\left(x(t_k) + \frac{1}{2}w_2 \Delta t, u(t_k + \frac{1}{2}\Delta t)\right) \\ w_4 &= f\left(x(t_k) + w_3 \Delta t, u(t_k + \Delta t)\right) \end{aligned}$

Larger weights on the slopes at mid points \leftarrow Slope at t_k

- ← Slope at $t_k + \frac{1}{2}\Delta t$ using w_1 & Euler
- ← Slope at $t_k + \frac{1}{2}\Delta t$ using w_2 & Euler
- $\leftarrow \text{Slope at } t_{k+1} \\ \text{using } w_3 \& \text{Euler}$

Current Research

- DARTS group at JPL http://dartslab.jpl.nasa.gov/
 - EDL simulation (Monte-Carlo simulation \rightarrow risk analysis)
 - SOA (Spatial Operator Algebra): multi-body dynamics
- Planning using forward simulation
 - Readily incorporate nonlinear dynamics/constraints
 - Planning with SLAM (simulated observations)
- GPU
 - Can run hundreds of simulations in parallel
 - Crowd simulation
 - Millions of particles interacting with each other (e.g., sand, molecular dynamics)