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Lecture Overview

4-Jan-2011 lhm - 2ME/CS 132

• More vehicle dynamics models

• Why motion simulation?
• Analytical integration

– LTI system

• Numerical integration schemes
– Euler integration

– Runge-Kutta integration



• Vehicle is treated as a point

• Assume 6 thrusters attached on 
6 planes can apply force in each 
of ±X, ±Y, ±Z.
– Note

• State space model:
– State
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Point-mass Spacecraft Model

Notation in LaValle’s book:
(q: configuration)

– Control – Dynamics



• Sometimes LTI system is “defined” as

• However, it is derived from the superposition principle
– If applying from state

gives a trajectory , and

– if applying
gives a trajectory , then

– applying
gives a trajectory

– If the dimension of the state is finite, then it can be shown that 
the LTI system can be expressed as                                        
(proof: not trivial)
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Side note: Linear Time-Invariant system



• State
– Position (x,y,z) in the inertial frame 

& velocity in the inertial frame

– Euler angles (φ, θ, ψ) and 
their time derivatives in the body frame

• Aircraft body frame convention
– +xB pointing forward

– +yB pointing right

– +zB pointing down

– roll φ : rotation around +xB axis

– pitch θ : +yB axis

– yaw ψ : +zB axis

4-Jan-2011 ME/CS 132 lhm - 5

Dynamics of Quadrotor: Definitions
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Transport Theorem

• Derivative of a vector in the coordinate frame that is 
rotating
– body frame B

Rate of change observed
in the rotating frame

Rate of change observed 
in the inertial frame

Change of the
frame itself



• Express the vector in the body frame:
• Apply chain rule:

• Rotation of the unit vector

• Then this becomes

• Finally
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Transport Theorem: proof



• Translational

• Rotational

• What are F and N?
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Dynamics of Quadrotor: EOM

Transport Theorem

Inertial frame

Body frame



• Four rotors as control inputs
– Thrust: Ti (i=1, 2, 3, 4)

– Moment: Ni

(Ni  is a function of Ti)

– Arm length (from C.G.): li

– Rotor plane frame: Ri

• Then,
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Dynamics of Quadrotor: Forces

[Hoffman, et al. ‘08 GNC]

GravityDrag Unit vector of ith rotor’s plane
Rotation matrix from the frame of
ith rotor to inertial coordinates

Rotation matrix from the frame of
ith rotor to body coordinates



• The rotation matrix from inertial frame to body frame in 3D 

• Rotor planes are tilted from the body frame 
� more rotation matrices

• So it’s clearly very non-linear 
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Dynamics of Quadrotor



Motion Simulation
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Why Motion Simulation?

• Testing/Debugging
– Verify the algorithm & the software implementation 

� before testing on the real hardware

– Can do many things that are difficult on hardware
• Can pause/restart the motion
• Can replay the exact same scenario
• Can run numerous test instances
• Can be much cheaper
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PerceptionPlanner

Vehicle

Controller

Sensor Environment



Why Motion Simulation?

• Predictive planning
– Motion planner can use a simulator to generate trajectories

� More deliberative planner than reactive

– Typically better performance than simply reacting
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• No analytical solution available
• Mars EDL (Entry, Descent, and Landing)

– Want to predict where the spacecraft will land

– Several sources of uncertainties
• Uncertainties in the entry states (position, velocity, attitude)
• Vehicle aerodynamics
• Navigation error build-up 

from inertial sensor noise
• Variability in atmospheric 

density and winds

– Non-linear
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Why Motion Simulation?

[Knocke, et al. ’04 ASC]



Motion Simulation

• System dynamics written as an ODE 
(ordinary differential equation)

• “Compute the state trajectory 
given the initial state                    and 
a control input profile ,
by integrating the system dynamics                                    ”

4-Jan-2011 ME/CS 132 lhm - 15

t

“Initial value problem”

LaValle’s book (q: configuration)



Analytical Integration
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• Certain class of ODEs have analytical solutions
– Separable

• Example: linear autonomous system

– Note that MATLAB “exp” function is element-wise

– Use “expm” to compute the matrix exponential
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Analytical Integration

�

where
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Example: MATLAB

>> syms a b c d; exp([a, b; c d])

ans =

[ exp(a), exp(b)]
[ exp(c), exp(d)]

>> exp([0, 1; 0, 0])

ans =

1.0000    2.7183
1.0000    1.0000

>> expm([0, 1; 0, 0])

ans =

1     1
0     1



• LTI system

• If A and B are scalar, and u(t) is given, then the solution is
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Example: LTI systems

Holds true with matrices A, B



• Bicycle model
– Input: steering angle

• Linearized model
– Assume constant speed

– Small angle approximation

– LTI system with matrices
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Example: Bicycle model

Note: 



• Can write down the matrix exponential of A by hand

• Then, the solution is

• If the steering input is sinusoidal
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Example: Bicycle model



• MATLAB
– Initial condition

• x = 0
• y = 1
• θ = 0.1

–Parameters
• ω = 0.5
• δmax= 0.1

–Valid when
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Example: Bicycle model



• It is sometime convenient to use a discrete form when 
implementing on digital computer 
– Kalman filter’s dynamics equation

– How do the matrices A & B relate to those of the continuous form?

– Use the result from the previous slide

– If the control input u(t) is constant over 0 ≤ t ≤ ∆t (“zero-order hold”)
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Side note: Continuous � Discrete



• 1-D double integrator with force as the control input

• Continuous form

• Discrete form (assuming u(t) is constant from tk to tk+1)

• There is a nice formula to convert one from the other for 
LTI systems, but not addressed in this class
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Example: Continuous vs Discrete



Different Sets of Control Inputs

• Actual interface to the vehicle might be
– Steering voltage

– Gas & break voltage

• Users might want to command with
– steering angle

– turn rate

– curvature

• Conversion could be nonlinear
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UGV

Gas/break
steering angle

Converter

speed command
curvature command

Motion
Planner



Closed-loop Simulation

• In the previous slides, the control input sequence 
was defined as a function of time
– Controller blindly applies the pre-determined input no matter what

� “Open-loop simulation”

• The control input could be defined as a function of states

– Controller might adjust the input depending on the states
� can reject disturbances

– is called state feedback “Control law”

– If the control law is linear, . 
K is called “feedback gain”

• “Compute the state trajectory , given the 
initial state                   and a control law .”

• Analytical integration more difficult with nonlinear control laws
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Numerical Integration
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• Not needed if the system dynamics are simple and have a 
analytical/closed-form solution
– Might not apply to real systems due to nonlinear dynamics, 

uncertain terms, complex control law, saturation, etc.

• Start from some initial condition

• Break t into small intervals of size ∆t, and iterate
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Numerical Integration

With a small ∆t Slope Step size ∆t



• Basic algorithm flow
1. Set the initial condition

2. Numerically approximate the slope in 
using the system equation � call it 

3. Add

4. Increment k and go to step 2

• Two very popular integration scheme
– Euler integration

• First-order  � Error term is O(dt^2)
• Enough for most simple applications

– Runge-Kutta integration
• Second-order  � Error term is O(dt^3)
• Fourth-order  � Error term is O(dt^5)

– The difference is only in the way      is approximated
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Numerical Integration of ODEs



• Use the slope at tk as the slope between tk and tk +1

• Backward Euler: 
Use the slope at tk+1 as the slope between tk and tk +1
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(Forward) Euler Integration

t

x

tk tk+1

slope

True value at tk +1
ODE is known

Trajectory is 
not known



• Bicycle model
– Input: steering angle
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Example: Bicycle model



• Developed by two mathematicians Runge and Kutta
around 1900

• 4-th order Runge-Kutta is widely used

• What is it trying to do?
– Try to approximate the slope by sampling several points and 

averaging them with proper weights
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Runge-Kutta

[LaValle’s Book, Ch 14.3.2]



• Refinement of the Euler method: use the slope at tk and tk+1
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2nd order Runge-Kutta

� Estimate               using Euler method

� Slope at tk

� Estimated slope at tk+1

t
tk tk+1

� Average of two slopes

Matches the Taylor series 
up to two terms

x
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4th order RK

• 2nd order RK:

• 4th order RK:

� Slope at

� Slope at
using       & Euler

� Slope at
using       & Euler

� Slope at
using       & Euler

� Slope at

� Slope at
using       & Euler

Larger weights on the
slopes at mid points



• DARTS group at JPL
– EDL simulation (Monte-Carlo simulation � risk analysis)

– SOA (Spatial Operator Algebra): multi-body dynamics

• Planning using forward simulation
– Readily incorporate nonlinear dynamics/constraints

– Planning with SLAM (simulated observations)

• GPU
– Can run hundreds of simulations in parallel

– Crowd simulation

– Millions of particles interacting with each other 
(e.g., sand, molecular dynamics)
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Current Research

http://dartslab.jpl.nasa.gov/


