
Lecture 3
Linear Temporal Logic (LTL)

Richard M. Murray
Caltech

Ufuk Topcu Nok Wongpiromsarn
 UT Austin UT Austin/Iowa State

EECI-IGSC, 9 Mar 2020

Outline
• Syntax and semantics of LTL
• Specifying properties in LTL
• Equivalence of LTL formulas
• Fairness in LTL
• Other temporal logics (if time)

Principles of Model
Checking,
C. Baier and J.-P. Katoen,
The MIT Press, 2008

Chapter 5

Richard M. Murray, Caltech CDSEECI, Mar 2013

Formal Methods for System Verification
Specification using LTL
• Linear temporal logic (LTL) 

is a math’l language for  
describing linear-time prop’s

• Provides a particularly useful 
set of operators for construc- 
ting LT properties without  
specifying sets

Methods for verifying an LTL  
specification
• Theorem proving: use formal  

logical manipulations to show 
that a property is satisfied for a 
given system model

• Model checking: explicitly check all possible executions of a system model and verify
that each of them satisfies the formal specification

- Roughly like trying to prove stability by simulating every initial condition
- Works because discrete transition systems have finite number of states
- Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)

2

Richard M. Murray, Caltech CDSEECI, Mar 2013

Temporal Logic Operators
Two key operators in temporal logic
• ◊ “eventually” - a property is satisfied at some point in the future

• ! “always” - a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time
• Linear temporal logic ⇒ each moment in time has a well-defined successor moment

• Branching temporal logic ⇒ reason about multiple possible time courses

• “Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic
• Specific class of operators for specifying linear time properties
• Introduced by Pneuli in the 1970s (recently passed away)

• Large collection of tools for specification, design, analysis

Other temporal logics
• CTL = computation tree logic (branching time; will see later, if time)

• TCTL = timed CTL - check to make sure certain events occur in a certain time

• TLA = temporal logic of actions (Lamport) [variant of LTL]
• µ calculus = for reactive systems; add “least fixed point” operator (more on Thu)

3

Richard M. Murray, Caltech CDSEECI, Mar 2013

Syntax of LTL
LTL formulas:

• a = atomic proposition

• ◯ = “next”: φ is true at next step

• U = “until”: φ2 is true at some point, 
 φ1 is true until that time

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

• Same notation as linear time properties: σ ⊨ φ (path “satisfies” specification)

4

Operator precedence

• Unary bind stronger than binary

• U takes precedence over ∧, ∨ and →

Richard M. Murray, Caltech CDSEECI, Mar 2013

Additional Operators and Formulas
“Primary” temporal logic operators

• Eventually ◊ϕ := true U ϕ ϕ will become true at some point in the future

• Always !ϕ := ¬◊¬ϕ ϕ is always true; “(never (eventually (¬ϕ)))”

Some common composite operators

• p → ◊q p implies eventually q (response)

• p → q U r p implies q until r (precedence)

• !◊p always eventually p (progress)

• ◊!p eventually always p (stability)

• ◊p → ◊q eventually p implies eventually q  
 (correlation)

5

Operator precedence
• Unary binds stronger  

than binary

• Bind from right to left:  
!◊p = (! (◊p))  
p U q U r = p U (q U r)

• U takes precedence over  
∧, ∨ and →

Richard M. Murray, Caltech CDSEECI, Mar 2013

Example: Traffic Light
System description
• Focus on lights in on particular direction

• Light can be any of three colors: green, yellow, read

• Atomic propositions = light color

Ordering specifications
• Liveness: “traffic light is green infinitely often”

• Chronological ordering: “once red, the light cannot become green immediately” 

• More detailed: “once red, the light always becomes green eventually after being
yellow for some time”

Progress property
• Every request will eventually lead to a response

6

☐ (red → ¬ ◯ green)

☐(red → ◯ (red U (yellow ∧ ◯ (yellow U green))))

☐ (request → ◊response)

☐◊green

☐(red → (◊ green ∧ (¬ green U yellow)))

Richard M. Murray, Caltech CDSEECI, Mar 2013

Semantics: when does a path satisfy an LTL spec?

7

Richard M. Murray, Caltech CDSEECI, Mar 2013

Semantics of LTL

8

Richard M. Murray, Caltech CDSEECI, Mar 2013

Semantics of LTL

Remarks
• Which condition you use depends on type of  

problem under consideration
• For reasoning about correctness, look for 

(lack of) intersection between sets:

9

Richard M. Murray, Caltech CDSEECI, Mar 2013

Consider the following transition system

Property 1: TS |= [] a?
• Yes, all states are labeled with a

Property 2: TS |= X (a ^ b)?
• No: From s2 or s3, there are transitions for which a ^ b doesn’t hold

Property 3: TS |= [] (!b -> [](a ^ !b))?
• True

Property 4: TS |= b U (a ^ !b)?
• False: (s1s2)ω

“Quiz”

10

Richard M. Murray, Caltech CDSEECI, Mar 2013

Specifying Timed Properties for Synchronous Systems

Remark
• Idea can be extended to non-synchronous case (eg, Timed CTL [later])

11

Richard M. Murray, Caltech CDSEECI, Mar 2013

Equivalence of LTL Formulas

Non-identities
• ◊(a ∧ b) ≢ ◊a ∧ ◊b

• ☐(a ∨ b) ≢ ☐a ∨ ☐b

12

Richard M. Murray, Caltech CDSCS/IDS 142, 2 Oct 2019

Distributed Systems
Distributed systems
• A distributed system consists of a set of agents (also called processes) and a set of

directed channels.
• A channel is directed from one agent to one agent. The system can be represented

by a directed graph (separate from the program graph within each agent)

Definition of the “state” of a distributed system
• Minimum amount of information such that the future behavior can be predicted

without any other information about the past
• Typically consists of the value of all variables that are part of any processes as well

as messages that might be in transit
Execution for a distributed system
• Any agent can execute an action within its 

transition system at any time

• Synchrony models
- Handshake (see L2)
- Interleaving: async
- Synchronized actions

• “Fairness”: assumption to  
ensure everyone gets to execute

13

0

2

3

1 4 Agent

M3

M2 M1

Channel

message

Richard M. Murray, Caltech CDSCS/IDS 142, 2 Oct 2019

Fairness
Weak Fairness
• Every action is guaranteed to be selected infinitely often

• Implication: between any two selections of a particular 
action, there are a finite (but unbounded) number of  
selections of other actions.

Strong Fairness
• Each action is selected infinitely often and if an action  

is enabled infinitely often then it is selected infinitely often

• Avoids situations where we get “unlucky” and never select an action at a time when it
is enabled (mainly applies to guarded actions)

Door opening example
• Human can walk forward or backward

• Door can open or close (asynchronously)

• Treat as two separate processes
- Human: actions = forward, backward
- Door: actions = open, close

• Q: is it always possible for the human to get from one side of the door to the other?

14

door
p = -1 p = 0 p = 1

Richard M. Murray, Caltech CDSEECI, Mar 2013

Fairness Properties in LTL
Definition 5.25 LTL Fairness Constraints and Assumptions

Let Φ and Ψ be propositional logical formulas  
over a set of atomic propositions

1. An unconditional LTL fairness constraint is  
an LTL formula of the form

2. A strong LTL fairness condition is an LTL  
formula of the form

3. A weak LTL fairness constraint is an LTL  
formula of the form

An LTL fairness assumption is a conjunction of LTL fairness constraints (of any arbitrary
type).

Rules of thumb
• strong (or unconditional) fairness: useful for solving contentions

• weak fairness: sufficient for resolving the non-determinism due to interleaving.

15

door
p = -1 p = 0 p = 1

Richard M. Murray, Caltech CDSEECI, Mar 2013

Fairness Properties in LTL
Fair paths and traces

16

Richard M. Murray, Caltech CDSEECI, Mar 2013

Branching Time and Computational Tree Logic
Consider transition systems with multiple branches
• Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)

• In this case, there might be multiple paths from a given state

• Q: in evaluating a temporal logic property, which execution branch to we check?

Computational tree logic: allow evaluation over some or all paths

17

Richard M. Murray, Caltech CDSEECI, Mar 2013

Example: Triply Redundant Control Systems
Systems consists of three processors 
and a single voter
• si,j = i processors up, j voters up
• Assume processors fail one at a 

time; voter can fail at any time
• If voter fails, reset to fully functioning 

state (all three processors up)
• System is operation if at least 2 processors  

remain operational

Properties we might like to prove

18

Holds

Doesn’t hold

Doesn’t hold

Holds

Richard M. Murray, Caltech CDSEECI, Mar 2013

Other Types of Temporal Logic
CTL ≠ LTL
• Can show that LTL and  

CTL are not proper sub- 
sets of each other

• LTL reasons over a  
complete path; CTL from 
a given state

CTL* captures both

Timed Computational Tree Logic
• Extend notions of transition systems and CTL to 

include “clocks” (multiple clocks OK)

• Transitions can depend on the value of clocks
• Can require that certain properties happen within a  

given time window

19

Richard M. Murray, Caltech CDSEECI, Mar 2013

Summary: Specifying Behavior with LTL
Description
• State of the system is a snapshot of values of all

variables

• Reason about paths σ: sequence of states of the
system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is
related to state t by action a if a takes s to t (via
prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of
allowable behaviors

• Safety specification: what actions are allowed
• Fairness specification: when can a component

take an action (eg, infinitely often)

Example
• Action: a ≡ x’ = x + 1

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ...

• Safety: !x > 0 (true for this behavior)

• Fairness: !(x’ = x + 1 ∨ x’ = x) ∧ !◊ (x’ ≠ x)  

Properties
• Can reason about time by adding

“time variables” (t’ = t + 1)
• Specifications and proofs can be

difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, SPIN, Storm, etc)

20

" !p ≡ always p (invariance)
" ◊p ≡ eventually p (guarantee)
" p → ◊q ≡ p implies eventually q

(response)
" p → q U r ≡ p implies q until r

(precedence)
" !◊p ≡ always eventually p

(progress)
" ◊!p ≡ eventually always p

(stability)
" ◊p → ◊q ≡ eventually p implies

eventually q (correlation)

