Caltech

Lecture 3
Linear Temporal Logic (LTL)

Richard M. Murray
Caltech

Ufuk Topcu Nok Wongpiromsarn
UT Austin UT Austin/lowa State

EECI-IGSC, 9 Mar 2020

Outline
* Syntax and semantics of LTL
* Specifying properties in LTL
e Equivalence of LTL formulas
* Fairness in LTL
* Other temporal logics (if time)

Principles of Model
Checking,

C. Baier and J.-P. Katoen,
The MIT Press, 2008

Chapter 5

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

Formal Methods for System Verification

Specification using LTL requirements assumptions
- - (on the system | |(on the unknowns, e.g.,
® Linear temporal logic (LTL) behavi)c;r) environment behavior) System

is a math’l language for
describing linear-time prop’s

® Provides a particularly useful {

set of operators for construc- specifications model

ting LT properties without

specifying sets x
Methods for verifying an LTL
specification

e Theorem proving: use formal
Iogical manipulations to show tisfied iolated controller that render no such
I icfi satisrie violate
that a property is satisfied for a (+certificate) (+counterexample) s :zgfysytsht:r:p;cé’s cogg:tlsler
given system model

e Model checking: explicitly check all possible executions of a system model and verify
that each of them satisfies the formal specification

- Roughly like trying to prove stability by simulating every initial condition
= Works because discrete transition systems have finite number of states
= Very good tools now exist for doing this efficiently (SPIN, nuSMYV, etc)

formal system }

EECI, Mar 2013 Richard M. Murray, Caltech CDS 2

Temporal Logic Operators

Two key operators in temporal logic
e) ‘“eventually” - a property is satisfied at some point in the future
e [1 “always” - a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time
® | inear temporal logic = each moment in time has a well-defined successor moment

e Branching temporal logic = reason about multiple possible time courses

® “Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic
® Specific class of operators for specifying linear time properties
® |ntroduced by Pneuli in the 1970s (recently passed away)
e | arge collection of tools for specification, design, analysis

Other temporal logics
® CTL = computation tree logic (branching time; will see later, if time)
e TCTL =timed CTL - check to make sure certain events occur in a certain time
® TLA = temporal logic of actions (Lamport) [variant of LTL]
® u calculus = for reactive systems; add “least fixed point” operator (more on Thu)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Syntax of LTL

LTL formulas:

@u=true | a | 991/\992‘ @ | Oe | vrUyp2

® a = atomic proposition Operator precedence

e (O ="next": @ is true at next step e Unary bind stronger than binary

e U = “until”: g2 is true at some point, e U takes precedence over A, v and —
@1 is true until that time

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

a arbitrary arbitrary arbitrary arbitrary
. N) N e N
| — - - - S - s
atomic prop.a () —{(_) () ())
arbitrary a arbitrary arbitrary arbitrary
. 0 o o o o) o
next step Oa ())) - U g
a /\ ‘—1b a /\ —1b a /\ '—1b b arbitrary
. N WY W N\ N2 _
until aUb () - W, s,), i

e Same notauon as lnear ume properues. O = @ (patn satsiies Sspecincatuon)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Additional Operators and Formulas

“Primary” temporal logic operators
e Eventually ¢¢ :=trueU$ ¢ will become true at some point in the future

® Always O¢ := 070 ¢ is always true; “(never (eventually (79)))”
—a a4 —ad a arbitrary
eventually 0a () ——()))) -
a a a a
always Oa () O O O O -
Some common composite operators Operator precedence
® p— 0q p implies eventually g (response) ¢ Unary binds stronger
o . than binary
*p—->qUur p implies g until r (precedence) e Bind from right to left:
* O0p always eventually p (progress) O0p = (O (Op))

pUgqUr=pU(qUr)

. e U takes precedence over
® Op — 0Q eventually p implies eventually g ~ vand —

(correlation)

® O0p eventually always p (stability)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Example: Traffic Light

System description
® Focus on lights in on particular direction
e Light can be any of three colors: green, yellow, read
® Atomic propositions = light color

red/yellow

Ordering specifications
® | iveness: “traffic light is green infinitely often”

oogreen

® Chronological ordering: “once red, the light cannot become green immediately”
O (red — = O green)
e More detailed: “once red, the light always becomes green eventually after being
yellow for some time”
O(red — (¢ green A (7 green U yellow)))
O(red — O (red U (yellow A O (yellow U green))))
Progress property
® Every request will eventually lead to a response
O (request — Oresponse)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Semantics: when does a path satisfy an LTL spec?

Definition 5.6. Semantics of LTL (Interpretation over Words)
Let ¢ be an LTL formula over AP. The LT property induced by ¢ is

Words(¢) = {o € (2*F)*| o = o}

where the satisfaction relation = C (2AP)“ x LTL is the smallest relation with the

properties in Figure 5.2. n
o = true
c FE a iff aeAy (ie, Ay FEa)
c FE piAge iff ok and o | @2 o E Qp iff 3j=20.0[j..]=¢
o E - iff oy o = Op iff Vj=20.0[j...] =e¢.
c E Qe iff o[l...]=A1A243... F ¢
o E eiUgpy iff 3520.0[j...] Eps and oli...|F¢q, forall0<i<j

Figure 5.2: LTL semantics (satisfaction relation =) for infinite words over 247,

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Semantics of LTL

The semantics of the combinations of O and { can now be derived:

o = O0p iff Oﬁj.ab‘...]l::(p
o = Q0Op iff O\;’}j.a[j...]htp.

Here, 030 j means Vi = 0. dj = i, “for infinitely many 7 € IN”, while :‘:10 4 stands for
i =2 0. V5 = 4, “for almost all j € IN”.

Definition 5.7. Semantics of LTL over Paths and States

Let TS = (S, Act,—,I, AP, L) be a transition system without terminal states, and let ¢
be an LTL-formula over AP.

e For infinite path fragment 7 of TS, the satisfaction relation is defined by
T iff trace(w) = .
e For state s € S, the satisfaction relation = is defined by
sk iff (Vm € Paths(s). m =).
e TS satisfies ¢, denoted TS |= ¢, if Traces(TS) C Words(yp).

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Semantics of LTL

From this definition, it immediately follows that

ISE¢

iff (* Definition 5.7 *)
Traces(TS) C Words(yp)

iff (* Definition of = for LT properties *)
TS = Words(y)

iff (* Definition of Words(y) *)
7 |= @ for all m € Paths(TS)

iff (* Definition 5.7 of = for states *)

3y = o for all sy € I.

Remarks

® \Which condition you use depends on type of
problem under consideration

® For reasoning about correctness, look for
(lack of) intersection between sets:

executions that
are possible and
invalid

EECI, Mar 2013 Richard M. Murray, Caltech CDS

“QUiZ”

Consider the following transition system

{a,b} {a,b} {a}

Consider the transition system TS depicted in Figure 5.3 with the set of propositions
AP = {a,b}. For example, we have that TS |= Ua, since all states are labeled with a,
and hence, all traces of TS are words of the form AgA; As... with a € A; for all 2 > 0.
Thus, s; = Ua for i = 1,2,3. Moreover:

31 = (O (a Ab) since 82 = a A b and s» is the only successor of s;
389 = (O (aAb) and 83 = O (a A b) as 83 € Post(ss), 83 € Post(s3) and s3 = a A b.

This yields TS ¥ (O (a A b) as 83 is an initial state for which s3 = (O (a A b). As another

example:
TS = O(-b— O(a A —b)),

since 83 is the only —b state, s3 cannot be left anymore, and a A —b in 33 is true. However,
TS ¥ bU(a A —b),

since the initial path (3;82)* does not visit a state for which a A —b holds. Note that the
initial path (s132)sY satisfies bU (a A —b). ul
EECI, Mar 2013 Richard M. Murray, Caltech CDS

10

Specifying Timed Properties for Synchronous Systems

For synchronous systems, LTL can be used as a formalism to specify “real-time” properties
that refer to a discrete time scale. Recall that in synchronous systems, the involved
processes proceed in a lock step fashion, i.e., at each discrete time instance each process
performs a (sometimes idle) step. In this kind of system, the next-step operator () has a
“timed” interpretation: () ¢ states that “at the next time instant ¢ holds”. By putting
applications of () in sequence, we obtain, e.g.:

Okp = OQ0...0¢ “v holds after (exactly) k time instants”.
k-times
Assertions like “p will hold within at most k time instants” are obtained by
0o = \/ O'e
0<i<gk

Statements like “@ holds now and will hold during the next k instants” can be represented
as follows:

Remark
® |dea can be extended to non-synchronous case (eg, Timed CTL [later])

EECI, Mar 2013 Richard M. Murray, Caltech CDS

11

Equivalence of LTL Formulas

Definition 5.17. Equivalence of LTL Formulae
LTL formulae ¢, @, are equivalent, denoted ¢, = vy, if Words(y;) = Words(y;).

duality law idempotency law
Qe = O QOp = Qp
-Qp = O-gp OO = Op
“Op = O-p pU(pUy) = oU¥
(pUY)UY = Uy
absorption law expansion law
000 = O0p Uy = ¥ V (¢ A O(pUv))
O00p = 00 W = v v QW
Oy = v A O
distributive law Non-identities
OlpUy) = (Oe)U(OY) e O(aAb)=0andb
OleVy) = QpVOu e ((avb)zoavOb
OleAy) = OpAly

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Distributed Systems

Distributed systems

e A distributed system consists of a set of agents (also called processes) and a set of
directed channels.

® A channel is directed from one agent to one agent. The system can be represented
by a directed graph (separate from the program graph within each agent)
Definition of the “state” of a distributed system

® Minimum amount of information such that the future behavior can be predicted
without any other information about the past

® Typically consists of the value of all variables that are part of any processes as well
as messages that might be in transit
Execution for a distributed system

® Any agent can execute an action within its
transition system at any time

® Synchrony models

- Handshake (see L2)
- Interleaving: async
- Synchronized actions

ensure everyone gets to execute @/

message

e “Fairness”. assumption to

CS/IDS 142,2 Oct 2019 Richard M. Murray, Caltech CDS 13

Fairness

Weak Fairness X2
® Every action is guaranteed to be selected infinitely often

e |[mplication: between any two selections of a particular
action, there are a finite (but unbounded) number of

selections of other actions. Q
Strong Fairness _ O o rH
® Each action is selected infinitely often and if an action l
is enabled infinitely often then it is selected infinitely often ol

® Avoids situations where we get “unlucky” and never select an action at a time when it
Door opening example
® Human can walk forward or backward

is enabled (mainly applies to guarded actions)
e Door can open or close (asynchronously) E
® Treat as two separate processes p=-1 p=0 p=1
- Human: actions = forward, backward door

- Door: actions = open, close
® Q: is it always possible for the human to get from one side of the door to the other?

CS/IDS 142,2 Oct 2019 Richard M. Murray, Caltech CDS

Fairness Properties in LTL

Definition 5.25 LTL Fairness Constraints and Assumptions

Let ® and W be propositional logical formulas

over a set of atomic propositions §

1. An unconditional LTL fairness constraint is

an LTL formula of the form ufair = OQW.
= -1 p =0 p =1

2. A strong LTL fairness condition is an LTL door
formula of the form sfair = O0® — OO,

3. Aweak LTL fairness constraint is an LTL

formula of the form wfeir = (0@ — OOU.

An LTL fairness assumption is a conjunction of LTL fairness constraints (of any arbitrary
type).

fair = wufair A sfair A wfair.

Rules of thumb
® strong (or unconditional) fairness: useful for solving contentions
e weak fairness: sufficient for resolving the non-determinism due to interleaving.

EECI, Mar 2013 Richard M. Murray, Caltech CDS

15

Fairness Properties in LTL

Fair paths and traces
FairPaths(s) = {m € Paths(s) |« = fair },
FairTraces(s) = {trace(w) | w € FairPaths(s) }.

Definition 5.26. Satisfaction Relation for LTL with Fairness

For state s in transition system TS (over AP) without terminal states, LTL formula ¢,
and LTL fairness assumption fair let

8 Efir ¢ iff V7 € FairPaths(s).m = ¢ and
TS Eqir ¢ iff V8o € 1.50 E=fair -

Theorem 5.30. Reduction of =, to |=

For transition system TS without terminal states, LTL formula ¢, and LTL fairness as-
sumption fair:
TS Efair ¢ if and only if TS = (fair —).

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Branching Time and Computational Tree Logic

Consider transition systems with multiple branches
® Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)
e |n this case, there might be multiple paths from a given state
® Q: in evaluating a temporal logic property, which execution branch to we check?

(SUaO)

(s1,1)
“'--"-—-— “‘__“

(3272)

LN

(s3,3)

AN s

(s2,4) (s;,fl) (s3,4) (625’1 4)

{.r:—l,r;éO}

Computational tree logic: allow evaluation over some or all paths
8 = Jp iff « = ¢ for some w € Paths(s)
s = VYo iff = = ¢ for all # € Paths(s)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Example: Triply Redundant Control Systems

Systems consists of three processors
and a single voter | .

® s;; = j processors up, j voters up up:a $2,1)UP2 up1 $0,1) Upy

® Assume processors fail one at a
time; voter can fail at any time

® |f voter fails, reset to fully functioning ‘
state (all three processors up) down

® System is operation if at least 2 processors
remain operational

Properties we might like to prove

Property Formalization in CTL

Possibly the system never goes down 300 -~ down Holds
Invariantly the system never goes down V[- down Doesn’t hold
It is always possible to start as new VU 30 upy Holds

The system always eventually goes down
and is operational until going down Vv ((upy V upy)Udown) Doesn'’thold

EECI, Mar 2013 Richard M. Murray, Caltech CDS 18

Other Types of Temporal Logic

CTL#LTL
Aspect Linear time Branching time
® Can show that LTL and
CTL are not proper sub-
sets of each other .“bchfwior” path-based: stato.-bascd:
In a state s trace(s) computation tree of s
® | TL reasons over a
Complete path’ CTL from temporal LTL: path formulae ¢ CTL: state formulae
a given state logic sEg iff existential path quantification 3¢
Vrr € Paths(s).m = ¢ universal path quantification: Vi

CTL* captures both

®:=true | a | D, APy l - P ’ dp pu=>a ’ w1\ 2) @ | Qo 1 w1 U2

Timed Computational Tree Logic

® Extend notions of transition systems and CTL to
include “clocks” (multiple clocks OK)

® Transitions can depend on the value of clocks

® Can require that certain properties happen within a
given time window

VO(far — YOS! VOS! up)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

- approach ——
———{near)

—(Far)

exit enter

(X

l/ zn !\
N S

after
> 2 minutes

19

Summary: Specifying Behavior with LTL

Description
e State of the system is a snapshot of values of all
variables
e Reason about paths 0. sequence of states of the
system

® No strict notion of time, just ordering of events

® Actions are relations between states: state s is
related to state f by action a if a takes s to t (via
prime notation: X’ = x + 1)

® fFormulas (specifications) describe the set of
allowable behaviors

® Safety specification: what actions are allowed

® [Fairness specification: when can a component
take an action (eg, infinitely often)

Example
® Actionia=x=x+ 1
® Behavior: c=x:=1,x:=2,x:=3, ...
e Safety: [1x > O (true for this behavior)
® Fairness: (X' =x+ 1 v x =x) A O) (X' # X)

EECI, Mar 2013

[1p = always p (invariance)

Op = eventually p (guarantee)

p — (q = p implies eventually g
(response)

p — q U r=pimplies g until r
(precedence)

O0p = always eventually p
(progress)

OOp = eventually always p
(stability)

Op — (q = eventually p implies
eventually g (correlation)

Properties
® Can reason about time by adding

“time variables” (t =t + 1)

® Specifications and proofs can be
difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, SPIN, Storm, etc)

Richard M. Murray, Caltech CDS

20

