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Formal Methods for System Verification
Specification using LTL 
• Linear temporal logic (LTL) 

is a math’l language for  
describing linear-time prop’s 

• Provides a particularly useful 
set of operators for construc- 
ting LT properties without  
specifying sets 

Methods for verifying an LTL  
specification 
• Theorem proving: use formal  

logical manipulations to show 
that a property is satisfied for a 
given system model 

• Model checking: explicitly check all possible executions of a system model and verify 
that each of them satisfies the formal specification 

- Roughly like trying to prove stability by simulating every initial condition 
- Works because discrete transition systems have finite number of states 
- Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)
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Temporal Logic Operators
Two key operators in temporal logic 
• ◊      “eventually”  - a property is satisfied at some point in the future

• !     “always”  - a property is satisfied now and forever into the future 

“Temporal” refers underlying nature of time 
• Linear temporal logic ⇒ each moment in time has a well-defined successor moment 

• Branching temporal logic ⇒ reason about multiple possible time courses  

• “Temporal” here refers to “ordered events”; no explicit notion of time 

LTL = linear temporal logic 
• Specific class of operators for specifying linear time properties 
• Introduced by Pneuli in the 1970s (recently passed away) 

• Large collection of tools for specification, design, analysis 

Other temporal logics 
• CTL = computation tree logic (branching time; will see later, if time) 

• TCTL = timed CTL - check to make sure certain events occur in a certain time 

• TLA = temporal logic of actions (Lamport) [variant of LTL] 
• µ calculus = for reactive systems; add “least fixed point” operator (more on Thu)
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Syntax of LTL
LTL formulas: 

• a = atomic proposition 

• ◯ = “next”: φ is true at next step 

• U = “until”: φ2 is true at some point, 
        φ1 is true until that time 

Formula evaluation: evaluate LTL propositions over a sequence of states (path): 

• Same notation as linear time properties: σ ⊨ φ (path “satisfies” specification)    
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Operator precedence 

• Unary bind stronger than binary  

• U takes precedence over ∧, ∨ and →
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Additional Operators and Formulas
“Primary” temporal logic operators 

• Eventually   ◊ϕ := true U ϕ     ϕ will become true at some point in the future 

• Always       !ϕ := ¬◊¬ϕ          ϕ is always true; “(never (eventually (¬ϕ)))” 

Some common composite operators 

• p → ◊q    p implies eventually q (response) 

• p → q U r   p implies q until r (precedence) 

• !◊p    always eventually p (progress) 

• ◊!p    eventually always p (stability) 

• ◊p → ◊q    eventually p implies eventually q  
   (correlation)
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Operator precedence 
• Unary binds stronger  

than binary 

• Bind from right to left:  
!◊p = (! (◊p))  
p U q U r = p U (q U r) 

• U takes precedence over  
∧, ∨ and →
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Example: Traffic Light
System description 
• Focus on lights in on particular direction 

• Light can be any of three colors: green, yellow, read 

• Atomic propositions = light color 

Ordering specifications 
• Liveness: “traffic light is green infinitely often” 

• Chronological ordering: “once red, the light cannot become green immediately” 

• More detailed: “once red, the light always becomes green eventually after being 
yellow for some time” 

Progress property 
• Every request will eventually lead to a response
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☐ (red → ¬ ◯ green)

☐(red → ◯ (red U (yellow ∧ ◯ (yellow U green))))

☐ (request → ◊response)

☐◊green

☐(red → (◊ green ∧ (¬ green U yellow)))
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Semantics: when does a path satisfy an LTL spec?
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Semantics of LTL
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Semantics of LTL

Remarks 
• Which condition you use depends on type of  

problem under consideration 
• For reasoning about correctness, look for 

(lack of) intersection between sets:
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Consider the following transition system 

Property 1: TS |= [] a? 
• Yes, all states are labeled with a 

Property 2: TS |= X (a ^ b)? 
• No: From s2 or s3, there are transitions for which a ^ b doesn’t hold 

Property 3: TS |= [] (!b -> [](a ^ !b))? 
• True 

Property 4: TS |= b U (a ^ !b)? 
• False: (s1s2)ω

“Quiz”
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Specifying Timed Properties for Synchronous Systems

Remark 
• Idea can be extended to non-synchronous case (eg, Timed CTL [later])
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Equivalence of LTL Formulas

Non-identities 
• ◊(a ∧ b) ≢ ◊a ∧ ◊b 

• ☐(a ∨ b) ≢ ☐a ∨ ☐b
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Distributed Systems
Distributed systems 
• A distributed system consists of a set of agents (also called processes) and a set of 

directed channels.  
• A channel is directed from one agent to one agent. The system can be represented 

by a directed graph (separate from the program graph within each agent) 

Definition of the “state” of a distributed system 
• Minimum amount of information such that the future behavior can be predicted 

without any other information about the past 
• Typically consists of the value of all variables that are part of any processes as well 

as messages that might be in transit 
Execution for a distributed system 
• Any agent can execute an action within its 

transition system at any time 

• Synchrony models 
- Handshake (see L2) 
- Interleaving: async 
- Synchronized actions 

• “Fairness”: assumption to  
ensure everyone gets  to execute
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Fairness
Weak Fairness 
• Every action is guaranteed to be selected infinitely often 

• Implication: between any two selections of a particular 
action, there are a finite (but unbounded) number of  
selections of other actions. 

Strong Fairness 
• Each action is selected infinitely often and if an action  

is enabled infinitely often then it is selected infinitely often 

• Avoids situations where we get “unlucky” and never select an action at a time when it 
is enabled (mainly applies to guarded actions) 

Door opening example  
• Human can walk forward or backward 

• Door can open or close (asynchronously) 

• Treat as two separate processes 
- Human: actions = forward, backward 
- Door: actions = open, close 

• Q: is it always possible for the human to get from one side of the door to the other?
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door
p = -1 p = 0 p = 1
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Fairness Properties in LTL
Definition 5.25    LTL Fairness Constraints and Assumptions 

Let Φ and Ψ be propositional logical formulas  
over a set of atomic propositions 

1. An unconditional LTL fairness constraint is  
an LTL formula of the form 

2. A strong LTL fairness condition is an LTL  
formula of the form 

3. A weak LTL fairness constraint is an LTL  
formula of the form 

An LTL fairness assumption is a conjunction of LTL fairness constraints (of any arbitrary 
type). 

Rules of thumb 
• strong (or unconditional) fairness: useful for solving contentions 

• weak fairness: sufficient for resolving the non-determinism due to interleaving.
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Fairness Properties in LTL 
Fair paths and traces

16



Richard M. Murray, Caltech CDSEECI, Mar 2013

Branching Time and Computational Tree Logic
Consider transition systems with multiple branches 
• Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA) 

• In this case, there might be multiple paths from a given state 

• Q: in evaluating a temporal logic property, which execution branch to we check? 

Computational tree logic: allow evaluation over some or all paths
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Example: Triply Redundant Control Systems
Systems consists of three processors 
and a single voter 
• si,j = i processors up, j voters up 
• Assume processors fail one at a 

time; voter can fail at any time 
• If voter fails, reset to fully functioning 

state (all three processors up) 
• System is operation if at least 2 processors  

remain operational 

Properties we might like to prove
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Other Types of Temporal Logic
CTL ≠ LTL 
• Can show that LTL and  

CTL are not proper sub- 
sets of each other 

• LTL reasons over a  
complete path; CTL from 
a given state 

CTL* captures both 

Timed Computational Tree Logic 
• Extend notions of transition systems and CTL to 

include “clocks” (multiple clocks OK) 

• Transitions can depend on the value of clocks 
• Can require that certain properties happen within a  

given time window 
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Summary: Specifying Behavior with LTL
Description 
• State of the system is a snapshot of values of all 

variables 

• Reason about paths σ: sequence of states of the 
system 

• No strict notion of time, just ordering of events 

• Actions are relations between states: state s is 
related to state t by action a if a takes s to t (via 
prime notation: x’ = x + 1) 

• Formulas (specifications) describe the set of 
allowable behaviors 

• Safety specification: what actions are allowed 
• Fairness specification: when can a component 

take an action (eg, infinitely often) 

Example 
• Action: a ≡ x’ = x + 1 

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ... 

• Safety: !x > 0 (true for this behavior) 

• Fairness: !(x’ = x + 1 ∨ x’ = x) ∧ !◊ (x’ ≠ x)  

Properties 
• Can reason about time by adding 

“time variables” (t’ = t + 1) 
• Specifications and proofs can be 

difficult to interpret by hand, but 
computer tools existing (eg, TLC, 
Isabelle, PVS, SPIN, Storm, etc)
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" !p ≡ always p (invariance) 
" ◊p ≡ eventually p (guarantee) 
" p → ◊q ≡ p implies eventually q 

(response) 
" p → q U r ≡ p implies q until r 

(precedence) 
" !◊p ≡ always eventually p 

(progress) 
" ◊!p ≡ eventually always p 

(stability) 
" ◊p → ◊q ≡ eventually p implies 

eventually q (correlation)


