Specification, Design & Verification of Autonomous Vehicles (Self-Driving Cars)

Richard M. MurrayUfuk TopcuTichakorn WongpiromsarnCaltechU. Texas, AustinUT Austin/Iowa StateEECI International Graduate School on Control 20209-13 March 2020 (Istanbul, Turkey)

Goals for the course:

- Provide an introduction to control architectures for autonomous vehicles
- Survey recent approaches for design of multi-layer, feedback control systems
- Provide a working knowledge of formal methods for specification, design and verification of autonomous vehicles
 - Python-based tools for verification and synthesis (Stormpy, TuLiP)
 - Application to (simplified) examples from self-driving car applications
- Discuss open research problems that need to be solved (throughout + Friday)

Course Instructors

Richard M. Murray Caltech

Education

- BS, Caltech, EE
- PhD UC Berkeley, EECS
- Professor, Caltech

Research interests

- Networked control
- Verification of distributed control systems
- Biological circuit design

Ufuk Topcu U. Texas, Austin

Education

- MS, UC Irvine, MAE
- PhD UC Berkeley, ME
- Postdoc, Caltech, Penn

Research interests

- Distributed embedded systems
- Uncertainty quantification and management
- Optimization/control of multiscale networked systems

Tichakorn (Nok) Wongpiromsarn UT Austin/Iowa State

Education

- BS, Cornell, ME
- PhD, Caltech, ME
- Postdoc, MIT/Singapore
- Research Scientist, nuTonomy

Research interests

- Verification and synthesis of hybrid control systems
- Autonomous systems
- Transportation networks

Comments on Style and Approach

Control of autonomous vehicles (esp. cars) is an emerging research area

- Many results are new (in the last 5-10 years) and results, notation haven't yet been standardized
- Integration between different aspects of the research are a work in progress

Course uses new language and concepts

- Basic ideas will be familiar to control researchers: stability, reachability, simulations vs proofs, etc
- Much of the terminology will be strange ("TS ⊨ □ (¬b → □ (a ∧ ¬ b)") => ask questions if you get lost

Lots of additional material online

- Additional references, web pages, etc are posted on the wiki pages
- Copies of slides/lecture notes available

Course Description [edit]

Increases in fast and inexpensive computing and communications have enabled a new generation of information-r execution, distributed optimization, sensor fusion and protocol stacks in increasingly sophisticated ways. This cour methods and tools for specifying, designing and verifying control protocols for autonomous systems, including self science (temporal logic, model checking, reactive synthesis) with those from control theory (abstraction methods, c partially asynchronous control protocols for continuous systems. In addition to introducing the mathematical techni properties, we also describe a software toolbox, TuLiP, that is designed for analyzing and synthesizing hybrid cont specifications.

Reading [edit]

The following papers and textbooks will be used heavily throughout the course:

- Principles of Model Checking P, C. Baier and J.-P. Katoen, The MIT Press, 2008.
- Synthesis of Control Protocols for Autonomous Systems P, N. Wongpiromsarn, U. Topcu and R. M. Murray. Ur

Additional references for individual topics are included on the individual lecture pages.

Course information [edit]

- Instructors: Richard M. Murray (Caltech, CDS) and Nok Wongpiromsarn (UT Austin/Iowa State)
- Date and location: 9-13 March 2020, Istanbul (Turkey)
- Sponsor: European Embedded Control Institute (EECI) Internataional Graduate School on Control P

Lecture Schedule [edit]

The schedule below lists the lectures that will be given as part of the course. Each lecture will last approximately 9 of the lecture and links to additional information.

http://www.cds.caltech.edu/~murray/wiki/ EECI-IGSC_2020

M07 Lecture Schedule

Time	Mon	Tue	Wed	Thu	Fri	
8:30				L8: Minimum Violation Planning		
9:00	(registration)		L7: Reactive Systems		L9: Specifying	
9:30	(registration)				Behavior	
10:00	Welcome					
10:30	L1: Intro	C1: Stormpy	C2: TuLiP	C3: MVP	L10: Safety- Critical Syst's	
11:00		. ,				
11:30					L11: Course	
12:00	Lunch	C1: Stormpy	C2: TuLiP	C3: MVP	Summary	
12:30		15			End of Course	
13:00	L2: Automata					
13:30	Theory	Lunch Lu	Lunch	Lunch		
14:00						
14:30	L3: Temporal	L6: Discrete Abstractions		(free time)		
15:00	Logic					
15:30			(free time)			
16:00	L4: Model	(free time)				
16:30	Checking					

Introductions and Administration

Introductions: Please tell everyone

- Name
- Affiliation (university, company)
- Stage of research (2nd year graduate student, principal engineer, etc)
- Rough area of interest

Administration

- Sign-in sheet: make sure to sign every day for course credit
- Course validation: see Richard and Nok during one of the breaks
 - Pick one of the "exercises" during the lectures to work on after the course
 - Also OK to make up a different problem (eg, from your research)
 - Send e-mail to Richard next week with a proposal for what you will work on
 - Work out the problem and write up a 3-5 page report on approach + results

Coffee breaks and lunch

- Coffee breaks: OK to leave things here; we can lock the door
- Lunch: someone will come tell us what to do at 11:30 am

www.cds.caltech.edu/~murray/wiki/EECI-IGSC_2020

Lecture 1 Introduction to Self-Driving Cars

Richard M. Murray Caltech

Ufuk Topcu UT Austin Nok Wongpiromsarn UT Austin/Iowa State

EECI-IGSC, 9 Mar 2020

Outline:

- Introduction to self-driving cars (Alice)
- Overview of multi-layer, networked control system architectures
- Introduction to some of the key ideas we will cover in the course

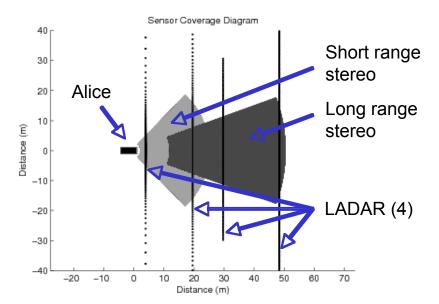
Team Caltech: Alice

Team Caltech

- Started in 2003, for DGC04
- 2004-05: 50 Caltech undergraduates, 1 MS student, 3 TAs, 2 faculty

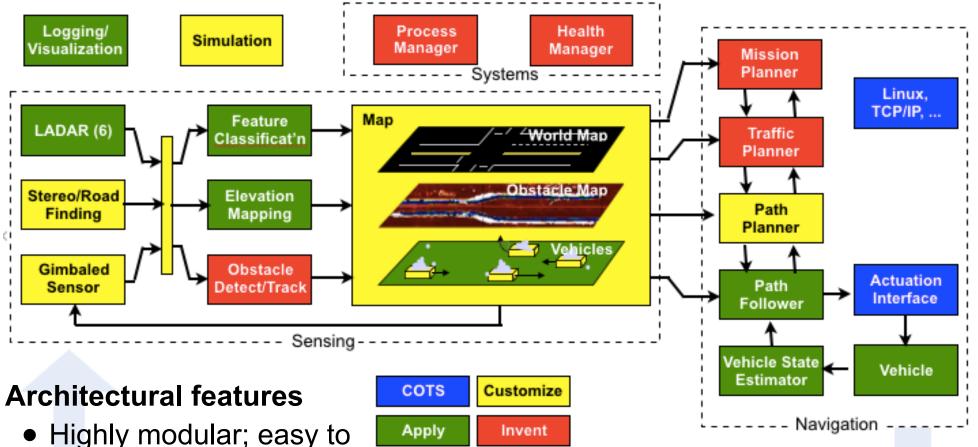
Alice

- 2005 Ford E-350 Van
- 5 cameras: 2 stereo pairs, roadfinding
- 5 LADARs: long, med*2, short, bumper
- 2 GPS units + 1 IMU (LN 200)

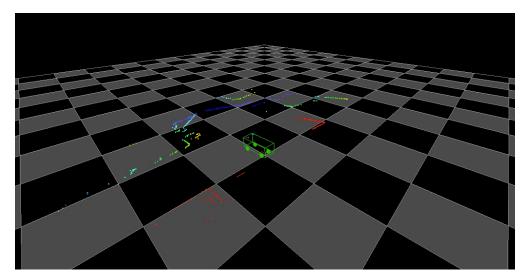

Computing (2005)

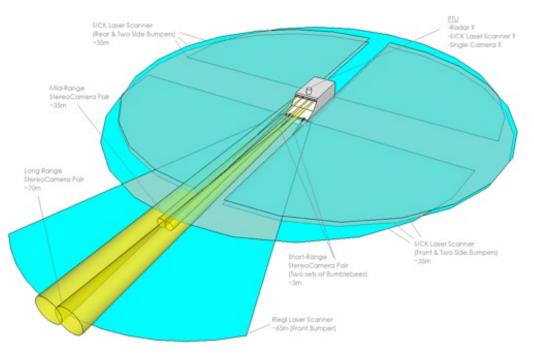
- 6 Dell PowerEdge Servers (P4, 3GHz)
- 1 IBM Quad Core AMD64 (fast!)
- 1 Gb/s switched ethernet

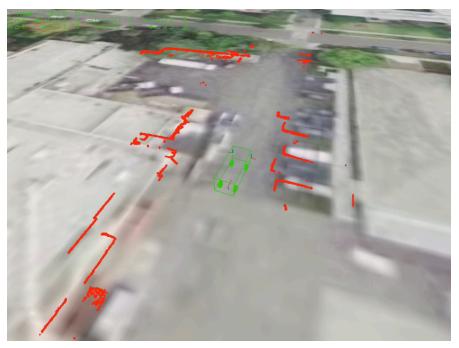
Software


- 15 programs with ~100 exec threads
- 100,000+ lines of executable code

- add new functionality and/or include alternative solutions
- Substantial use of online optimization, data-driven algorithms (sensing), large scale computing, high speed networking. (Enablers for autonomy)
- Relatively modest use of standard control tools (despite prominence of dynamics, interconnection and uncertainty)

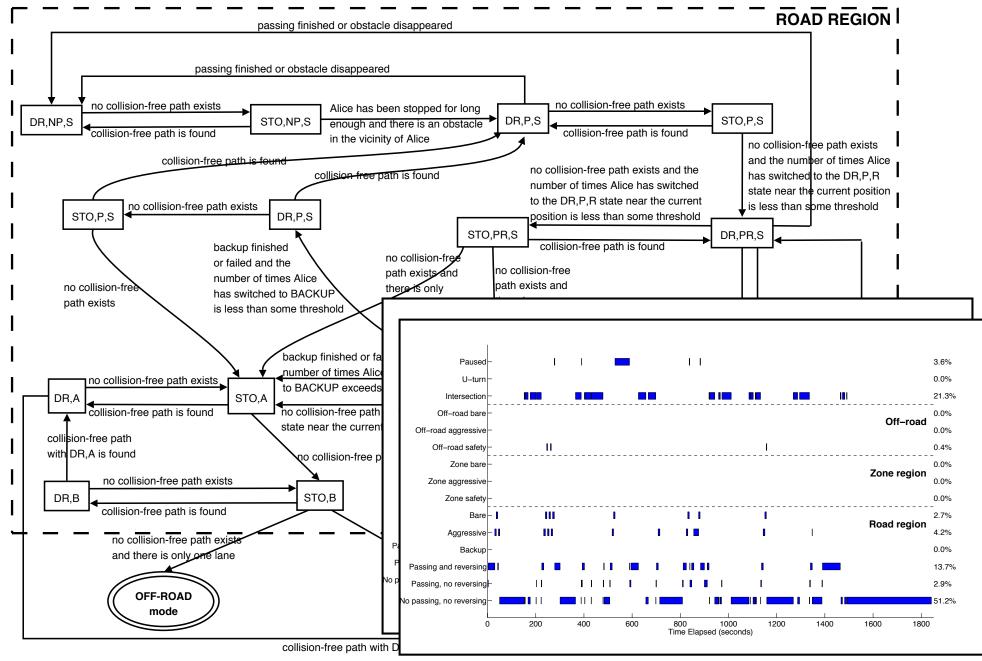



Sensing System


0		0	0	0		0	0	0	0	
	0					•				0
•		0		0				0	-	0
0	•	0	I	0	0		0	0		0
-0				0	-0	U		0		0
0		0		0	•				-	•
0	0	0	0	0		-0	0	0	-01	

Sensing hardware

- 6 horizontal LADAR (overlapping)
- 1 pushbroom LADAR; 1 sweeping (PTU)
- 3 stereo pairs (color; 640x480 @ ~10 Hz)
- 2 road finding cameras (B&W)
- 2 RADAR units (PTU mounted)
- 10 blade cPCI high speed computing



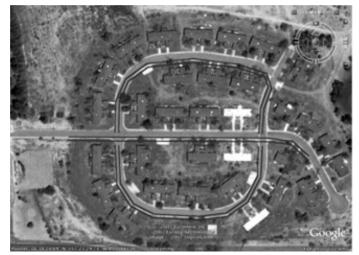
Richard M. Murray, Caltech CDS

Logic Planner

Richard M. Murray, Caltech CDS

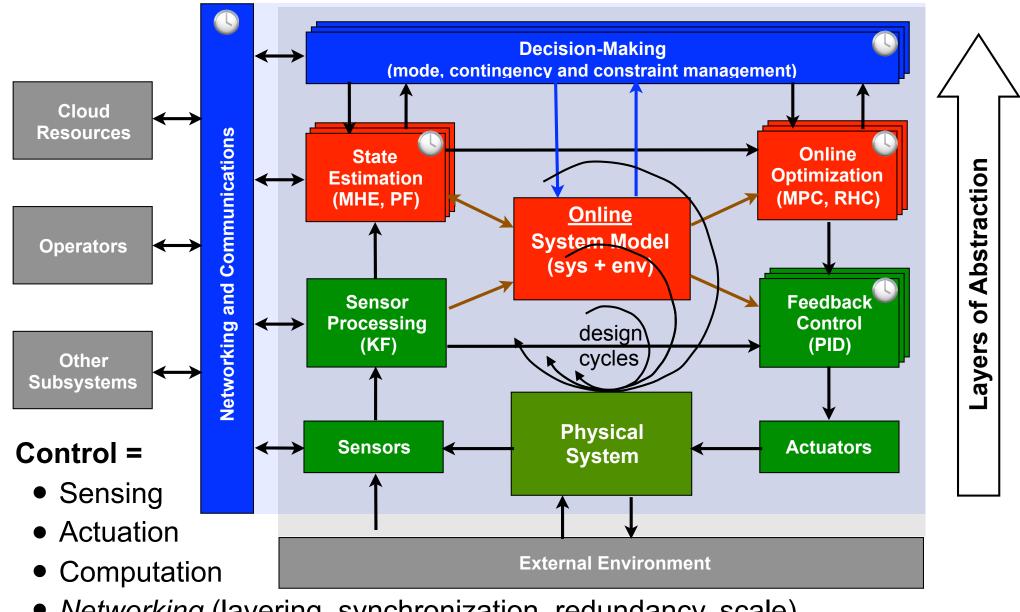
Testing at El Toro, July 2007

Approximate 300 miles of testing over 2 months


- Longest run without intervention: 11 miles
- Top average speed: ~10 mph

2007 National Qualifying Event

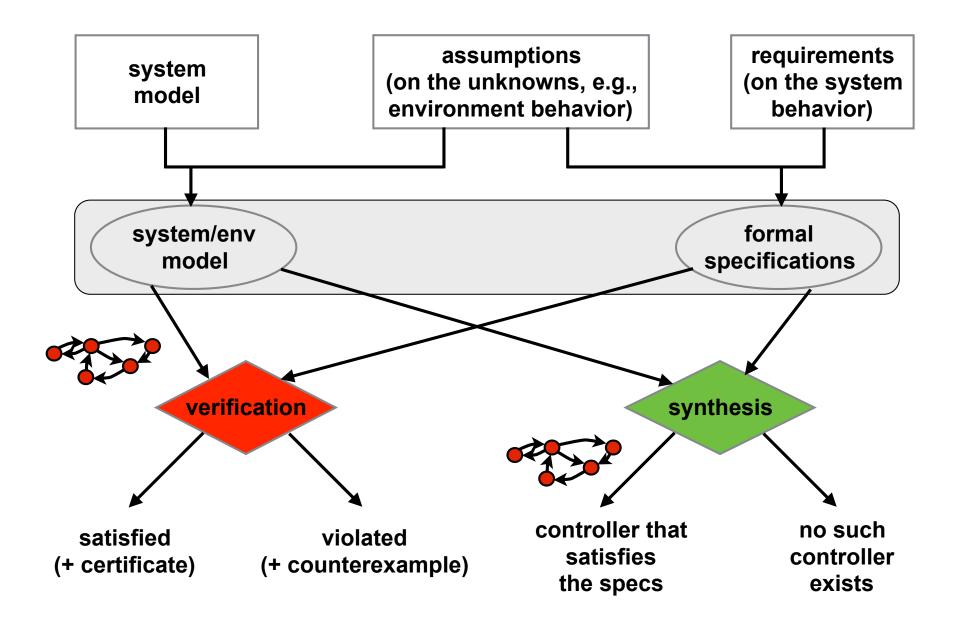
Driving test


 Intersection test: increasing number of vehicles at each intersection

Results

- Successfully navigated all intersections
- Lanes were too narrow => hard to satisfy spacing constraints

Design of Modern (Networked) Control Systems


• *Networking* (layering, synchronization, redundancy, scale)

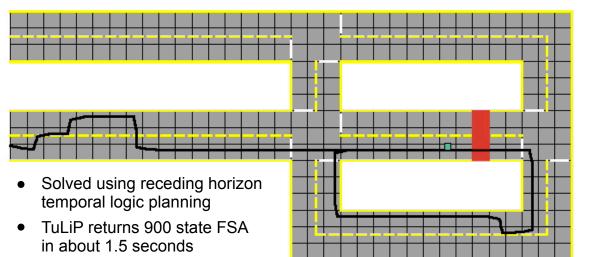
Abstractions Hierarchy for Control of Hybrid Systems

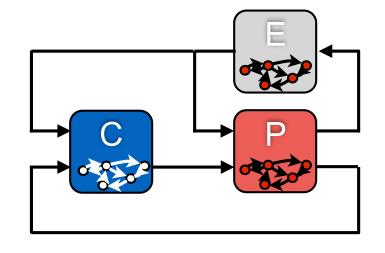
Continuous:
$$\dot{x} = f_{\alpha}(x, u, d)$$
 $\min J = \int_{0}^{T} L(x, u, \alpha) dt + V(x(T))$ Discrete: $g(x, \alpha) \implies \alpha' = r(x, \alpha)$ if X then Y, never Z, always W, ...LevelModelSpecificationSupervisory
ControlDecision-
Unit of the state $(\phi_{init} \land \Box \phi_{env}) \Longrightarrow$

	Level	Model	Specification	
Supervisory Control (FSM)	Decision- Making		$ \begin{array}{c} (\phi_{\text{init}} \wedge \Box \phi_{\text{env}}) \implies \\ (\Box \phi_{\text{safe}} \wedge \Box \Diamond_{\leq T} \phi_{\text{live}}) \end{array} $	
Online Optimization (RHC)	Trajectory	$\dot{x} = f_lpha(x,u) \ g_lpha(x,u,z) \leq 0$	$\min J = \int_0^T L_\alpha(x, u) dt + V(x(T))$	
Feedback Control (PID)	Tracking	$y = P_{yu}(s) u + P_{yd}(s) d$ $ W(s)d(s) \le 1$	$\ W_1S + W_2T\ _{\infty} < \gamma$	
System Dynamics (ODE)	Process	$\dot{x}^i = f_lpha(x^i, u^i, d^i) \ x \in \mathcal{X}, u \in \mathcal{U}, d \in \mathcal{D}$	Operating Envelope Energy Efficiency Actuator Authority	

Formal Methods for System Verification & Synthesis

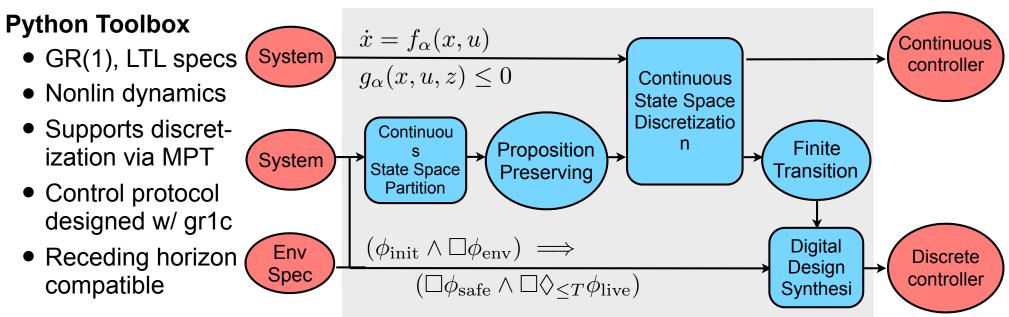
Wongpiromsarn, Topcu and M IEEE TAC 2012

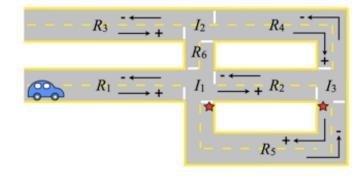

Example: Autonomous Navigation in Urban Environment

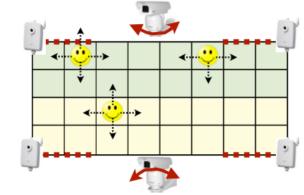

Traffic rules

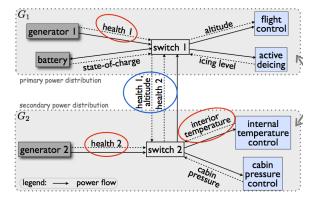
- No collisions with other vehicles
- Stay in the travel lane unless there is an obstacle blocking the lane
- Only proceed through an intersection when it is clear

Assumptions


- Obstacle may not block a road
- Obstacle is detected before vehicle gets too close
- Limited sensing range
- Obstacle does not disappear when the vehicle is in its vicinity
- Obstacles may not span more than a certain number of consecutive cells in the middle of the road
- Each intersection is clear infinitely often
- Each of the cells marked by star and its adjacent cells are not occupied by an obstacle infinitely often


 $(\phi_{\text{init}}^{\text{e}} \land \Box \phi_{\text{safe}}^{\text{e}} \land \Box \Diamond \phi_{\text{prog}}^{\text{e}})$ $\rightarrow (\phi_{\text{init}}^{s} \land \Box \phi_{\text{safe}}^{s} \land \Box \Diamond \phi_{\text{prog}}^{s})$


Temporal Logic Planning (TuLiP) toolbox http://tulip-control.org



Applications of TuLiP

- Autonomous vehicles traffic planner (intersections and roads, with other vehicles)
- Distributed camera networks cooperating cameras to track people in region
- Electric power transfer fault-tolerant control of generator + switches + loads

Richard M. Murray, Caltech CDS

Lecture Schedule

Time	Mon	Tue	Wed	Thu	Fri
8:30				L8: Minimum	
9:00		L5: Probabili- stic Systems		Violation Planning	L9: Specifying
9:30			Oysterns		Behavior
10:00	Welcome				
10:30	L1: Intro	C1: Stormpy	C2: TuLiP	C3: MVP	L10: Safety- Critical Syst's
11:00		. ,			
11:30	Lunch				L11: Course
12:00		Lunch C1: Stormpy C2: TuLiP	C3: MVP	Summary	
12:30					End of Course
13:00	L2: Automata				
13:30	Theory	Lunch	n Lunch	Lunch	
14:00					
14:30	L3: Temporal	L6: Discrete Abstractions	(free time)	(free time)	
15:00	Logic				
15:30		(free time)			
16:00	L4: Model				
16:30	Checking				