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Goals for the course: 
• Provide an introduction to control architectures for autonomous vehicles 
• Survey recent approaches for design of multi-layer, feedback control systems 
• Provide a working knowledge of formal methods for specification, design and 

verification of autonomous vehicles 
- Python-based tools for verification and synthesis (Stormpy, TuLiP) 
- Application to (simplified) examples from self-driving car applications 

• Discuss open research problems that need to be solved (throughout + Friday)
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Comments on Style and Approach
Control of autonomous vehicles (esp. 
cars) is an emerging research area 

• Many results are new (in the last 5-10 
years) and results, notation haven’t yet 
been standardized 

• Integration between different aspects of 
the research are a work in progress 

Course uses new language and concepts 

• Basic ideas will be familiar to control 
researchers: stability, reachability, 
simulations vs proofs, etc 

• Much of the terminology will be strange 
(“TS ⊨ ☐(¬b → ☐(a ∧ ￢b)”) => ask 
questions if you get lost 

Lots of additional material online 

• Additional references, web pages,  
etc are posted on the wiki pages 

• Copies of slides/lecture notes available
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M07 Lecture Schedule
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Time Mon Tue Wed Thu Fri
8:30

L5: Probabili-
stic Systems

L7: Reactive 
Systems

L8: Minimum 
Violation 
Planning

9:00 
(registration) L9: Specifying 

Behavior9:30
10:00 Welcome

C1: Stormpy C2: TuLiP C3: MVP
L10: Safety-

Critical Syst’s10:30
L1: Intro

11:00
11:30

Lunch
L11: Course 
SummaryC1: Stormpy C2: TuLiP C3: MVP12:00

12:30 End of Course
L2: Automata 

Theory
13:00

Lunch Lunch Lunch13:30
14:00

L3: Temporal 
Logic

L6: Discrete 
Abstractions

(free time) (free time)

14:30
15:00
15:30

(free time)L4: Model 
Checking

16:00
16:30
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Introductions and Administration
Introductions: Please tell everyone 
• Name 

• Affiliation (university, company) 

• Stage of research (2nd year graduate student, principal engineer, etc) 
• Rough area of interest 

Administration 
• Sign-in sheet: make sure to sign every day for course credit 
• Course validation: see Richard and Nok during one of the breaks 
- Pick one of the “exercises” during the lectures to work on after the course 
- Also OK to make up a different problem (eg, from your research) 
- Send e-mail to Richard next week with a proposal for what you will work on 
- Work out the problem and write up a 3-5 page report on approach + results 

Coffee breaks and lunch 
• Coffee breaks: OK to leave things here; we can lock the door 

• Lunch: someone will come tell us what to do at 11:30 am
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Lecture 1 
Introduction to Self-Driving Cars

Richard M. Murray 
Caltech          

Ufuk Topcu        Nok Wongpiromsarn 
 UT Austin           UT Austin/Iowa State 

EECI-IGSC, 9 Mar 2020 

Outline: 
• Introduction to self-driving cars (Alice) 
• Overview of multi-layer, networked control system architectures 
• Introduction to some of the key ideas we will cover in the course
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Team Caltech: Alice
Team Caltech 
• Started in 2003, for DGC04 

• 2004-05: 50 Caltech undergraduates,  
1 MS student, 3 TAs, 2 faculty 

Alice 
• 2005 Ford E-350 Van 
• 5 cameras: 2 stereo pairs, roadfinding 

• 5 LADARs: long, med*2, short, bumper 

• 2 GPS units + 1 IMU (LN 200) 

Computing (2005) 
• 6 Dell PowerEdge Servers (P4, 3GHz) 
• 1 IBM Quad Core AMD64 (fast!) 

• 1 Gb/s switched ethernet 

Software 
• 15 programs with ~100 exec threads 

• 100,000+ lines of executable code

Short range
stereo

Long range
stereo

LADAR (4)

Alice
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DGC07 System Architecture
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Architectural features 
• Highly modular; easy to 

add new functionality and/or include alternative solutions 
• Substantial use of online optimization, data-driven algorithms (sensing), 

large scale computing, high speed networking.  (Enablers for autonomy) 
• Relatively modest use of standard control tools (despite prominence of 

dynamics, interconnection and uncertainty)
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Sensing System
Sensing hardware 
• 6 horizontal LADAR (overlapping) 

• 1 pushbroom LADAR; 1 sweeping (PTU) 

• 3 stereo pairs (color; 640x480 @ ~10 Hz) 
• 2 road finding cameras (B&W) 

• 2 RADAR units (PTU mounted) 

• 10 blade cPCI high speed computing
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Logic Planner
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Testing at El Toro, July 2007

Approximate 300 miles of testing over 2 months 
• Longest run without intervention: 11 miles 

• Top average speed: ~10 mph
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2007 National Qualifying Event

Results 
• Successfully navigated all 

intersections 
• Lanes were too narrow => 

hard to satisfy spacing 
constraints

12

Driving test 
• Intersection test: 

increasing number of 
vehicles at each 
intersection
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Design of Modern (Networked) Control Systems

Control = 
• Sensing 
• Actuation 
• Computation 
• Networking (layering, synchronization, redundancy, scale)
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Level Model Specification

Abstractions Hierarchy for Control of Hybrid Systems
min J =

Z T

0
L(x, u,↵)dt+ V (x(T ))

�init ^ ⇤�env =) ⇤�safe ^ ⇤⌃�live,

Feedback  
Control 

(PID)

y = Pyu(s)u+ Pyd(s) d

kW (s)d(s)k  1
kW1S +W2Tk1 < �Tracking

System  
Dynamics 

(ODE)
Process

Operating Envelope 
Energy Efficiency 
Actuator Authority

ẋi = f↵(x
i, ui, di)

x 2 X , u 2 U , d 2 D

(�init ^⇤�env) =)
(⇤�safe ^⇤⌃T�live)

  Supervisory 
 Control 
  (FSM)

Decision- 
Making

ẋ = f↵(x, u, d)

g(x,↵) =) ↵0 = r(x,↵)

Continuous:

Discrete: if X then Y, never Z, always W, …

Online  
Optimization 

(RHC)

min J =

Z T

0
L↵(x, u) dt

+ V (x(T ))

Trajectory
ẋ = f↵(x, u)

g↵(x, u, z)  0
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formal 
specifications

system/env 
model

Formal Methods for System Verification & Synthesis
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requirements 
(on the system  

behavior)

assumptions  
(on the unknowns, e.g.,  
environment behavior)

system 
model

synthesisverification

controller that  
satisfies  

the specs

no such  
controller  

exists

satisfied 
(+ certificate)

violated 
(+ counterexample)
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Traffic rules 
• No collisions with other vehicles 

• Stay in the travel lane unless there  
is an obstacle blocking the lane 

• Only proceed through an intersec- 
tion when it is clear 

Assumptions 
• Obstacle may not block a road 
• Obstacle is detected before vehicle gets too close 

• Limited sensing range 

• Obstacle does not disappear when the vehicle  
is in its vicinity 

• Obstacles may not span more than a certain  
number of consecutive cells in the middle of  
the road 

• Each intersection is clear infinitely often 

• Each of the cells marked by star and its  
adjacent cells are not occupied by an obstacle  
infinitely often
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E

PC

(�e
init ^⇤�e

safe ^⇤⌃�e
prog)

! (�s
init ^⇤�s

safe ^⇤⌃�s
prog)

• Solved using receding horizon 
temporal logic planning 

• TuLiP returns 900 state FSA 
in about 1.5 seconds

Example: Autonomous Navigation in Urban Environment
Wongpiromsarn, Topcu and M  

IEEE TAC 2012
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Temporal Logic Planning (TuLiP) toolbox 
http://tulip-control.org

Python Toolbox 
• GR(1), LTL specs 

• Nonlin dynamics 

• Supports discret- 
ization via MPT 

• Control protocol 
designed w/ gr1c 

• Receding horizon 
compatible 

Applications of TuLiP 
• Autonomous vehicles - traffic planner (intersections and roads, with other vehicles) 

• Distributed camera networks - cooperating cameras to track people in region 

• Electric power transfer - fault-tolerant control of generator + switches + loads
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Richard M. Murray, Caltech CDSEECI-IGSC, 9-13 Mar 2020

Lecture Schedule
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Time Mon Tue Wed Thu Fri
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L5: Probabili-
stic Systems

L7: Reactive 
Systems

L8: Minimum 
Violation 
Planning

9:00 L9: Specifying 
Behavior9:30

10:00 Welcome

C1: Stormpy C2: TuLiP C3: MVP
L10: Safety-

Critical Syst’s10:30
L1: Intro

11:00
11:30

Lunch
L11: Course 
SummaryC1: Stormpy C2: TuLiP C3: MVP12:00

12:30 End of Course
L2: Automata 

Theory
13:00

Lunch Lunch Lunch13:30
14:00

L3: Temporal 
Logic

L6: Discrete 
Abstractions

(free time) (free time)

14:30
15:00
15:30

(free time)L4: Model 
Checking

16:00
16:30


