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Outline 
• Introduction to safety-critical systems (aerospace focus) 
• Multi-layer control system design (review of key concepts from the course) 
• Thoughts and challenges for the future of self-driving cars
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Motivating Example: Alice (2004-2007)
Alice 

• 300+ miles of fully autonomous driving 
• 8 cameras, 8 LADAR, 2 RADAR 
• 12 Core 2 Duo CPUs + Quad Core 
• 3 Gb/s data network 
• ~75 person team over 18 months (x 2) 

Software 

• 25 programs with ~200 exec threads 
• 237,467 lines of executable code
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How should we design systems of this complexity? 
How do we make sure they function as desired?

inconsistent 
assumptions
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Current Landscape: Self-Driving Cars
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??SAE Levels of 
Automation: ?
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Safety Critical Autonomous Systems
Question: How safe do autonomous vehicles need to be? 
• As safe as human-driven cars (7 deaths every 109 miles) 
• As safe as buses and trains (0.1-0.4 deaths every 109 miles) 
• As safe as airplanes (0.07 deaths every 109 miles) 

How this is done in the aerospace industry? 
• Strong certification requirements/process (DO-178C) 

- Fault tree analysis (1e-9 failure rates) 
- Model-based design + SIL, HIL testing 
- Fleet-wide analysis (⇒ rare cases matter) 

• Very structured operating environments 
• Well-trained personnel (pilots, FAs) 
• Expensive vehicles (~$1M/passenger)
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Hazard 
Class

SW 
Level

Failure/  
Flight Hr

Catasophic A 10-9

Hazardous B 10-7

Major C 10-5

Minor D —

No Effect E —

I. Savage, “Comparing the fatality risks in United States transportation across 
modes and over time”, Research in Transportation Economics, 43:9-22, 2013.
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What Goes “Wrong”: ZA002, Nov 2010
RAT stats 
• ~100K flights/day 

globally => 35M 
flights/year 

• ~6 documented 
RAT deployments 
in the last 20 years 

• Assume 10X that 
amount => 3 per 
year => 1 in 10M 
flights (!)
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Loss of primary 
electrical power => 
cockpit goes “dark”

Ram Air Turbine (RAT) 
deployed and allows 

safe landing

Key point: aerospace 
engineers worry about 

the worst case
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Design of  Modern (Networked) Control Systems

How do we 
manage the 
complexity? 

• Abstraction 

• A/G contracts 

• Formal methods for verification/synthesis + model- & data-driven sims/testing
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Examples 
• Aerospace systems 
• Autonomous vehicles 
• Factory automation/

process control 

• Smart buildings, grid, 
transportation 

Challenges 
• How do we define 

the layers/interfaces 
(vertical contracts) 

• How do we scale to 
many devices 
(horizontal contracts) 

• Safety, robustness, 
security, privacy

Opt

Opt

Opt

ML

ML

ML

ML
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Thoughts on ML and Control (“Easy” Problems)
ML Challenges 

Failure rates are too high, w/ poor metrics 
• 1 hour = 10K frames => 1B hours = … 
• Classification error is not that useful 

Data requirements are unknown (but large) 
• Size of error vs amount of training data? 

• How do we catch corner cases? 

Focus on ML output vs system behavior 
• Classification error is not what we actually 

care about; do we hit anything? 

Early adoption in safety-critical settings 
• Use of ML for decision-making is not ready 
• Advice: ML for performance, optimization 

and control for safety and robustness
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for allP W1

Δ W2

d z

C

Controls Perspective  

Stability margins with uncertainty balls 
• Bounds on disturbances, uncertainty 

• Model/analyze temporal response 

Model-based, parametric representations 
• Constrain model class (TFs, ARMAX, etc) 
• Reason over worst case behavior 

Input/output focus 
• Focus on outputs that matter for the task and 

impact of uncertainty on those outputs
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Thoughts on ML and Control (Hard Problems)
Autonomous Vehicles for Urban Mobility 

 Emilio Frazzoli, ETH Zurich & Aptiv 

… [As] we move past the peak of the hype cycle, the industry is 
bracing for a development timeline that is much longer than many 
early predictions. 

… fundamental issues that remain essentially unresolved, and will 
require a concerted effort by industry, academia, and regulatory 
bodies to address.  

These issues essentially go beyond the (very hard, but in a sense 
"standard" and well studied) problems of control, perception, etc. 
and revolve around making sound decisions on precisely how we 
want these vehicles to behave, both at the individual, single-car 
level, and at the fleet level. In other words, how we want these 
vehicles to behave when interacting with pedestrians, cyclists, or 
other cars, and what effect we want them to have on urban 
mobility, including, e.g., their impact on the urban environment, 
public transit, and society. 
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http://www.exempelbanken.se/examples/347
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Some Prior Work: Navigation in Crowds

Key results 
• Address “freezing robot problem”: planner decides  

that all forward paths are unsafe and freezes in place  
• Approach: interacting Gaussian processes 

- captures cooperative collision avoidance 
- allows goal-driven nature of human decision making 

• Validation in Caltech staff cafeteria 
- Performs comparably with human teleoperators  
- non-cooperative planner exhibits unsafe behavior  
- reactive planner fails for crowd densities > 0.55 ppl/m2
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Trautman, Ma, M and Krause
IJRR, 2014
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Some Prior Work: Navigation in Crowds
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Trautman, Ma, M and Krause
IJRR, 2014
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(�init ^⇤�env) =)
(⇤�safe ^⇤⌃T�live)

RMM Assessment: Wait for Others to Figure out ML…
Assume/guarantee contracts 
• Assume: properties of other 

components in the system 

• Guarantee: properties that  
will hold for my component 

• Contracts can be horizontal 
(within a layer) or vertical 
(between two layers) 

Integrating ML (eventually) 
• Wait for smart people to 

create ML w/ A/G contracts 

• Think about how to best 
integrate these into the 
larger NCS architecture
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Ai ⇒ Gi

G2 ∧ G3 ⇒ A1, G1 ∧ G3 ⇒ A2, …
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Machine Learning in Safety-Critical Systems

Claim: ML can solve problems that we can’t solve otherwise 

Q: How do we move ML into safety-critical applications? 
• Certification methodology for ML-based components 
• Error rates (of decisions) measured in 1 per billions of hrs/miles 
• Robust operation across wide range of conditions
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Hazard 
Class

SW 
Level

Failure/  
Flight Hr

Catasophic A 10-9

Hazardous B 10-7

Major C 10-5

Minor D —

No Effect E —

7 deaths every 109 miles 
(humans)

0.07 deaths every 109 miles
35K/year (US)??
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Layered Approaches to Design
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formal 
specifications

system/env 
model

Formal Methods for System Design
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requirements 
(on the system 

behavior)

assumptions 
(on the unknowns, e.g.,  
environment behavior)

system 
model

synthesisverification

controller that  
satisfies  
the specs

no such  
controller  

exists

satisfied 
(+ certificate)

violated 
(+ counterexample)

Ready to be applied now 
(SoS, SPIN, TLC, nuSMV, PRISM, SMT) Next generation tools (in progress)
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• Look for regions such that we 
can move from one region to 
another w/out  leaving the union 
of two regions 

• Solve via trajectory generation 
algorithm: piecewise linear 
dynamics w/ disturbances:

Discrete Abstractions for (Hybrid) Dynamical Systems
Continuous states → discrete abstractions 

Use  formal tools to create abstractions 
• Use reachability analysis (trajectory  

gener’n) to compute regions, transitions 

• Account for disturbances, uncertainty, 
failures (using, for example, MPT)
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R0

R1

R3

win

lose lose

init

R2

Synthesis of Reactive (Feedback) Controllers
Reactive Protocol Synthesis 
• Find control action that insures that  

specification is always satisfied 

• For LTL, complexity is doubly exponen-  
tial (!) in the size of system specification 

GR(1) synthesis for reactive protocols 
• Piterman, Pnueli and Sa’ar, 2006 

• Assume environment fixes action  
before controller (breaks symmetry) 

• For certain class of specifications,  
get complexity cubic in # of states (!) 

• GR(1) = general reactivity formula 
• Assume/guarantee style specification
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Temporal Logic Planning (TuLiP) toolbox 
http://tulip-control.org

Python Toolbox 
•Transition systems, automata 
•GR(1), LTL specs 
•Nonlinear dynamics, discretization 
•Synthesis: probabilistic (stormpy),  

reactive, minimum violation planning 

Applications of TuLiP 
•Autonomous vehicles - traffic planner (intersections and roads, with other vehicles) 

•Distributed camera networks - cooperating cameras to track people in region 

•Electric power transfer - fault-tolerant control of generator + switches + loads
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Rapprochement Between Formal Methods and Control
Getting more rigorous about 
control of reactive systems 
• Systems are too complex to 

be tested by trial and error 
• Systems are too safety-

critical to be tested by trial 
and error 

• Move from “design then 
verify” to 
- specify then synthesize 
- synthesis of contracts
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Example: Electric Power Systems
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REQUIREMENTS: 
1. No AC bus shall be simultaneously 

powered by more than one AC source.  
2. The aircraft electric power system shall 

provide power with the following 
characteristics: 115 +/- 5 V (amplitude) 
and 400 Hz (frequency) for AC loads 
and 28 +/-2V for DC loads. 

3. Buses shall be powered according to 
the priority tables. 

4.  AC buses shall not be unpowered for 
more than 50ms. 

5. The overall system failure probability 
must be less than 10-9 per flight hour. 

6. Never lose more than one bus for any 
single failure. 

7. Total load must be within the capacity 
of the generator

Component models/specifications: 
1. Failure probabilities for contactors, generators, etc. (not much on failure modes) 
2. Contactor closure times are between 15-25 ms and opening times are between 10-20 ms.  

R. G. Michalko, “Electrical starting, generation, conversion and dis- 
tribution system architecture for a more electric vehicle,” US Patent 
7,439,634 B2, Oct. 2008.

Properties can be 
formulated in GR(1) 
• Safety: supply 

power, avoid shorts/
paralleling 

• Progress: all loads 
eventually powered 

Verification 
• Given properties + 

logic, ensure that 
specs are satisfied 

Synthesis 
• Given properties and 

topology + actuators, 
synthesize switching 
logic



Richard M. Murray, Caltech CDSUC Berkeley/Simons, 30 Jan 2018

EPS Design Space Exploration
Design workflow 
• Formalize specs as 

a A/G contracts 

• Synthesize possible 
EPS topologies 

• Synthesize control 
logic, if possible 

• Use more complex 
models to verify 
continuous time 
properties 

Applications 
• Aircraft electric 

power systems 
• Environmental 

control systems
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Nuzzo. Xu, Ozay, Finn et al  
IEEE Access, 2014
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Self-Driving Cars

21

??SAE Levels of 
Automation: ?
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Operational Design Domains (ODDs)
ODD as a tool for L4 
autonomy 
• Use ODD to des-

cribe conditions 
under which veh-
icle can operate 

• Use online moni-
tors to detect out of 
ODD events; bring 
car to a stop 

Definition/use of 
ODDs still evolving 
• SAE J3016 + DOT 

report give concept 

• May also be useful 
for defining vehicle 
internal status?
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A Framework for Automated Driving System Testable Cases and Scenarios,  
DOT Technical Report HS 812 623, 2018-09-01.

SAE J3016: The specific conditions under which a given driving automation 
system or feature thereof is designed to function, including, but not limited to, 
driving modes.
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Example: Autonomous Valet Parking - Specification 
Layer 3 - supervisory protocol 
• Respond to requests to deposit or 

retrieve a car  

• Specification: STL formulas using 
TLA+ (temporal logic of actions) 

• Controller: finite state automata 

Layer 2 - trajectory optimization 
• Find optimal trajectory minimizing 

fuel and time + avoid obstacles  
• Specification: simplified model + 

cost function and constraints 
• Controller: receding horizon (MPC)  

Layer 1 - feedback regulation 
• Tracking, disturbance rejection 

• Controller: PID w/ gain scheduling
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Autonomous Valet Parking - Design and Verification
Layer 3 - supervisory protocol 
• Respond to requests to deposit or 

retrieve a car  

• Specification: STL formulas using 
TLA+ (temporal logic of actions) 

• Controller: finite state automata 

Layer 2 - trajectory optimization 
• Find optimal trajectory minimizing 

fuel and time + avoid obstacles  
• Specification: simplified model + 

cost function and constraints 
• Controller: receding horizon (MPC)  

Layer 1 - feedback regulation 
• Tracking, disturbance rejection 

• Controller: PID w/ gain scheduling

Layer 2 - trajectory optimization 
• Find optimal trajectory minimizing 

fuel and time + avoid obstacles  

• Specification: simplified model + 
cost function and constraints 

• Controller: receding horizon (MPC) 

24Richard M. Murray, Caltech CDSDENSO, 20 Mar 2017
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Structure of Specifications for a System

Assume/guarantee contracts 
• Assume: properties of other 

components in the system 

• Guarantee: properties that  
will hold for my component 

• Contracts can be horizontal 
(within a layer) or vertical 
(between two layers)
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Ai ⇒ Gi

G2 ∧ G3 ⇒ A1, G1 ∧ G3 ⇒ A2, …

Synthesis of contracts 
• Given a set of (LTL) 

properties, synthesize 
GR(1) contracts for 
components 

• Key component is 
amount of information  
that must be shared 
- Can minimize sub-

ject to constraints 

Software (I. Filippidis) 
• omega - synthesis of 

controllers/contracts 

• dd - binary decision 
diagrams in Python

Filippidis and M, P.  IEEE, 2018
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GOAL

HOME

REFUEL

Generating Test Sequences for GR(1) Specifications
Desired  properties for test sequences 
• Coverage of system/environment states and actions 
• Generation of environmental states/actions that limit 

the number of satisfying actions the process can take 

Gridworld example:  
• System spec:  

- Avoid obstacle (perfect knowlege) 
- Maintain fuel > 0    -  Follow rules of the road (grid) 

- Park = ON ⟹ System must leave HOME and 
eventually reach GOAL  

- Park = OFF ⟹ System must leave GOAL and 
eventually reach HOME 

• Environment spec 
- Obstacle: stay in restricted region 
- Park signal can turn on/off at any time
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Test plan generation 
• Try to choose obstacle trajectories 

that force system toward its limits 
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Autonomy Ecosystem

2727
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Challenges in Self Driving
Solved (or solvable): 

• Driving on city streets/free-
ways with normal traffic and 
everyone obeying the rules 

• Obtaining accident rates on 
par w/ humans (~7 per 109) 

• 99%+ of miles completed in 
self-driving mode 

• Using ML to improve 
performance 

• 1-2% of cars are self-
driving, w/ humans as a 
“backup”, accidents OK
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Work remains to be done: 

• Driving in crowded and/or unstructured 
environments (rules may not exist/hold) 
- Requires understanding and 

prediction, not just mimicking 

• Obtaining 10-100X better safety 
- Higher than MTBF of parts 

• 99%+ of all trips completed, in 
environments with humans 
- Accurate predictions + asserting 

“intent” to make progress 

• Using ML to guarantee safety 
- Hard to learn rare events 
- Combine w/ formal methods? 

• 1-80% of cars are fully self driving (L4), 
with fewer accidents than humans 
- 90%+ ⟹ probably gets easier

http://www.path.berkeley.edu/publications/
national-automated-highway-systems-consortium



Richard M. Murray, Caltech CDSEECI-IGSC, 13 Mar 2020

Self-Driving Cars: Value Proposition (?)
Scenario #1: purchase by individuals 
• Extension of current L2 functionality to more complex functions 
• Examples: Tesla, traditional manufacturers? 
• Value: less attention/skill required to “drive” 
• Challenge: cost, reliability, handoff 

Scenario #2: robo-taxis 
• L4 autonomy for ride-share in urban environments 
• Value: fleet-level economics; replace human, extend utilization 
• Examples: Cruise, Waymo, Zoox 
• Challenge: cost, reliability, public perception (?) 

Scenario #3: limited/structured environments 
• L4/L5 autonomy in structure/constructed environments 
• Examples: airports (Heathrow), mines, highways, new cities? 
• Value: automate dirty, dull, dangerous tasks 
• Challenge: cost of purpose-build infrastructure, market size

29
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Summary: Safety-Critical Autonomous Systems
Aerospace Systems 
• Software failure rate of 1 in 109 flight hours 
• Challenges in terms of design time and cost 

Some math and (control) theory 
• Multi-layer hierarchies, contracts to 

manage complexity, formal methods 
• Verification and synthesis tools to 

ensure correctness 

Self-driving cars 
• Very complex problem, especially  

for humans + autonomous systems 

• Not clear if we have the tools to design  
safe systems at reasonable cost… 

• Good area for fundamental research 
in (safety-critical) real-time decision making
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