Caltech Computer Lab 2

TuLiP: A Software Toolbox for
Temporal Logic Planning

Richard M. Murray Nok Wongpiromsarn
Caltech UT Austin/lowa State

EECI-IGSC, 11 Mar 2020

Outline
e Overview of TuLiP
* Computer Lab

Problem Description

Problem: Given a plant model and an LTL specification ¢, design a controller to
ensure that any execution of the system satisfies ¢

- The evolution of the system is described by differential/difference equations

s(t+1) = As(t)+ Bu(t) + Ed(t))
u(t) € U
dit) € D

where s ¢ R", U CR™, D CRP
@ must be satisfied regardless of the environment in which the system

operates
- Assume that ¢ is of the form
o= Vi AT A N DOYS) = (U ADWIA N DOv; ;)
. ely el
assumptions on N ~ v \ -~ “
initial condition assumptions on desired
behavior

environment

2

Embedded Control Software Synthesis

Key elements to specify the problem

® discrete system state S @

® continuous system state env—_:[Discrete j : :
® (discrete) environment state PLEGDE N

A l)
® specification noises---=:3 Plant

: u
Continuous)Q
controller Sd .
: ou ™\
SEEEEEEEEEEEEEEE ;[Local
I (...
control

e Discrete planner computes the next cell to go to in order to satisfy ¢
- The synthesis algorithm considers all the possible behaviors of the environment

Hierarchical Approach

- [Issue:state explosion

e Continuous controller simulates the plan
- Constrained optimal control problem
- Continuous execution preserves the correctness of the plan

EECI-IGSC, 9-13 Mar 2020

Main Steps

Continuous
State Space
Discretization

Continuous
State Space
Partition

Proposition
preserving
partition

e 2
System o
model

Continuous
controller

Y

Finite
transition
system

Digital

Discrete

III.

Design
Synthesis

Planner

Generate a proposition preserving partition of the continuous state space
- cont_partition = tlp.abstract.prop2part(cont_state space, cont_props)
Discretize the continuous state space based on the evolution of the continuous state
- disc_dynamics = tlp.abstract.discretize(cont_partition, sys dyn, N=8, ...)

Digital design synthesis

- specs = tlp.spec.GRSpec(env_vars, sys_vars, env_init, sys_init, env_safe, ...)
- ctrl = tlp.synth.synthesize(specs, sys=disc_dynamics.ts, ignore_sys_init=True)
Simulate (not yet implemented; code manually for now)

Richard M. Murray, Caltech CDS

Example #1: robot_simple discrete.py

System Model: Robot can move to the cells that share a face with the current cell

Desired Properties
- Visit the blue cell infinitely often Cs Cs

- Eventually go to the red cell when a PARK
signal is received

Ci C

Assumption
- Infinitely often, PARK signal is not received

o =00(-park) — (OOC(seCs)A
O(park = <O(seCp)))

This spec is not a GR[] formula
- Introduce an auxiliary variable XOreach that starts with True

- O(OX0reach = (s € Cy V (X0reach N —park)))
- UOXO0reach

Example #2: robot_simple continuous.py

Dynamics & = u,,y = u, where ug,u, € [—1,1]

Cs C4

Desired Properties
- Visit the blue cell infinitely often

- Eventually go to the red cell when a
PARK signal is received

Assumption

- Infinitely often, PARK signal is not
received

e = 00(—park) = (OO(s e Cs) A
(park = O(s € Cp)))

This spec is not a GR[] formula
- Introduce an auxiliary variable X0Oreach that starts with True

- O(OXO0reach = ((s € Cy V X0reach) N\ —park))
- HOXO0reach

Computer Exercise 1

Synthesize a reactive planner with the following specifications

System variables: XO0,...,X8 -- Xi = 1 if robot in Ci, Xi = 0 otherwise.
Environment variables: obs € {1,4,7}, park € {0,1}

Desired Properties
-Visit the blue cell (Cs) infinitely often

-Eventually go to the green cell (Co)
after a PARK signal is received

-Avoid an obstacle (red cell) which can
be one of the C1, C4, C7 cells and can
move arbitrarily

Assumption

-Infinitely often, PARK signal is not
received

-The obstacle always moves to an
adjacent cell

Constraints (or discrete dynamics)

- The robot can only move to an adjacent
cell, i.e., a cell that shares an edge with
the current cell

[<>X8

XOreach A
[][<>XO0reach A
[1(next(X0reach)=((X0vX0reach)a !park))

[J(obs=0 — IX1)A [J(obs=1 — IX4)A
[l(obs=2 — IX7)

[[<>!park

[J(obs=0 — next(obs)=1) A
[J(obs=1 — (next(obs)=0 v next(obs)=2))A
[J(obs=2 — next(obs)=1)

Computer Exercise 2

Synthesize intersection logic for the car with the
following specification:

Desired Properties
- Vehicle a should eventually go to C9
- Vehicle a does not collide with vehicle h

- Vehicle his not in the intersection when the light is red

Assumptions

- find a set of “non-trivial” assumptions that
render the problem realizable

- allow human venhicle to start in any location

Constraints

- Vehicles can only move to cells representing
their possible travel lanes

Co

*\

Validation Possibilities

Co
. Mt
Add continuous-time dynamics to intersection problem
C1 l
Synthesize decision-making logic for road network
C2
Automated valet parking l
C3 M
Zﬁ///l///mmmzf///ﬂ/// Cg 64 I
Z 2 —
65_025
sl
C6 C7

Time: 0.20s

QIO sz,

Pedestria1 Lrossing

