Lecture 5 Probabilistic Systems

Nok Wongpiromsarn UT Austin/Iowa State

Richard M. Murray
Caltech

EECI-IGSC, 10 March 2020

Outline

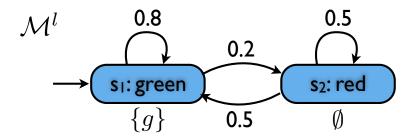
- Stochastic models: Markov chains, Markov decision processes
- $\cdot \sigma$ -algebras
- •Reachability, regular safety and ω -regular properties
- •PCTL

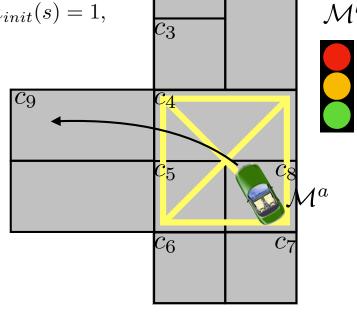
Markov chains

A (discrete-time) Markov chain is a tuple $\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L)$ where

- \bullet S is a countable, nonempty set of states,
- $\mathbf{P}: S \times S \to [0,1]$ is the transition probability function such that for any state $s \in S$, $\sum_{s' \in S} \mathbf{P}(s,s') = 1$,
- $\iota_{init}: S \to [0,1]$ is the initial distribution such that $\sum_{s \in S} \iota_{init}(s) = 1$,
- AP is a set of atomic propositions, and
- $L: S \to 2^{AP}$ is a labeling function.

 \mathcal{M} is call *finite* if S and AP are finite.

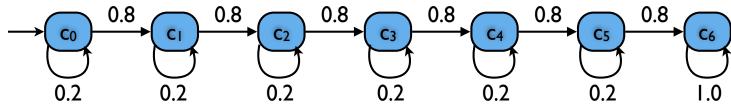




 c_1

 $\overline{c_2}$

 \mathcal{M}^h

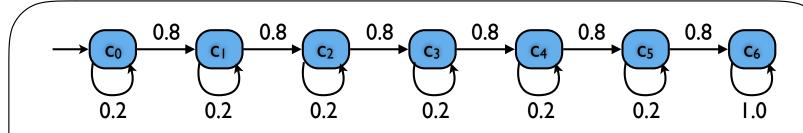


Paths of a Markov chain

Consider a Markov chain $\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L)$. For $s \in S$,

$$Post(s) := \{ s' \in S : \mathbf{P}(s, s') > 0 \}$$

- A sequence of states, either finite $\pi = s_0 s_1 s_2 \dots s_n$ or infinite $\pi = s_0 s_1 s_2 \dots$ is a path fragment if $s_{i+1} \in Post(s_i), \forall i \geq 0$.
- A path is an infinite path fragment such that $\iota(s_0) > 0$.
- Given a path π in \mathcal{M} , $\inf(\pi)$ denotes the set of states that are visited infinitely often in π .
- Denote the set of paths in \mathcal{M} by $Path(\mathcal{M})$
- Denote the set of finite path fragments in \mathcal{M} by $Path_{fin}(\mathcal{M})$.



A path:

C0 C0 C0 ...

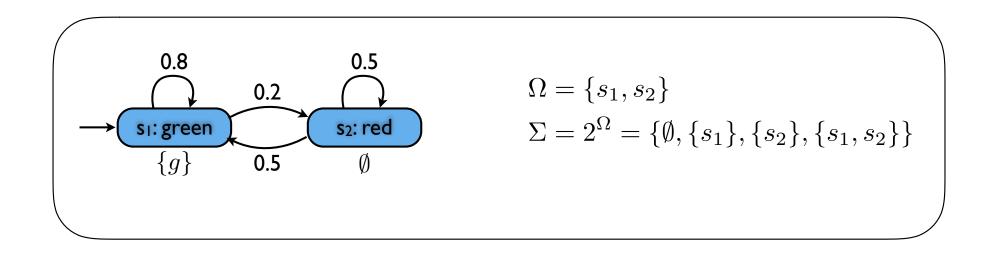
Not a path:

σ -algebras

"outcomes" "events"

Let Ω be a set. Then, $\Sigma \subseteq 2^{\Omega}$ is a σ -algebra if

- $\emptyset \in \Sigma$,
- $A \in \Sigma$ implies $\Omega \setminus A \in \Sigma$, i.e., Σ is closed under complementation,
- $A_1, A_2, \ldots \in \Sigma$ implies $\bigcup_{i>1} A_i \in \Sigma$, i.e., Σ is closed under countable unions.



Probability spaces

(Kolmogorov's) Axioms of Probability: Let Σ be a σ -algebra for some outcome space Ω . A probability measure Pr is a function from Σ to the extended real number line satisfying the following properties.

- First Axiom: For any $A \in \Sigma$, $Pr(A) \in \mathbb{R}$ and $Pr(A) \geq 0$
- Second Axiom: $Pr(\Omega) = 1$
- Third Axiom: If $\{A_i\}$ is a countable pairwise disjoint set with $A_i \in \Sigma$, then

$$Pr\left(\bigcup_{i} A_{i}\right) = \sum_{i} Pr(A_{i})$$

A probability space is a triple (Ω, Σ, Pr) .

For countable Ω , define a **distributions** on Ω as $\mu:\Omega\to[0,1]$ such that

$$\sum_{out \in \Omega} \mu(out) = 1$$

It induces a probability measure Pr on the σ -algebra $\Sigma = 2^{\Omega}$ defined as

$$Pr(A) = \sum_{out \in A} \mu(out), \forall A \in \Sigma$$

Probability measures of a Markov chain

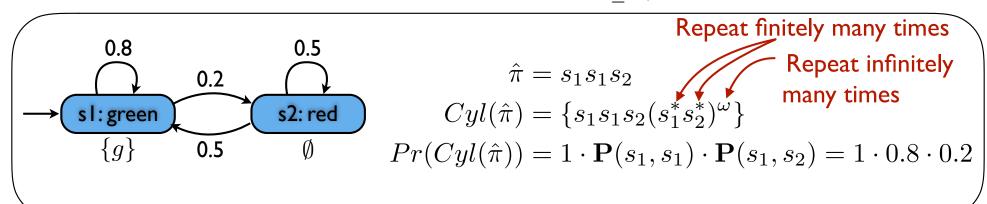
Consider a Markov chain \mathcal{M} .

- $\Omega = Path(\mathcal{M})$ plays the role of the outcomes.
- Define a **cylinder set** of $\hat{\pi} = s_0 \dots s_n \in Path_{fin}(\mathcal{M})$ as

$$Cyl(\hat{\pi}) = \{ \pi \in Path(\mathcal{M}) \mid \hat{\pi} \in pref(\pi) \}$$

- The σ -algebra associated with \mathcal{M} is the smallest σ -algebra that contains all $Cyl(\hat{\pi}), \hat{\pi} \in Path_{fin}(\mathcal{M})$
- There exists a unique probability measure $Pr^{\mathcal{M}}$ such that

$$Pr^{\mathcal{M}}(Cyl(s_0 \dots s_n)) = \iota_{init}(s_0) \prod_{0 \le i \le n} \mathbf{P}(s_i, s_{i+1})$$



Probability of satisfying an LTL formula

Consider an LTL formula φ over AP and an MC $\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L)$. The probability of \mathcal{M} satisfying φ is given by

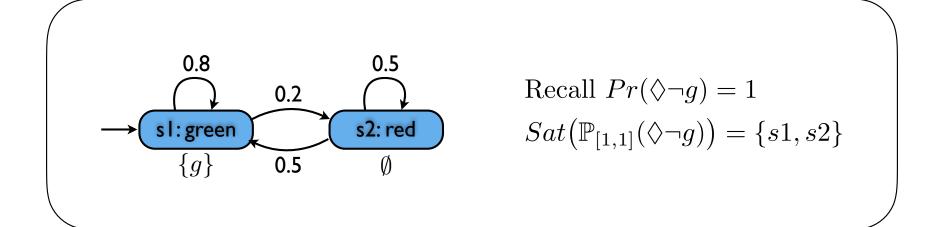
$$Pr^{\mathcal{M}}(\varphi) = Pr^{\mathcal{M}}(\{\pi \in Path(\mathcal{M}) \mid \pi \models \varphi\})$$

EECI, Mar 2020

Probabilistic Computation Tree Logic (PCTL)

- Recall that CTL includes the path quantifiers ∃ and ∀
- PCTL replaces the path quantifiers with the probabilistic operator $\mathbb{P}_{J}(\varphi)$ where $J \subseteq [0,1]$ is an interval with rational bounds

$$s \models \mathbb{P}_J(\varphi) \text{ iff } Pr(s \models \varphi) \in J$$
$$Sat(\mathbb{P}_J(\varphi)) = \{ s \in S \mid Pr(s \models \varphi) \in J \}$$



Reachability property

Consider a Markov chain $\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L)$. For each $s \in S$, define a Markov chain $\mathcal{M}_s = (S, \mathbf{P}, \iota_{init,s}, AP, L)$ where

$$\iota_{init,s}(t) = \begin{cases} 1 & \text{if } t = s \\ 0 & \text{otherwise} \end{cases}$$

The probability for φ to hold in a state s is given by

$$Pr^{\mathcal{M}}(s \models \varphi) = Pr^{\mathcal{M}_s} \Big(\big\{ \pi \in Path(\mathcal{M}_s) \mid \pi \models \varphi \big\} \Big)$$

For each $s \in S$, define $x_s = Pr^{\mathcal{M}}(s \models \Diamond B)$ where $B \subseteq S$.

- If B is not reachable from s, $x_s = 0$.
- $x_s = 1$ for all $s \in B$.
- Define $\tilde{S} = \{ s \in S \setminus B \mid B \text{ is reachable from } s \}$. For any $s \in \tilde{S}$,

$$x_s = \sum_{t \in S \setminus B} \mathbf{P}(s,t) \cdot x_t + \sum_{u \in B} \mathbf{P}(s,u)$$

reaching a state $t \in S \setminus B$, from which B is reached

reaching B within one step

Verifying reachability property

Recall that $\tilde{S} = \{ s \in S \setminus B \mid B \text{ is reachable from } s \}$. For any $s \in \tilde{S}$,

$$x_s = \sum_{t \in S \setminus B} \mathbf{P}(s,t) \cdot x_t + \sum_{u \in B} \mathbf{P}(s,u)$$

Define $\mathbf{x} = (x_s)_{s \in \tilde{S}}$. In matrix form, define $\mathbf{x} = (x_{s \in \tilde{S}})$.

$$\mathbf{x} = \mathbf{A} \mathbf{x} + \mathbf{b}$$

Transition probability matrix

Compute \tilde{S}

Graph search, e.g., backward DFS or BFS

Construct A and b

Transition probability P

Solve $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$

Solve $\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{b}$ if the inverse exists. Otherwise, compute the least fixed point of $\Gamma(\mathbf{y}) = \mathbf{A}\mathbf{y} + \mathbf{b}$

Verifying regular safety properties

states transitions initial states
$$\text{Recall NFA } \mathcal{A} = (Q, \ \Sigma, \ \delta, \ Q_0, \ F).$$

A deterministic finite automaton (DFA) is an NFA with

$$|Q_0| \le 1$$

 $|\delta(q, A)| \le 1, \forall q \in Q, A \in \Sigma$

For any NFA, one can construct an equivalent DFA through powerset construction.

Consider a regular safety property P_{safe} . Let \mathcal{A} be a DFA for the bad prefixes of P_{safe} .

$$Pr^{\mathcal{M}}(P_{safe}) = 1 - \sum_{s \in S} \iota_{init}(s) Pr(s \models \mathcal{A})$$

$$Pr^{\mathcal{M}_s}(\{\pi \in Path(\mathcal{M}_s) \mid pref(trace(\pi)) \cap \mathcal{L}(\mathcal{A}) \neq \emptyset\})$$

Product Markov Chain

Markov chain

DFA

$$\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L) \otimes \mathcal{A} = (Q, 2^{AP}, \delta, q_0, F)$$

$$(S', \mathbf{P'}, \iota'_{init}, AP', L')$$

Product Markov chain

$$\bullet \ S' = S \times Q$$

•
$$\mathbf{P}'(\langle s, q \rangle, \langle s', q' \rangle) = \begin{cases} \mathbf{P}(s, s') & \text{if } q \xrightarrow{L(s')} q' \\ 0 & \text{otherwise} \end{cases}$$

•
$$\iota'_{init}(\langle s, q \rangle) = \begin{cases} \iota_{init}(s) & \text{if } q_0 \xrightarrow{L(s)} q \\ 0 & \text{otherwise} \end{cases}$$

•
$$AP' = \{accept\}$$

•
$$L'(\langle s, q \rangle) = \begin{cases} \{accept\} & \text{if } q \in F \\ \emptyset & \text{otherwise} \end{cases}$$

For any path fragment $s_0s_1s_2...$ in \mathcal{M} , there exists a **unique** run $q_0q_1q_2...$ in \mathcal{A} for $L(s_0)L(s_1)L(s_2)...$ and

$$\langle s_0, q_1 \rangle \langle s_1, q_2 \rangle \langle s_2, q_3 \rangle \dots$$

is the corresponding unique path in $\mathcal{M} \otimes \mathcal{A}$.

$$Pr^{\mathcal{M}}(s \models P_{safe}) = 1 - Pr^{\mathcal{M} \otimes \mathcal{A}} (\langle s, \delta(q_0, L(s)) \rangle \models \Diamond accept)$$

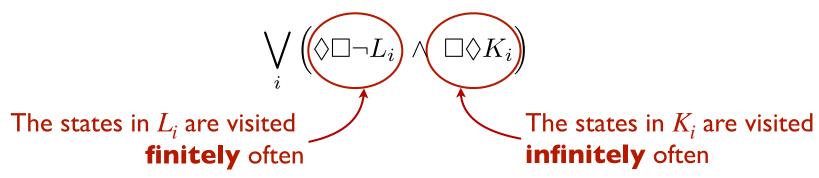
Deterministic Rabin automaton (DRA)

A deterministic Buchi automaton (DBA) is an NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with $|Q_0| \leq 1$ and $|\delta(q, A)| \leq 1$ for all $q \in Q, A \in \Sigma$.

A deterministic Rabin automaton (DRA) $\mathcal{A} = (Q, \Sigma, \delta, Q_0, Acc)$ has the same components as a DBA but with acceptance condition given by a set of **pairs** of states

$$Acc = \{(L_i, K_i) \mid L_i, K_i \subseteq Q\}$$

A run is accepting if it satisfy the LTL formula

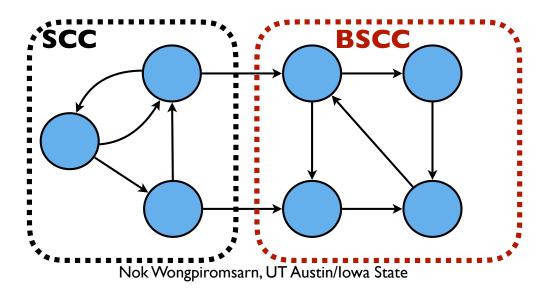


- A DBA is a DRA with $Acc = \{(\emptyset, F)\}$
- Some ω -regular properties (e.g., $\Diamond \square a$) cannot be expressed by a DBA
- ullet The class of languages accepted by DRAs agrees with the class of ω -regular languages

Strongly connected components of Markov chains

$$\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L)$$

- $T \subseteq S$ is strongly connected if for each pair $s, t \in T$, there exists a finite path fragment $s_0 s_1 \dots s_n$ such that $s_0 = s$, $s_n = t$ and $s_i \in T, \forall i$.
- A strongly connected component (SCC) of \mathcal{M} is a subset $T \subseteq S$ such that T is strongly connected and there does not exists $T' \supset T$ that is strongly connected.
- A bottom SCC (BSCC) is an SCC T from which no state outside T is reachable, i.e., $\sum_{t \in T} \mathbf{P}(s,t) = 1$ for all $s \in T$.
- Denote the set of all BSCCs of \mathcal{M} by $BSCC(\mathcal{M})$.



DRA-based analysis of Markov chains

Markov chain

DRA

$$\mathcal{M} = (S, \mathbf{P}, \iota_{init}, AP, L) \otimes \mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$$
$$(S', \mathbf{P'}, \iota'_{init}, AP', L')$$

Product Markov chain

- S', P', ι'_{init} are defined as in the product of Markov chain and DFA
- $AP' = \{L_1, \ldots, L_k, K_1, \ldots, K_k\}$ where $\{(L_1, K_1), \ldots, (L_k, K_k)\} = Acc$
- $\bullet \ L'(\langle s, q \rangle) = \{ H \in AP' \mid q \in H \}$
- A BSCC T in $\mathcal{M} \otimes \mathcal{A}$ is accepting if there exists $i \in \{1, \ldots, k\}$ such that

$$T \cap (S \times L_i) = \emptyset$$
 and $T \cap (S \times K_i) \neq \emptyset$ acceptance criterion for $\mathscr A$

Once T is reached, the is satisfied almost surely

The union of all accepting BSCCs in $\mathcal{M} \otimes \mathcal{A}$

$$Pr^{\mathcal{M}}(s \models \mathcal{A}) = Pr^{\mathcal{M} \otimes \mathcal{A}} (\langle s, \delta(q_0, L(s)) \rangle \models \Diamond U)$$

Verifying ω **-regular** property

$$Pr^{\mathcal{M}}(s \models \mathcal{A}) = Pr^{\mathcal{M} \otimes \mathcal{A}} (\langle s, \delta(q_0, L(s)) \rangle \models \Diamond U)$$

Compute BSCCs of

 $\mathcal{M} \otimes \mathcal{A}$

Graph analysis, e.g., Tarjan's algorithm

<u>√</u>

Compute U

Check each BSCC agains all pairs $(L_i, K_i) \in Acc$

Compute reachability probabilities

Solve a set of linear equations

Markov decision processes (MDPs)

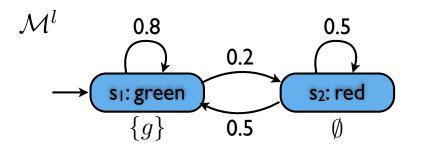
A Markov decision process is a tuple $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ where

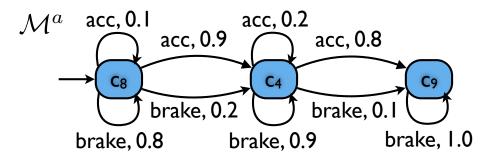
- S, ι_{init} , AP and L are defined as in the definition of a Markov chain,
- Act is a set of actions, and
- $\mathbf{P}: S \times Act \times S \to [0,1]$ is the transition probability function such that for any state $s \in S$ and action $\alpha \in Act$, $\sum_{s' \in S} \mathbf{P}(s, \alpha, s') \in \{0, 1\}$.

An MDP is *finite* if S, Act and AP are finite.

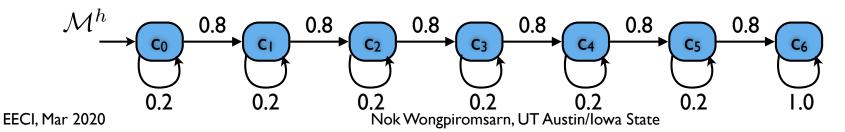
An action α is enabled in state s iff $\sum_{s' \in S} \mathbf{P}(s, \alpha, s') = 1$.

 $Act(s) = \{ \alpha \in Act \mid \alpha \text{ is enabled in } s \} \neq \emptyset$





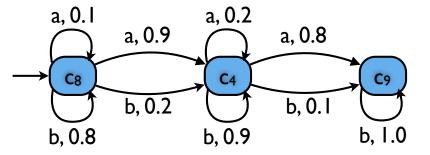
 c_6



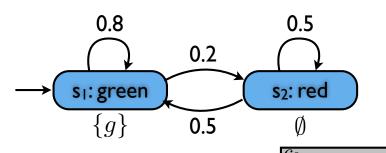
17

 \mathcal{M}^l

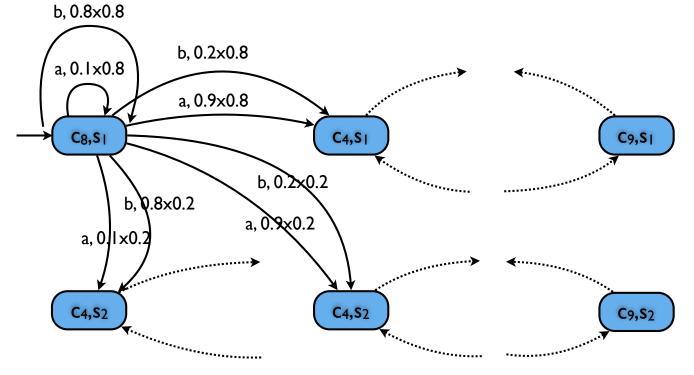
Parallel composition of MDP and MC



$$\mathcal{M}^l = (S^l, \mathbf{P}^l, \iota_{init}^l, AP^l, L^l)$$



$$\mathcal{M}^a||\mathcal{M}^l = (S^a \times S^l, Act, \mathbf{P}, \iota_{init}, AP^a \cup AP^l, L)$$



$$\mathbf{P}((c,s),\alpha,(c',s'))$$

$$= \mathbf{P}^{a}(c,\alpha,c') \times \mathbf{P}^{l}(s,s')$$

 c_3

$$\iota_{init}(c,s)
= \iota_{init}^{a}(c) \times \iota_{init}^{l}(s)$$

$$L(c,s) = L^a(c) \cup L^l(s)$$

A policy of an MDP

Consider an MDP $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$.

- A policy for \mathcal{M} is a function $\mathcal{C}: S^+ \to Act$ such that $\mathcal{C}(s_0 s_1 \dots s_n) \in Act(s_n)$ for all $s_0 s_1 \dots s_n \in S^+$.
- A C-path fragment is an infinite sequence $\pi = s_0 s_1 s_2 \dots$ on \mathcal{M} generated under policy C if $\mathbf{P}(s_i, C(s_0 s_1 \dots s_i), s_{i+1}) > 0$ for all i.
- A policy C resolves all the nondeterministic choices in \mathcal{M} and induces a Markov chain $\mathcal{M}_{C} = (S^{+}, \mathbf{P}_{C}, \iota_{init}, AP, L')$ where for $\sigma = s_{0}s_{1} \ldots s_{n}$,

$$\mathbf{P}_{\mathcal{C}}(\sigma, \sigma s_{n+1}) = \mathbf{P}(s_n, \mathcal{C}(\sigma), s_{n+1})$$

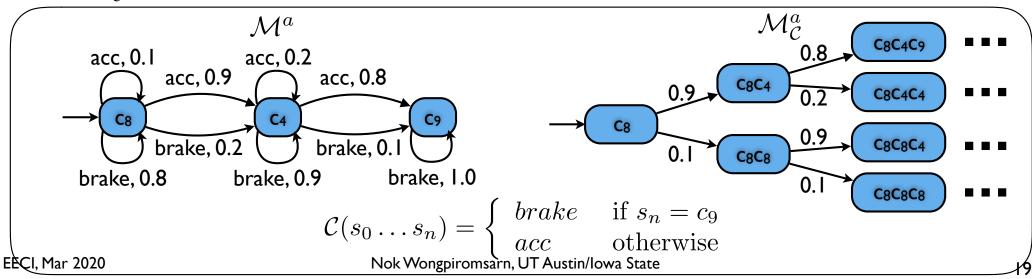
$$L'(\sigma) = L(s_n)$$

• $\mathcal{M}_{\mathcal{C}}$ is infinite even if \mathcal{M} is finite.

All we've discussed about Markov chain applies to $\mathcal{M}_{\mathcal{C}}$

 \mathcal{M}^l

 c_3



Policy synthesis for MDPs with LTL specifications

Given an MDP $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ and an LTL specification φ , compute an optimal policy \mathcal{C} such that

$$Pr^{\mathcal{C}}(\varphi) = Pr^{\mathcal{M}_{\mathcal{C}}}(\varphi) = \sup_{\mathcal{C}'} Pr^{\mathcal{C}'}(\varphi)$$

An end component of \mathcal{M} is a pair (T, A) where $\emptyset \neq T \subseteq S$ and $A: T \to 2^{Act}$ such that

- $0 \neq A(s) \subseteq Act(s)$ for all $s \in T$
- the directed graph induced by (T, A) is strongly connected
- for all $s \in T$ and $\alpha \in A(s)$,

$$\{t \in S \mid \mathbf{P}(s, \alpha, t) > 0\} \subseteq T.$$

Starting from any state in T, there exists a finite memory policy for \mathcal{M} to keep the state within T forever while visiting all states in T infinitely often with probability I.

At each state $s \in T$, select an action $\alpha \in A(s)$ according to a roundrobin policy.

An end component is maximal if there is no end component $(T', A') \neq (T, A)$ such that $T \subseteq T'$ and $A(s) \subseteq A'(s)$ for all $s \in T$.

Reachability property

Consider an MDP $\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L)$ and $B \subseteq S$.

For each $s \in S$, define $x_s = Pr_{\max}(s \models \Diamond B) = \sup_{\mathcal{C}} Pr^{\mathcal{C}}(s \models \Diamond B)$.

- If B is not reachable from $s, x_s = 0$.
- $x_s = 1$ for all $s \in B$.
- Define $\tilde{S} = \{ s \in S \setminus B \mid B \text{ is reachable from } s \}$. For any $s \in \tilde{S}$,

$$x_s = \max \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s) \right\}$$

Value iteration: $x_s^{(0)} = 0$ and $x_s^{(n+1)} = \max \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(n)} \mid \alpha \in Act(s) \right\}$

Linear program: $\min \sum_{s \in S} x_s$ such that $x_s \geq \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t$ for all $\alpha \in Act$

DRA-based policy synthesis

MDP DRA

$$\mathcal{M} = (S, Act, \mathbf{P}, \iota_{init}, AP, L) \otimes \mathcal{A} = (Q, 2^{AP}, \delta, q_0, Acc)$$

$$(S', Act, \mathbf{P'}, \iota'_{init}, AP', L')$$
Product MDP

- S', ι'_{init} , AP', L' are defined as in the product of Markov chain and DRA.
- $\mathbf{P}'(\langle s, q \rangle, \alpha, \langle s', q' \rangle) = \begin{cases} \mathbf{P}(s, \alpha, s') & \text{if } q' = \delta(q, L(s')) \\ 0 & \text{otherwise} \end{cases}$
- For each $(L_i, K_i) \in Acc$, let $\mathcal{M}_{\Box \neg L_i}$ be the MDP that results from $\mathcal{M} \otimes \mathcal{A}$ by removing all the states in $S \times L_i$ and removing all the actions $\alpha \in Act(s)$ such that $Post(s, \alpha) \subseteq S \times L_i$. Define

$$U_{i} = \bigcup_{\substack{(T,A) \in MEC(\mathcal{M}_{\square \neg L_{i}})\\ T \cap (S \times K_{i}) \neq \emptyset}} T$$

 $U = \bigcup_i U_i$ is known as the success set for Rabin Conditions

$$Pr_{max}^{\mathcal{M}}(s \models \varphi) = Pr_{max}^{\mathcal{M} \otimes \mathcal{A}} (\langle s, \delta(q_0, L(s)) \rangle \models \Diamond U)$$