Lecture 9 Advanced Topics in Protocol Synthesis

Ufuk Topcu

Nok Wongpiromsarn

Richard M. Murray

EECI, 22 March 2013

Outline:

- Compositional synthesis of control protocols
- Synthesis of switching sequences
- Optimality in discrete synthesis

Decompositions in the state space

Smart camera { - static cameras for tracking targets networks { - pan-tilt-zoom (PTZ) for active recognition

Goal: synthesize control protocols for PTZ to ensure that one high resolution image of each target is captured at least once

Synthesis of protocols for active surveillance

<u>System</u>:

- region of view of PTZs
- governed by finite
 state automata

Additional requirement:

- Zoom-in the corner cells infinitely often.

Environment specifications:

- At most N targets at a time.
- Every target remains at least T time steps and eventually leaves.
- Can only enter/exit through doors.
- Can only move to neighbors.

Centralized vs. decentralized control architecture

How to design control protocols that can be

- synthesized
- implemented

in a decentralized way?

What information exchange & interface models are needed?

Compositional Synthesis

<u>Goal</u>: Find control protocols for PTZ-1 & PTZ-2 so that $\varphi_e \rightarrow \varphi_s$ holds.

Simple & not very useful composition:

Any execution of the env't, satisfying φ_e , also satisfies $\varphi_{e_1} \wedge \varphi_{e_2}$

Any execution of the system, satisfying $\varphi_{s_1} \wedge \varphi_{s_2}$, also satisfies φ_s

No common controlled variables in φ_{s_1} and φ_{s_2}

There exist control protocols that realize $\varphi_{e_1} \to \varphi_{s_1} \& \varphi_{e_2} \to \varphi_{s_2}$

(Refined) Compositional Synthesis

As before:

Refined interfaces:

 $\varphi_e \rightarrow \varphi_s$ is realized.

OTWM@ICCPSII(s)

Synthesis of Embedded Control Software

Application to a (very simple) smart camera network

Case Study: Synthesis of Protocols for Electric Power Management

increasing

criticality

Multiple criticality levels:

flight controllers

active de-icing

environmental control

Source: <u>http://www.e-envi2009.org/presentations/S3/Derouineau.pdf</u>

Environment variables:

- wind gust (w)
- outside temperature (T)

Controlled variables:

- altitude
- power supply to different components

For environment & control variables, use crude discretization over their respective ranges. For example, $T \in \{\text{low}, \text{low-medium}, \text{medium-high}, \text{high}\}$ representing the range of $[-22^{o}F, 32^{o}F]$

Dependent (state) variables:

- level of ice accumulation
- state-of-charge of the batteries
- cabin pressure level

Modeling & The Dependent Variables

Use models based on finite transitions systems from a combination of empirical data and first principles.

	icing level	airspeed reduction	power increase	climb_rate reduction	reduction in
			to regain airspeed		control authority
t	trace	< 10 knots	< 10%	< 10%	no effect
]	light	10-19 knots	10 - 19%	10 - 19%	no effect
mo	noderate	20-39 knots	20-39%	$\geq 20\%$	slow or overly
					sensitive response
S	evere	≥ 40 knots	unable	unable	limited or no response

generation

capacity

Ufuk Topcu

storage

capacity

Sample Specifications

power requests from flight controller (f), deicing (d), and pressure control (e):

 $r_f \equiv r_f(h, a, w)$

Resource constraint: Prioritization:	$\Box(p_f + p_d + p_e \le \overline{P} + b)$ $\Box(p_f \ge r_f)$ $\Box(p_f = \operatorname{high} \land p_d = \operatorname{high} \Rightarrow p_e = \operatorname{low})$	$r_d \equiv r_d(T,h)$ $r_e \equiv r_e(T,h)$	
Safety:	Altitude cannot change too much between to consecu $\Box (h = low \Rightarrow (\circ h \neq medium-high \land \circ h \neq high))$ Ice accumulation limits allowable altitude change, e.g., $\Box (a = severe \Rightarrow \circ h = h)$ Ice accumulation cannot be severe: $\Box (a \neq severe)$	tive instants, e.g.,	
Performance:	Cabin pressure does not exceed the level at 8000 ft. Always go back to the desirable altitude: $\Box \diamond (h = hightarrow high$	gh)	
Assumptions:	Wind gusts cannot be severe too many consecutive steps. $\Box(n_w \ge N_w \Rightarrow \circ(w \neq \text{severe})$ No abrupt change in outside temperature, e.g., $\Box(T = \text{medium-low} \Rightarrow \circ T \neq \text{high})$		

Notation may not be fully explained. Ask, if confused!!!

Dynamic power allocation allows reductions in peak power (i.e., generator weight) requirements.

Ufuk Topcu

Conventional vs. Boeing 787 Electric Power Network Structure

Ufuk Topcu

14

Distributed resource allocation

Ufuk Topcu

Compositional Synthesis of Distributed Protocols

Extra (mild) technical conditions: No common controlled variables & loops are well-posed.

Theorem: $\varphi_e \to \varphi_s$ is realizable if every $\varphi_{e_i} \to \varphi_{s_i}$ is realizable.

Contracts formalize the coupling and information exchange between subsystems. **Trade-offs:**

	conservatism	VS.	expressiveness of contracts	VS.	need for coordination & computational cost
Ifuk Topcu			16		

Motivation -- Switching control protocols

- regulate low-level, continuous dynamics;
- realize high-level specifications; and
- respond to external events in real-time,

with "correctness guarantee".

Why switching controllers?

 $K_1(P)$

 $K_N(P)$

Р

 $\sigma=1$

 $\sigma = N$

- Situations where continuous, smooth feedback controllers are not sufficient/available.
- No need to redesign underlying dynamics/controllers.
- Handle mixture of discrete and continuous decision making.

Slide courtesy of Jun Liu

Schematic description

Design σ such that P satisfies ϕ

Slide courtesy of Jun Liu

System model

Continuous-time switched systems:

$$\dot{x} = f_p(x, d), \quad p \in \mathcal{P}$$
 (1)

${\cal P}$	a finite collection of modes
{ f _P }	nonlinear vector fields
x∈X	system state
d∈D	exogenous disturbance

System specification

• Linear temporal logic (LTL) extends propositional logic with temporal operators:

 \land (and), \lor (or) \neg (not), \rightarrow (imply)

◊(eventually), □(always), ○(next), U (until) ...

- Allows to reason about infinite sequences of states
 - state: an evaluation of all variables (environment+system)
- LTL formulas can describe sets of allowable behavior
 - safety specs: what actions are allowed
 - fairness: when an action can be taken (e.g., infinitely often)
- No strict notion of time. Only ordering of events.
- LTL-x: we consider LTL without the o(next) operator to specify system properties for continuous-time systems.

Overview of solution strategy

• Given $\dot{x} = f_p(x, d), \quad p \in \mathcal{P} \text{ and } \varphi \triangleq (\varphi_e \rightarrow \varphi_s)$

- Compute finite-state, proposition preserving approximations.
- Solve a discrete synthesis problem and obtain a discrete switching strategy σ.
- Implement the switching strategy σ continuously to ensure that all trajectories of $\dot{x} = f_{\sigma}(x, d)$ satisfies φ .

Questions:

- What approximations are appropriate and how to compute them?
- What discrete synthesis problems to solve and how to solve them?

 q_3

 \boldsymbol{q}_{2}

Under- and over-approximations

Consider an abstraction map $T: X \to Q$, and a family of finite transition systems $\left\{ \mathcal{T}_p := (Q, Q_0, \xrightarrow{p}) : p \in \mathcal{P} \right\}.$

Under-approximation:

- Given $q, q' \in Q$ with $q \neq q'$, if $q \xrightarrow{p} q'$, then for all $x_0 \in T^{-1}(q)$, there exists a finite T > 0, such that *all* trajectories of $\dot{x} = f_p(x, d)$ starting from x_0 satisfy $\xi(\tau) \in T^{-1}(q') \quad \xi(t) \in T^{-1}(q) \cup T^{-1}(q'), \quad t \in [0, \tau].$
- If $q \xrightarrow{p} q$, then $T^{-1}(q)$ is positively invariant w.r.t. $\dot{x} = f_p(x, d)$

In other words

- Every execution of \mathcal{T}_p can be implemented by trajectories of $\dot{x} = f_p(x, d)$
- \mathcal{T}_p is a deterministic TS.

(i=1, 2, 3)

Under- and over-approximations

Consider an abstraction map $T: X \to Q$, and a family of finite transition systems $\{\mathcal{T}_p := (Q, Q_0, \xrightarrow{p}) : p \in \mathcal{P}\}.$

Over-approximation:

- Given $q, q' \in Q$ with $q \neq q'$, we have $q \xrightarrow{p} q'$, if there exists $x_0 \in T^{-1}(q)$, finite T > 0, and some trajectory of $\dot{x} = f_p(x, d)$ starting from x_0 satisfy $\xi(\tau) \in T^{-1}(q') \quad \xi(t) \in T^{-1}(q) \cup T^{-1}(q'), \quad t \in [0, \tau].$
- Write $q \xrightarrow{p} q$, if $T^{-1}(q)$ contains a complete trajectory of $\dot{x} = f_p(x, d)$

In other words

- Every trajectory of $\dot{x} = f_p(x, d)$ is represented by an execution of \mathcal{T}_p
- \mathcal{T}_p can be a nondeterministic TS.

How to compute these approximations?

Abstraction Algorithm I (over-approximation)

```
Initialize S = Q, S_0 = Q_0, \mathcal{A} = \mathcal{P} and \rightarrow = Q \times \mathcal{P} \times Q

for i = 1 : |\mathcal{P}| do

for j = 1 : |\mathcal{Q}| do

for k = 1 : Neighbors(T^{-1}(q_j)) do

F = commonFacet(T^{-1}(q_j), T^{-1}(q_k))

if isBlocked(T^{-1}(q_j), F, p_i) then \rightarrow = \rightarrow \setminus (q_j, p_i, q_k)

end if

end for

if isTransient(q_j, p_i) then \rightarrow = \rightarrow \setminus (q_j, p_i, q_j)

end if

end for

return (S, S_0, \mathcal{A}, \rightarrow)
```

Note:

- T⁻¹(q): polytopes
- isBlocked(T⁻¹(q), F, p): check if the facet F is blocked in mode p
- isTransient(q, p): check if a cell q is transient in mode
 p
- Neighbors $(T^{-1}(q))$
- commonFacet($T^{-1}(q), T^{-1}(q')$)

Can be built upon:

 Reachability analysis for affine systems (e.g. Habets et al (2006)), multiaffine systems (e.g. Bleta & Habets (2006)), and polynomial systems (e.g. Ben Sassi and Girard (2012)).

Switching synthesis by model checking

- Given an **under-approximation** $\{\mathcal{T}_p\}$ and an LTL specification φ .
- Construct a product $TS = (Q \times \mathcal{P}, Q_0 \times \mathcal{P}_0, \rightarrow)$ by adding $(q, p) \rightarrow (q', p')$ if and only if $q \xrightarrow{p} q'$.
- Check if all executions of TS satisfy $\neg \varphi$.
- IF TS $\nvDash \neg \phi$, a counterexample is found, of the form

$$(q_0, p_0) \rightarrow (q_1, p_1) \rightarrow (q_2, p_2) \rightarrow (q_3, p_3) \rightarrow \cdots$$

- The counterexample gives a "correct" switching strategy for (1).
- If $TS \models \neg \phi$, inclusive.

Note:

- The strategy obtained is an open-loop strategy.
- Rely on under-approximations being deterministic.

 $\dot{\theta} = \omega$

 $\dot{\omega} = \eta_3(\omega)$

GEAR = 3

Example: synthesis by model checking

Switching synthesis by two-player game

- Given an **over-approximation** $\{\mathcal{T}_p\}$ and an LTL specification φ .
- A state of the game is $s=(e, q, p) \in \mathcal{E} \times Q \times \mathcal{P}$, where

• Both q and e are treated as adversary.

Slide courtesy of Jun Liu

Example: synthesis by game solving

Motivation

Goal:

 Optimal control for an autonomous system doing a complex task

Challenges:

- Reasoning about how system properties change over time
- Specifying properties like safety, response, priority, liveness, and persistence
- Optimizing the system trajectory to conserve fuel or minimize time

Example of a feasible but not necessarily "optimal":

Ufuk Topcu

Problem Description

Simple example:

Task: repeatedly visit PICKUP

Given:

- \bullet System model: transition system ${\cal T}$ with costs and weights
- Task specification: linear temporal logic (LTL) formula φ

Solution overview (for finite-memory strategies)

1. Construct the product automaton $\mathcal{P} = \mathcal{T} \times \mathcal{A}_{\varphi}$

Computation of an optimal, accepting cycle [for w(e) = 1 for each transition e]

 Can search in each strongly connected component G = (V,E) of the product automaton with at least one accepting cycle

- •For each accepting vertex (state) $s \in V$, define $F_k(v)$ as the minimum cost of length k from s to v
- $\cdot F_k(v)$ can be computed by dynamic programming:

$$F_k(v) = \min_{(u,v)\in E} F_{k-1}(u) + c(u,v)$$

- •Complexity: O(|V||E|).
- $\cdot F_k(s)$: Minimum cost of cycle of length k through the accepting state s
- •Complexity in general: $O(n_a(|V||E|+|V|^2\log|V|))$ with n_a accepting states

Example—autonomous driving

Task: repeatedly visit *a*, *b*, and *c* and avoid obstacles *x* **LTL spec:** $\varphi = \Box \diamondsuit a \land \Box \diamondsuit b \land \Box \diamondsuit c \land \Box \neg x$

Figure: Driving task, with optimal run (blue) and feasible run (red).

Cost: $J_{opt} = 49$ and $J_{feas} = 71$ (units) **CPU time:** $t_{opt} = 2.5$ and $t_{feas} = 0.68$ (sec)

Ufuk Topcu