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Outline: 
• Compositional synthesis of control protocols
• Synthesis of switching sequences
• Optimality in discrete synthesis
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Decompositions in the state space
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Decompositions 
induced by ...

receding horizon goal

distributed synthesis underlying network
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Goal: synthesize control protocols for PTZ to ensure 
that one high resolution image of each target is 

captured at least once

- static cameras for tracking targets
- pan-tilt-zoom (PTZ) for active recognition

Smart camera
networks {
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Synthesis of protocols for active surveillance 

System:
- region of view of PTZs
- governed by finite 
state automata

Environment specifications:
-At most N targets at a time.
- Every target remains at least T time 
steps and eventually leaves.

-Can only enter/exit through doors.
-Can only move to neighbors.

Additional requirement: 
- Zoom-in the corner 
cells infinitely often.
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Centralized vs. decentralized control architecture

tracking 
subsystem

controller 

PTZ-1

PTZ-2

tracking 
subsystem

controller-1 
& PTZ-1

controller-2 
& PTZ-2

How to design control 
protocols that can be

• synthesized
• implemented 

in a decentralized way?

What information exchange
& interface models are 
needed?
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Goal: Find control 
protocols for PTZ-1 & 
PTZ-2 so that          
                holds.�e � �s

Simple & not very useful composition:
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Compositional Synthesis

 There exist control protocols that realize                 & �e1 � �s1 �e2 � �s2

Any execution of the env’t, satisfying     , also satisfies�e �e1 � �e2

�s1 � �s2
�s Any execution of the system, satisfying               , also satisfies

No common controlled variables in       and        �s1 �s2

               is realized.         �e � �s
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 There exist control protocols that realize                 & �e1 � �s1 �e2 � �s2

Any execution of the env’t, satisfying     , also satisfies�e �e1 � �e2

�s1 � �s2
�s Any execution of the system, satisfying               , also satisfies

No common controlled variables in       and        �s1 �s2

(Refined) Compositional Synthesis

As before:

Refined interfaces:
 There exist control protocols that realize

&(��
2 ⇥ ⇥e1)� (⇥s1 ⇥ �1) (��

1 ⇥ ⇥e2)� (⇥s2 ⇥ �2)

               is realized.         �e � �s

For soundness and to avoid circularity: 
� (�i ⇥ ���

i) for i = 1, 2

OTWM@ICCPS11(s)
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Application to a (very simple) smart 
camera network

9

IsZoomed & StepsInZone

and
limit the number of unzoomed targets 

entering zone 2 from zone 1

�1 ��
1
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Case Study: Synthesis of Protocols for 
Electric Power Management
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Source: http://www.e-envi2009.org/presentations/S3/Derouineau.pdf

Multiple criticality levels:
• flight controllers
• active de-icing
• environmental control 

increasing
criticality

Environment variables: 
• wind gust (w)
• outside temperature (T)
Controlled variables: 
• altitude
• power supply to different 
components

For environment & control variables, 
use crude discretization over their 
respective ranges. For example, 

representing the range of 
T � {low, low-medium,medium-high,high}

[�22oF, 32oF ]

Dependent (state) variables:
• level of ice accumulation
• state-of-charge of the batteries 
• cabin pressure level

http://www.e-envi2009.org/presentations/S3/Derouineau.pdf
http://www.e-envi2009.org/presentations/S3/Derouineau.pdf


Ufuk Topcu

Modeling & The Dependent Variables

11

Use models based on finite 
transitions systems from a 
combination of empirical 
data and first principles. 

level airspeed reduction
power increase

to regain airspeed
climb-rate reduction

reduction in
control authority

trace < 10 knots < 10% < 10% no e�ect
light 10� 19 knots 10� 19% 10� 19% no e�ect

moderate 20� 39 knots 20� 39% ⇤ 20%
slow or overly

sensitive response
severe ⇤ 40 knots unable unable limited or no response

Table 1. E�ects of icing on airspeed, power increase to regain airspeed, climb-rate reduction, and control
authority.

Figure 4. Concentration of freezing nuclei versus temperature.32,33 Di�erent curves represent results from
various researchers.

pressurization. Based on the above discussion, we model the power requests from these three subsystems to
capture the following trends.

• The power request from the flight controller increases with increasing levels of wind gusts, pressure
altitude, and icing.

• The power request from the deicing subsystems increases with decreasing outside temperature and
pressure altitude.

• The power request from the environmental control subsystem (for the regulation of cabin pressurization)
increases with increasing pressure altitute and decreasing outside temperature.

B. Problem setup

Let H denote the set of admissible pressure altitudes of the aircraft and let Pf , Pd, and Pe denote sets of
admissible amount of power supplied to the flight actuators, deicing and environmental control operations,
respectively. We also consider an energy storage unit (a battery) on board with capacity B. Let 0 ⇥ b ⇥ B
be the amount of energy stored in the battery. Consider that the power generation is limited by P̄ .

At each time instance, the control protocol determines the pressure altitude h ⇧ H and assigns (allocates)
power pf ⇧ Pf , pd ⇧ Pd and pe ⇧ Pe to the three operations based on the availability of power and the
prioritization determined by the flight-criticality of the operations to ensure system correctness. We assume
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Figure 5. Finite state automata representing (left) the evolution of the amount of ice accumulation as a
function of pd and rd (which is dependent on T and h), and (right) the evolution of the cabin pressure as a
function of pe and re (which is also dependent on T and h). For each i � {0, . . . , 3}, label li (and gi, respectively)
in the left figure represents the condition that rd is i levels smaller (greater) than pd, e.g., label l1 indicates that
if pd is high, then rd is medium-high. Label Li (and Gi, respectively) represents the condition that rd is i or
more levels smaller (greater) than pd, e.g., label L1 indicates that if pd is high, then rd is either medium-high,
medium-low or low. In the right figure, the interpretation of the transition labels li, Li, gi and Gi where
i � {0, 1, 2} for the pairs of re and pe is similar to their interpretation for the pairs of rd and pd in the left figure.

• The wind gust w cannot be severe for more than Nw consecutive time steps. Let nw be the number
of consecutive time steps for which the wind gust is severe. Then, this assumption can be written as
�(nw � Nw =⇥ �(w ⌅= severe)).

• No abrupt change in temperature, i.e., the temperature can only change one level between any two
consecutive time instances. For example, if the current temperature is medium-low, then in the next
time instance, the temperature cannot be high: �(T = medium-low =⇥ �T ⌅= high).

More sophisticated assumptions and requirements, such as conditions on the speed that imply certain
timing constraints, can be imposed using LTL. These extensions along with an investigation of the suitability
of other formal specification languages for the analysis and design of control protocols for VMS are subject
to future work.

V. Synthesis of Correct-by-Construction Vehicle Management Systems

A. Problem statement

Given the assumptions on the environment variables and the system, we are interested in specifications of
the form

�e =⇥ �s, (3)
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model of icing level model of cabin pressure level

Transitions model the 
gap between requested 
and supplied power for 
each functionality.

b[t + 1] = min{B, b[t] + P̄ � pf [t]� pd[t]� pe[t]}

State-of-charge evolves with:

storage
capacity

generation
capacity

power supply to each 
functionality



�(pf � rf )
�(pf + pd + pe � P̄ + b)

�(pf = high ⇥ pd = high� pe = low)

rf � rf (h, a, w)
rd � rd(T, h)
re � re(T, h)

Ufuk Topcu

Sample Specifications
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Resource constraint:

Prioritization: 

Safety:

Performance:

Assumptions:

Ice accumulation cannot be severe:

� (h = low ⇥ (�h ⇤= medium-high ⌅ �h ⇤= high))

�(a = severe ⇥ �h = h)
�(a �= severe)

Altitude cannot change too much between to consecutive instants, e.g.,

Ice accumulation limits allowable altitude change, e.g.,

� � (h = high)
Cabin pressure does not exceed the level at 8000 ft.

Always go back to the desirable altitude: 

�(nw ⇥ Nw ⇤ �(w ⌅= severe)

�(T = medium-low ⇥ �T ⇤= high)

Wind gusts cannot be severe too many consecutive steps. 

No abrupt change in outside temperature, e.g., 

power requests from flight controller (f), 
deicing (d), and pressure control (e):

Notation may not be fully explained. Ask, if confused!!!



Nw = 2, B = 3
P̄ = 5
rf , rd � {0, 1, 2, 3}
re � {0, 1, 2}

Ufuk Topcu 13

Dynamic power allocation allows reductions in peak power 
(i.e., generator weight) requirements.

environment variables & energy storage

power requests & supplies 

dependent variables

(�environment

��initial

��criticality)

(�performance

��safety)

�

Formulate as a temporal 
logic, reactive planning 

problem
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Conventional vs. Boeing 787 Electric Power Network Structure
pre-787 787: distributed
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Distributed resource allocation

centralized

4

3

6

5

6

43

feedback
refinement

serial
refinement

no refinement

no 
dynamic 
allocation

Controlled variables:
•Power supplies to each function
•Altitude

Environment variables:
•Wind gusts
•Outside temperature
•Generator health status

Dependent variables:
•Level of ice accumulation
•State-of-charge of the battery
•Cabin pressure & temperature

generator 2 
peak power

generator 1 peak power

p21

peak power p1

peak power p2

�12 = ⇤ ⇧ (h = 1)

�21 = ⇤[(¬H1 � (p21 = 1)) ⇥ (H1 � (p21 = 0))]

G1 G2

Interface refinements
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Compositional Synthesis of Distributed Protocols

^i'ei ! 'e ! 's ! ^i'si}
“weaker” 

environment
assumptions

}
“stronger” 

system
requirements

Extra (mild) technical conditions: No common controlled variables & loops are well-posed.

Theorem:                  is realizable if every                      is realizable.'e ! 's 'ei ! 'si

S1

S2

S3
K1

K2

K3

'e1 ! 's1 'e3 ! 's3

'e2 ! 's2

Contracts formalize the coupling and information exchange between subsystems.

controlled subsys
local controller
physical coupling
information flow
exogenous signal

Trade-offs:

conservatism expressiveness 
of contractsvs. need for coordination

& computational costvs.



Motivation -- Switching control protocols
How to “automatically” design switching control 
protocols (high-level discrete decision making) 
that:

• regulate low-level, continuous dynamics;

• realize high-level specifications; and

• respond to external events in real-time,

with “correctness guarantee”.

.

.

.

P

σ=1

σ=N
KN(P)

K1(P)

Why switching controllers?
• Situations where continuous, smooth feedback controllers are not 

sufficient/available.

• No need to redesign underlying dynamics/controllers.

• Handle mixture of discrete and continuous decision making.

Slide courtesy of Jun Liu



Schematic description

(LTL in this case). The use of LTL enables to handle a wide
variety of specifications beyond mere safety and reachability,
as well as to account for potentially adversarial, a priori
unknown environments in which the system operates (and
therefore its correctness needs to be interpreted with respect
to the allowable environment behaviors). Furthermore, the
methodology improves the flexibility of switching protocol
synthesis by merging ideas from multiple complementing
directions and offering options that trade computational com-
plexity with conservatism (and expressivity). For example,
the resulting problem formulation with under-approximations
of continuous evolution is amenable to highly-optimized
software for model checking [15], [16], yet at the expense
of increased conservatism in modeling. On the other hand,
over-approximations are potentially easier to establish, yet
the resulting formulation is a two-player temporal logic
game (with publicly available solvers [17], [6] that are less
evolved compared to the currently available model checkers).
Another trade-off is in the family of two-player games con-
sidered here. Such games with complete LTL specifications is
known to have prohibitively high computational complexity
[18]. Therefore, we focus on an expressive fragment of LTL,
namely Generalized Reactivity (1), with favorable computa-
tional complexity [6].

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Continuous-time switched systems

Consider a family of nonlinear systems,

ẋ = fp(x, d), p 2 P, (1)

where x(t) 2 X ✓ Rn is the state at time t and d(t) 2
D ✓ Rd is the exogenous disturbance, P is a finite index
set, and {fp : p 2 P} is a family of nonlinear vector fields
satisfying the usual conditions to guarantee the existence and
uniqueness of solutions for each of the subsystems in (1). A
switched system generated by the family (1) can be written
as

ẋ = f�(x, d), (2)

where � is a switching signal taking values in P . The
value of � at a given time t may depend on t or x(t),
or both, or may be generated by using more sophisticated
design techniques [2]. We emphasize that, although the above
formulation does not explicitly include a control input in
its formulation, it can capture different situations where
control inputs can be included, e.g., within each mode p, we
may either assign a constant valued control input up, which
can further belong to a finite number of quantized levels
n

u

1
p, u

2
p, · · · , u

Lp
p

o

✓ Rm, or choose a feedback controller
u(t) = Kp(x(t)). Depending on different applications,
each mode in (1) may represent, for example, a control
component [14], [19], a motion primitive (which belongs
to, e.g., a finite library of flight maneuvers [3], or a set of
pre-designed behaviors [20]), and, in general, an operating
mode of a multi-modal dynamical system [8], [9]. To achieve
complex tasks, it is often necessary to compose these basic

components. The composition can be enforced at a high-
level control layer by implementing a switching protocol
for mission-level specification. Designing correct switching
protocols, however, can be a challenging issue [8], [11], [12],
[14].

The goal of this paper is to propose methods for auto-
matically synthesizing � such that solutions of the result-
ing switched system (2) satisfy, by construction, a given
linear temporal logic (LTL) specification, for all possible
exogenous disturbances. LTL is a rich specification language
that can express many desired properties, including safety,
reachability, invariance, response, and/or a combination of
these [21] (see also [22] for examples).

B. Problem description and solution strategy

Before formally stating the problem, we present a
schematic description of the problem and its solution ap-
proach. The problem can be described as: given a family of
system models in (1) and its specification expressed in LTL,
synthesize a switching control protocol that, by construction,
guarantees that the system satisfies its specification for all
allowable exogenous disturbance. Within the same formula-
tion, we also aim to incorporate environmental adversaries,
which do not directly impact the dynamics of the system but
constrain its behavior through the specification, and synthe-
size effective switching controllers for all valid environment
behaviors. The solution of this problem enables us, e.g., to
compose available controllers, which are predesigned to meet
certain specifications, to achieve a high-level specification, as
illustrated in Figure 1.

.

.

.

P

σ=1

σ=N KN(P)

K1(P)

se

Fig. 1: P represents a plant subject to exogenous distur-
bances, {Ki(P ) : i = 1, · · · , N} is a family of controllers,
s represents the overall system behavior, e represents en-
vironmental adversaries, which do not directly impact the
dynamics of the system but constrain its behavior through
the specification. The objective is to design � such that the
overall system satisfies a high-level specification ' expressed
in LTL.

Based on the continuous-time nonlinear system model (1),
our hierarchical approach to the switching synthesis problem
consists of two steps:
(i) We first establish finite-state approximations of the family
of systems (1), which are a family of finite transition systems
that approximate the dynamics in each mode.
(ii) We then synthesize a switching protocol based on high-
level, discrete abstraction that, when continuously imple-

P plant

Ki controllers

σ switching protocol

e environment signal

s system behavior

φ system specification

φe environment assumption

φs system guarantee

φ ≜ (φe → φs)

Design σ such that P satisfies φ

Assumption Guarantee

Slide courtesy of Jun Liu



System model

Continuous-time switched systems:

DRAFT 4

a two-player temporal logic game (with publicly available solvers [18], [7] that are less

evolved compared to the currently available model checkers). Another trade-o↵ is in

the family of two-player games considered here. Such games with complete LTL speci-

fications is known to have prohibitively high computational complexity [19]. Therefore,

we focus on an expressive fragment of LTL, namely Generalized Reactivity (1), with

favorable computational complexity [7].

The remainder of the paper is organized as follows. In the next section, we introduce

finite-state approximations for nonlinear systems subject to exogenous disturbances, and

formulate the switching synthesis problem under consideration. In Section III, we solve

the switching protocol synthesis problem for under- and over-approximations via model

checking and a two-player game approach, respectively. In Section IV, we present three

illustrative examples to demonstrate our results. A brief discussion on how to obtain

under- and over-approximations is included in Appendix A.

II. Preliminaries and Problem Formulation

A. Continuous-time switched systems

Consider a family of nonlinear systems,

ẋ = fp(x, d), p 2 P, (1)

where x(t) 2 X ✓ Rn is the state at time t and d(t) 2 D ✓ Rd is the exogenous disturbance,

P is a finite index set, and
n

fp : p 2 P
o

is a family of nonlinear vector fields satisfying

the usual conditions to guarantee the existence and uniqueness of solutions for each of

the subsystems in (1). A switched system generated by the family (1) can be written as

ẋ = f�(x, d), (2)

where � is a switching signal taking values in P. The value of � at a given time t

may depend on t or x(t), or both, or may be generated by using more sophisticated

design techniques [2]. We emphasize that, although the above formulation does not

explicitly include a control input in its formulation, it can capture di↵erent situations

where control inputs can be included, e.g., within each mode p, we may either assign

a constant valued control input up, which can further belong to a finite number of

September 16, 2011 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: September 16, 2011 22:13:00 PST

(1)

a finite collection of modes

{f p} nonlinear vector fields

x∈X system state

d∈D exogenous disturbance

DRAFT 9

a discrete transition q
p! q0 is included in Tp only if the continuous flow can strictly

implement the transition. In other words, an under-approximation includes only transi-

tions that can be implemented by the continuous dynamics and an over-approximation

includes all possible transitions.

In both approximations, time is abstracted out in the sense that we do not care how

much time it takes to reach one discrete state from another. As the focus of this paper is

on the automatic synthesis of switching protocols, we shall assume that we are given or

we can construct a finite abstraction of the subsystems in (1), which is either an under-

approximation or an over-approximation by Definitions2 and 3. A brief discussion on

how to obtain such approximations is given in Appendix A (a detailed study is beyond

the scope of this paper and subject to current research).

For the above finite approximations to be consistent with continuous dynamics, they

should preserve propositions of interest in the sense that for all x, y 2 Rn and p 2 P,

T(x) = T(y)) h(x, p) = h(y, p), (4)

where h is the observation map defined earlier. In other words, if two continuous states

belong to the same subset of the continuous state space corresponding to the same

discrete state in Q, they should map to the same propositions under h.

The following definitions will be useful when we introduce the semantics of LTL

formulas in the next subsection. They are also used later to formally reason about the

correctness of the continuous implementations of a synthesized switching protocol.

Definition 4. Given a switching signal � : R+ ! P, trajectories of the continuous-time

switched system (2) are piecewise di↵erentiable functions from R+ to Rn that satisfy

ẋ(t) = f�(t)(x(t), d(t)), t � t0.

Without ambiguity, we can write trajectories as pairs (x(t), �(t)) or simply (x, �).

Definition 5. Given a sequence of modes p0p1p2 · · · , pi 2 P, i � 0, a switching execution of

the family of transition systems in (3) is a sequence of pairs (q, p) = (q0, p0)(q1, p1)(q2, p2) · · · ,
where q0 2 Q0, and, for all i � 0, qi 2 Q and qi

pi! qi+1.

September 16, 2011 DRAFT

Limited circulation. For review only
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Slide courtesy of Jun Liu



System specification

• Linear temporal logic (LTL) extends propositional logic 
with temporal operators: 

∧(and), ∨ (or) 
¬ (not), → (imply)

◇(eventually), □(always), 
◦(next), U (until) ...

• Allows to reason about infinite sequences of states

- state: an evaluation of all variables (environment+system)

• LTL formulas can describe sets of allowable behavior 

- safety specs: what actions are allowed

- fairness: when an action can be taken (e.g., infinitely often)

• No strict notion of time. Only ordering of events.

• LTL-x: we consider LTL without the ◦(next) operator to specify system 
properties for continuous-time systems.

Slide courtesy of Jun Liu



Overview of solution strategy

• Given

• Compute finite-state, proposition 
preserving approximations.

• Solve a discrete synthesis problem and 
obtain a discrete switching strategy σ.

• Implement the switching strategy σ 
continuously to ensure that all trajectories 
of                     satisfies φ.

and   φ ≜ (φe → φs)

DRAFT 4
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design techniques [2]. We emphasize that, although the above formulation does not

explicitly include a control input in its formulation, it can capture di↵erent situations

where control inputs can be included, e.g., within each mode p, we may either assign

a constant valued control input up, which can further belong to a finite number of
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formulate the switching synthesis problem under consideration. In Section III, we solve

the switching protocol synthesis problem for under- and over-approximations via model

checking and a two-player game approach, respectively. In Section IV, we present three

illustrative examples to demonstrate our results. A brief discussion on how to obtain

under- and over-approximations is included in Appendix A.
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may depend on t or x(t), or both, or may be generated by using more sophisticated
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adversarial environment variables that do not a↵ect the continuous-level dynamics of

the system but rather constrain its behavior through the high-level specification.

C. Finite-state approximations

To formally state the synthesis problem, we define two types of finite-state abstrac-

tions of the continuous evolution in (1) and introduce the specification language LTL.

LTL formulas are built upon a finite number of atomic propositions. An atomic proposition

is a statement on system variables of interest that has a unique truth value (True

or False) for a given value (called state) of each system variable. To formulate the

switching synthesis problem, we are at least interested in two types of variables: the

plant variable x and the switching mode variable p. Let ⇧ := {⇡1, ⇡2, · · · ,⇡n} be a set

of atomic propositions. For example, each proposition ⇡i 2 ⇧ can represent a domain

in Rn and a set of modes in P of interest. Formally, for system (2), we associate an

observation map

h : Rn ⇥P! 2⇧,

which maps the continuous states and the discrete modes to a finite set of propositions.

Without loss of generality, we consider h to be defined on the whole state space instead

of some bounded invariant set. We also allow overlapping set of propositions since h

is set-valued instead of single-valued.

Abstractions for each of the subsystems in (1) can be considered by defining an

abstraction map T : Rn ! Q, which maps each state x 2 Rn into a finite set Q :=
�

qi : i = 1, · · · ,M 

. The map T essentially defines a partition of the state space Rn by
n

T�1(q) : q 2 Q
o

. We shall refer to elements in Q as discrete states of an abstraction.

Finite-state approximations are defined in the following.

Definition 1. A finite transition system is a tuple T := (Q,Q0,!), where Q is a finite set

of states, Q0 ✓ Q is a set of initial states, and !✓ Q ⇥ Q is a transition relation. Given

states q, q0 2 Q, we write q! q0 if there is a transition from q to q0 in T .

Consider a family of finite transition systems
⇢

Tp := (Q,Q0,
p!) : p 2 P

�

. (3)
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Definition 2. The family of finite transition systems in (3) is said to be an under-

approximation of (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, if there is a transition q
p! q0, then for

all x0 2 T�1(q), there exists some ⌧ > 0 such that, for all exogenous disturbances

d : [0, ⌧]! D ✓ Rd, trajectories ⇠ of pth subsystem of (1) starting from x0 satisfy

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, then, for all x0 2 T�1(q) and all

exogenous disturbances d : [0,1)! D ✓ Rd, trajectories ⇠ of the pth subsystem of

(1) starting from x0 satisfy

⇠(t) 2 T�1(q), 8t 2 [0,1),

i.e., T�1(q) is a positively invariant set for the pth subsystem under all exogenous

disturbances.

Definition 3. The family of finite transition systems in (3) is said to be an over-approximation

for (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, there is a transition q
p! q0, if there exists

x0 2 T�1(q), ⌧ > 0, and some exogenous disturbance d : [0, ⌧] ! D ✓ Rd such that

the corresponding trajectory ⇠ of the pth subsystem of (1) starting from x0, i.e.,

⇠ : [0, ⌧]! Rn with

⇠(0) = x0, ⇠̇(t) = fp(⇠(t), d(t)), 8t 2 (0, ⌧),

satisfies

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, if there exists x0 2 T�1(q) and some

exogenous disturbance d : [0,1)! D ✓ Rd such that the complete trajectory ⇠ of

the pth subsystem of (1) on [0,1) starting from x0 is contained in T�1(q).

Intuitively, in an over-approximation, a discrete transition q
p! q0 is included in Tp as

long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,

September 16, 2011 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: September 16, 2011 22:13:00 PST

DRAFT 8

Definition 2. The family of finite transition systems in (3) is said to be an under-
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for (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, there is a transition q
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⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, if there exists x0 2 T�1(q) and some

exogenous disturbance d : [0,1)! D ✓ Rd such that the complete trajectory ⇠ of

the pth subsystem of (1) on [0,1) starting from x0 is contained in T�1(q).

Intuitively, in an over-approximation, a discrete transition q
p! q0 is included in Tp as

long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,
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a two-player temporal logic game (with publicly available solvers [18], [7] that are less

evolved compared to the currently available model checkers). Another trade-o↵ is in

the family of two-player games considered here. Such games with complete LTL speci-

fications is known to have prohibitively high computational complexity [19]. Therefore,

we focus on an expressive fragment of LTL, namely Generalized Reactivity (1), with

favorable computational complexity [7].

The remainder of the paper is organized as follows. In the next section, we introduce

finite-state approximations for nonlinear systems subject to exogenous disturbances, and

formulate the switching synthesis problem under consideration. In Section III, we solve

the switching protocol synthesis problem for under- and over-approximations via model

checking and a two-player game approach, respectively. In Section IV, we present three

illustrative examples to demonstrate our results. A brief discussion on how to obtain

under- and over-approximations is included in Appendix A.

II. Preliminaries and Problem Formulation

A. Continuous-time switched systems

Consider a family of nonlinear systems,

ẋ = fp(x, d), p 2 P, (1)

where x(t) 2 X ✓ Rn is the state at time t and d(t) 2 D ✓ Rd is the exogenous disturbance,

P is a finite index set, and
n

fp : p 2 P
o

is a family of nonlinear vector fields satisfying

the usual conditions to guarantee the existence and uniqueness of solutions for each of

the subsystems in (1). A switched system generated by the family (1) can be written as

ẋ = f�(x, d), (2)

where � is a switching signal taking values in P. The value of � at a given time t

may depend on t or x(t), or both, or may be generated by using more sophisticated

design techniques [2]. We emphasize that, although the above formulation does not

explicitly include a control input in its formulation, it can capture di↵erent situations

where control inputs can be included, e.g., within each mode p, we may either assign

a constant valued control input up, which can further belong to a finite number of
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Definition 2. The family of finite transition systems in (3) is said to be an under-

approximation of (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, if there is a transition q
p! q0, then for

all x0 2 T�1(q), there exists some ⌧ > 0 such that, for all exogenous disturbances

d : [0, ⌧]! D ✓ Rd, trajectories ⇠ of pth subsystem of (1) starting from x0 satisfy

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, then, for all x0 2 T�1(q) and all

exogenous disturbances d : [0,1)! D ✓ Rd, trajectories ⇠ of the pth subsystem of

(1) starting from x0 satisfy

⇠(t) 2 T�1(q), 8t 2 [0,1),

i.e., T�1(q) is a positively invariant set for the pth subsystem under all exogenous

disturbances.

Definition 3. The family of finite transition systems in (3) is said to be an over-approximation

for (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, there is a transition q
p! q0, if there exists

x0 2 T�1(q), ⌧ > 0, and some exogenous disturbance d : [0, ⌧] ! D ✓ Rd such that

the corresponding trajectory ⇠ of the pth subsystem of (1) starting from x0, i.e.,

⇠ : [0, ⌧]! Rn with

⇠(0) = x0, ⇠̇(t) = fp(⇠(t), d(t)), 8t 2 (0, ⌧),

satisfies

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, if there exists x0 2 T�1(q) and some

exogenous disturbance d : [0,1)! D ✓ Rd such that the complete trajectory ⇠ of

the pth subsystem of (1) on [0,1) starting from x0 is contained in T�1(q).

Intuitively, in an over-approximation, a discrete transition q
p! q0 is included in Tp as

long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,
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a two-player temporal logic game (with publicly available solvers [18], [7] that are less

evolved compared to the currently available model checkers). Another trade-o↵ is in

the family of two-player games considered here. Such games with complete LTL speci-

fications is known to have prohibitively high computational complexity [19]. Therefore,

we focus on an expressive fragment of LTL, namely Generalized Reactivity (1), with

favorable computational complexity [7].

The remainder of the paper is organized as follows. In the next section, we introduce

finite-state approximations for nonlinear systems subject to exogenous disturbances, and

formulate the switching synthesis problem under consideration. In Section III, we solve

the switching protocol synthesis problem for under- and over-approximations via model

checking and a two-player game approach, respectively. In Section IV, we present three

illustrative examples to demonstrate our results. A brief discussion on how to obtain

under- and over-approximations is included in Appendix A.

II. Preliminaries and Problem Formulation

A. Continuous-time switched systems

Consider a family of nonlinear systems,

ẋ = fp(x, d), p 2 P, (1)

where x(t) 2 X ✓ Rn is the state at time t and d(t) 2 D ✓ Rd is the exogenous disturbance,

P is a finite index set, and
n

fp : p 2 P
o

is a family of nonlinear vector fields satisfying

the usual conditions to guarantee the existence and uniqueness of solutions for each of

the subsystems in (1). A switched system generated by the family (1) can be written as

ẋ = f�(x, d), (2)

where � is a switching signal taking values in P. The value of � at a given time t

may depend on t or x(t), or both, or may be generated by using more sophisticated

design techniques [2]. We emphasize that, although the above formulation does not

explicitly include a control input in its formulation, it can capture di↵erent situations

where control inputs can be included, e.g., within each mode p, we may either assign

a constant valued control input up, which can further belong to a finite number of
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a two-player temporal logic game (with publicly available solvers [18], [7] that are less
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favorable computational complexity [7].
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adversarial environment variables that do not a↵ect the continuous-level dynamics of

the system but rather constrain its behavior through the high-level specification.

C. Finite-state approximations

To formally state the synthesis problem, we define two types of finite-state abstrac-

tions of the continuous evolution in (1) and introduce the specification language LTL.

LTL formulas are built upon a finite number of atomic propositions. An atomic proposition

is a statement on system variables of interest that has a unique truth value (True

or False) for a given value (called state) of each system variable. To formulate the

switching synthesis problem, we are at least interested in two types of variables: the

plant variable x and the switching mode variable p. Let ⇧ := {⇡1, ⇡2, · · · ,⇡n} be a set

of atomic propositions. For example, each proposition ⇡i 2 ⇧ can represent a domain

in Rn and a set of modes in P of interest. Formally, for system (2), we associate an

observation map

h : Rn ⇥P! 2⇧,

which maps the continuous states and the discrete modes to a finite set of propositions.

Without loss of generality, we consider h to be defined on the whole state space instead

of some bounded invariant set. We also allow overlapping set of propositions since h

is set-valued instead of single-valued.

Abstractions for each of the subsystems in (1) can be considered by defining an

abstraction map T : Rn ! Q, which maps each state x 2 Rn into a finite set Q :=
�

qi : i = 1, · · · ,M 

. The map T essentially defines a partition of the state space Rn by
n

T�1(q) : q 2 Q
o

. We shall refer to elements in Q as discrete states of an abstraction.

Finite-state approximations are defined in the following.

Definition 1. A finite transition system is a tuple T := (Q,Q0,!), where Q is a finite set

of states, Q0 ✓ Q is a set of initial states, and !✓ Q ⇥ Q is a transition relation. Given

states q, q0 2 Q, we write q! q0 if there is a transition from q to q0 in T .

Consider a family of finite transition systems
⇢

Tp := (Q,Q0,
p!) : p 2 P

�

. (3)
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Definition 2. The family of finite transition systems in (3) is said to be an under-

approximation of (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, if there is a transition q
p! q0, then for

all x0 2 T�1(q), there exists some ⌧ > 0 such that, for all exogenous disturbances

d : [0, ⌧]! D ✓ Rd, trajectories ⇠ of pth subsystem of (1) starting from x0 satisfy

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, then, for all x0 2 T�1(q) and all

exogenous disturbances d : [0,1)! D ✓ Rd, trajectories ⇠ of the pth subsystem of

(1) starting from x0 satisfy

⇠(t) 2 T�1(q), 8t 2 [0,1),

i.e., T�1(q) is a positively invariant set for the pth subsystem under all exogenous

disturbances.

Definition 3. The family of finite transition systems in (3) is said to be an over-approximation

for (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, there is a transition q
p! q0, if there exists

x0 2 T�1(q), ⌧ > 0, and some exogenous disturbance d : [0, ⌧] ! D ✓ Rd such that

the corresponding trajectory ⇠ of the pth subsystem of (1) starting from x0, i.e.,

⇠ : [0, ⌧]! Rn with

⇠(0) = x0, ⇠̇(t) = fp(⇠(t), d(t)), 8t 2 (0, ⌧),

satisfies

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, if there exists x0 2 T�1(q) and some

exogenous disturbance d : [0,1)! D ✓ Rd such that the complete trajectory ⇠ of

the pth subsystem of (1) on [0,1) starting from x0 is contained in T�1(q).

Intuitively, in an over-approximation, a discrete transition q
p! q0 is included in Tp as

long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,
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exogenous disturbance d : [0,1)! D ✓ Rd such that the complete trajectory ⇠ of
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Intuitively, in an over-approximation, a discrete transition q
p! q0 is included in Tp as

long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,
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a two-player temporal logic game (with publicly available solvers [18], [7] that are less

evolved compared to the currently available model checkers). Another trade-o↵ is in

the family of two-player games considered here. Such games with complete LTL speci-

fications is known to have prohibitively high computational complexity [19]. Therefore,

we focus on an expressive fragment of LTL, namely Generalized Reactivity (1), with

favorable computational complexity [7].

The remainder of the paper is organized as follows. In the next section, we introduce

finite-state approximations for nonlinear systems subject to exogenous disturbances, and

formulate the switching synthesis problem under consideration. In Section III, we solve

the switching protocol synthesis problem for under- and over-approximations via model

checking and a two-player game approach, respectively. In Section IV, we present three

illustrative examples to demonstrate our results. A brief discussion on how to obtain

under- and over-approximations is included in Appendix A.

II. Preliminaries and Problem Formulation

A. Continuous-time switched systems

Consider a family of nonlinear systems,

ẋ = fp(x, d), p 2 P, (1)

where x(t) 2 X ✓ Rn is the state at time t and d(t) 2 D ✓ Rd is the exogenous disturbance,

P is a finite index set, and
n

fp : p 2 P
o

is a family of nonlinear vector fields satisfying

the usual conditions to guarantee the existence and uniqueness of solutions for each of

the subsystems in (1). A switched system generated by the family (1) can be written as

ẋ = f�(x, d), (2)

where � is a switching signal taking values in P. The value of � at a given time t

may depend on t or x(t), or both, or may be generated by using more sophisticated

design techniques [2]. We emphasize that, although the above formulation does not

explicitly include a control input in its formulation, it can capture di↵erent situations

where control inputs can be included, e.g., within each mode p, we may either assign

a constant valued control input up, which can further belong to a finite number of

September 16, 2011 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: September 16, 2011 22:13:00 PST

DRAFT 8

Definition 2. The family of finite transition systems in (3) is said to be an under-

approximation of (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, if there is a transition q
p! q0, then for

all x0 2 T�1(q), there exists some ⌧ > 0 such that, for all exogenous disturbances

d : [0, ⌧]! D ✓ Rd, trajectories ⇠ of pth subsystem of (1) starting from x0 satisfy

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, then, for all x0 2 T�1(q) and all

exogenous disturbances d : [0,1)! D ✓ Rd, trajectories ⇠ of the pth subsystem of

(1) starting from x0 satisfy

⇠(t) 2 T�1(q), 8t 2 [0,1),

i.e., T�1(q) is a positively invariant set for the pth subsystem under all exogenous

disturbances.

Definition 3. The family of finite transition systems in (3) is said to be an over-approximation

for (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, there is a transition q
p! q0, if there exists

x0 2 T�1(q), ⌧ > 0, and some exogenous disturbance d : [0, ⌧] ! D ✓ Rd such that

the corresponding trajectory ⇠ of the pth subsystem of (1) starting from x0, i.e.,

⇠ : [0, ⌧]! Rn with

⇠(0) = x0, ⇠̇(t) = fp(⇠(t), d(t)), 8t 2 (0, ⌧),

satisfies

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, if there exists x0 2 T�1(q) and some

exogenous disturbance d : [0,1)! D ✓ Rd such that the complete trajectory ⇠ of

the pth subsystem of (1) on [0,1) starting from x0 is contained in T�1(q).

Intuitively, in an over-approximation, a discrete transition q
p! q0 is included in Tp as

long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,
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a two-player temporal logic game (with publicly available solvers [18], [7] that are less
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the subsystems in (1). A switched system generated by the family (1) can be written as

ẋ = f�(x, d), (2)

where � is a switching signal taking values in P. The value of � at a given time t

may depend on t or x(t), or both, or may be generated by using more sophisticated

design techniques [2]. We emphasize that, although the above formulation does not

explicitly include a control input in its formulation, it can capture di↵erent situations

where control inputs can be included, e.g., within each mode p, we may either assign

a constant valued control input up, which can further belong to a finite number of
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• Every  trajectory of                     is represented by an execution of Tp

• Tp can be a nondeterministic TS.
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Consider an abstraction map T: X →Q, and a family of finite transition 
systems 

Over-approximation:

• Given q, q’ ∈ Q with q≠q’ , we have             , if there exists 

x0 ∈T-1(q), finite τ>0, and some trajectory of                     

starting from x0  satisfy

•  Write           , if T-1(q) contains a complete trajectory of

q1

q0

q3

q2

q0

p qi

(i =1, 2, 3)

q1

q0

q3

q2

q0

p qi

(i =1, 2, 3)
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How to compute these approximations? 
Abstraction Algorithm 1 (over-approximation)

Can be built upon:

• Reachability analysis for affine systems (e.g. Habets et al (2006)), multi-
affine systems (e.g. Bleta & Habets (2006)), and polynomial systems 
(e.g. Ben Sassi and Girard (2012)). 

• For any q 2 Q, there is a self-transition q

p! q, if q is not transient on p.

Next, we provide an abstract algorithm to compute abstractions. We focus on a particular case where T

�1(q)
are convex polytopes for all q. (NOTE: I wrote this because it is not clear to me how to define neighbor and
common facet otherwise. Even in this case how to handle the boundaries is tricky.)

Algorithm 1 Abstraction Algorithm

Initialize S = Q, S0 = Q0,A = P and!= Q ⇥P ⇥Q
for i = 1 : |P| do

for j = 1 : |Q| do
for k = 1 : Neighbors(T�1(q

j

)) do
F = commonFacet(T�1(q

j

),T�1(q
k

))
if isBlocked(T�1(q

j

),F, p
i

) then!=! \(q
j

, p
i

, q
k

)
end if

end for
if isTransient(q

j

, p
i

) then!=! \(q
j

, p
i

, q
j

)
end if

end for
end for
return (S,S0,A,!)

1.1 Certificates for Transience

Proposition 2. Assume T

�1(q) is bounded. A discrete state q is transient on p, if there exists a C1 function
B : Rn ! R such that

Ḃ(x) =
@B(x)
@x

f

p

(x)  �", 8x 2 T

�1(q) (5)

for some " > 0.

Proof. Assume there exists a C1 function B : Rn ! R satisfying (6), and, by contradiction, assume there exists
an x0 2 T

�1(q) such that the complete trajectory ⇠ of the p

th subsystem of (1) on [0,1) starting from x0 is
contained in T

�1(q). Since ⇠ is contained in T

�1(q), we have inf
t2[0,1) B(⇠(t)) � min

x2cl(T�1(q)) B(x) ⌘ c1 > �1
(existence of c1 follows from compactness of cl(T�1(q)) together with continuity of B). However, since B is
strictly decreasing over the trajectories in T

�1(q), we have lim
t!1 B(⇠(t)) = �1, which, together with the fact that

lim
t!1 B(⇠(t)) � inf

t2[0,1) B(⇠(t)), leads to a contradiction. ⇤

Moreover, if c2 ⌘ max
x2cl(T�1(q)) B(x), then, t

esc

(q, p)  (c2�c1)
" .

NOTE: converse result, Prajna thesis, proposition 5.5?

Proposition 3. Assume T

�1(q) is bounded. A discrete state q is transient on a family of modes P
s

✓ P, if there
exists a C1 function B : Rn ! R such that

Ḃ(x) =
@B(x)
@x

f

p

(x)  �", 8x 2 T

�1(q), 8p 2 P
s

(6)

for some " > 0.

The proof is similar to that of Proposition 2. Similarly, we have t

esc

(q,P
s

)  (c2�c1)
" .

Remark 1. Although in general finding a B(x) satisfying the conditions of Proposition 2 or Proposition 3 is not
easy, when f

p

’s are polynomial and T

�1(q)’s are semialgebraic 8p and 8q, it is possible to use sum of squares
based convex optimization to search for a B(x) in a principled and e�cient way.

Note: 
- T-1(q): polytopes
- isBlocked(T-1(q), F, p): check 

if the facet F is blocked in 
mode p

- isTransient(q, p): check if a 
cell q is transient in mode 
p
- Neighbors(T-1(q))
- commonFacet(T-1(q), T-1(q’))

Slide courtesy of Jun Liu



Switching synthesis by model checking
• Given an under-approximation {Tp} and an LTL specification φ.

• Construct a product TS =                            by adding (q, p)→ (q’, p’) if 
and only if            .

• Check if all executions of TS satisfy ¬φ. 

• IF TS ⊭ ¬φ, a counterexample is found, of the form

• The counterexample gives a “correct” switching strategy for (1). 

• If TS ⊨ ¬φ, inclusive. 

DRAFT 15

write (qi, pi) ! (qj, pj), if qi
pi! qj, i.e., there exists a transition from qi to qj in the mode

pi.

We can solve a switching synthesis problem for a specification given by a temporal

logic formula ' in the following procedure:

1) Negate the formula ' to get ¬'.

2) Given the transition system (Q⇥P,Q0⇥P0,!) and the LTL formula ¬', determine

if all executions of the transition system satisfy ¬'.

The second step above is a model checking problem and can be solved by o↵-the-shelf

software, e.g., the SPIN model checker [17] and the NuSMV symbolic model checker

[16], with computational complexity that is linear in the size of the state space [6].

Solving this problem, there are two possible outcomes: (i) the model checker verifies

that ¬' is true for the transition system T ; (ii) the model checker finds that ¬' is not

true and provides a counterexample.

We are particularly interested in case (ii), since it provides a switching strategy that

realizes ' and therefore solves our switching synthesis problem. Actually, a counterex-

ample given by the model checker provides either a finite or infinite path of the form

(q0, p0)! (q1, p1)! (q2, p2)! (q3, p3)! · · · (5)

that violates the formula ¬', or in other words, satisfies '. A switching strategy can be

extracted from a counterexample found by model checking and given in the form (5).

Switching Strategy: Given a counterexample in the form (5),

(i) if the path in (5) is infinite, we apply the switching sequence p0p1p2p3 · · · to ensure

that the execution

(q, p) = (q0, p0)(q1, p1)(q2, p2)(q3, p3) · · ·

satisfies ';

(ii) if the path in (5) is finite and terminates at state (qt, pt), we apply any switching

sequence with prefix p0p1p2p3 · · · pt to ensure that the execution

(q, p) = (q0, p0)(q1, p1)(q2, p2)(q3, p3) · · · (qt, pt) · · ·

satisfies '.
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Definition 2. The family of finite transition systems in (3) is said to be an under-

approximation of (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, if there is a transition q
p! q0, then for

all x0 2 T�1(q), there exists some ⌧ > 0 such that, for all exogenous disturbances

d : [0, ⌧]! D ✓ Rd, trajectories ⇠ of pth subsystem of (1) starting from x0 satisfy

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, then, for all x0 2 T�1(q) and all

exogenous disturbances d : [0,1)! D ✓ Rd, trajectories ⇠ of the pth subsystem of

(1) starting from x0 satisfy

⇠(t) 2 T�1(q), 8t 2 [0,1),

i.e., T�1(q) is a positively invariant set for the pth subsystem under all exogenous

disturbances.

Definition 3. The family of finite transition systems in (3) is said to be an over-approximation

for (1) if the following two statements hold.

(i) Given states q, q0 2 Q such that q0 , q, there is a transition q
p! q0, if there exists

x0 2 T�1(q), ⌧ > 0, and some exogenous disturbance d : [0, ⌧] ! D ✓ Rd such that

the corresponding trajectory ⇠ of the pth subsystem of (1) starting from x0, i.e.,

⇠ : [0, ⌧]! Rn with

⇠(0) = x0, ⇠̇(t) = fp(⇠(t), d(t)), 8t 2 (0, ⌧),

satisfies

⇠(⌧) 2 T�1(q0) ⇠(t) 2 T�1(q) [ T�1(q0), t 2 [0, ⌧].

(ii) For any q 2 Q, there is a self-transition q
p! q, if there exists x0 2 T�1(q) and some

exogenous disturbance d : [0,1)! D ✓ Rd such that the complete trajectory ⇠ of

the pth subsystem of (1) on [0,1) starting from x0 is contained in T�1(q).

Intuitively, in an over-approximation, a discrete transition q
p! q0 is included in Tp as

long as there is a possibility (either induced by disturbances or a coarse partition) for

the continuous system to implement the transition, whereas, in an under-approximation,
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write (qi, pi) ! (qj, pj), if qi
pi! qj, i.e., there exists a transition from qi to qj in the mode

pi.

We can solve a switching synthesis problem for a specification given by a temporal

logic formula ' in the following procedure:

1) Negate the formula ' to get ¬'.

2) Given the transition system (Q⇥P,Q0⇥P0,!) and the LTL formula ¬', determine

if all executions of the transition system satisfy ¬'.

The second step above is a model checking problem and can be solved by o↵-the-shelf

software, e.g., the SPIN model checker [17] and the NuSMV symbolic model checker

[16], with computational complexity that is linear in the size of the state space [6].

Solving this problem, there are two possible outcomes: (i) the model checker verifies

that ¬' is true for the transition system T ; (ii) the model checker finds that ¬' is not

true and provides a counterexample.

We are particularly interested in case (ii), since it provides a switching strategy that

realizes ' and therefore solves our switching synthesis problem. Actually, a counterex-

ample given by the model checker provides either a finite or infinite path of the form

(q0, p0)! (q1, p1)! (q2, p2)! (q3, p3)! · · · (5)

that violates the formula ¬', or in other words, satisfies '. A switching strategy can be

extracted from a counterexample found by model checking and given in the form (5).

Switching Strategy: Given a counterexample in the form (5),

(i) if the path in (5) is infinite, we apply the switching sequence p0p1p2p3 · · · to ensure

that the execution

(q, p) = (q0, p0)(q1, p1)(q2, p2)(q3, p3) · · ·

satisfies ';

(ii) if the path in (5) is finite and terminates at state (qt, pt), we apply any switching

sequence with prefix p0p1p2p3 · · · pt to ensure that the execution

(q, p) = (q0, p0)(q1, p1)(q2, p2)(q3, p3) · · · (qt, pt) · · ·

satisfies '.
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• Rely on under-approximations being deterministic.
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Example: synthesis by model checking
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Fig. 6: A simulation illustrating the continuous implementation of a switching protocol

that guarantees the invariance property ⇤(18  x  20 ^ 20  y  22): the red line

represents the temperature of the heater and blue line indicates the room temperature.

and transmission e�ciency. The switching synthesis problem is to find a gear switching

strategy to maintain a certain level of transmission e�ciency when the speed is above

certain value. Formally, we consider a specification

⇤(! � 5! ⌘ � 0.5) ^ (0  !  40),

which consists of a minimum e�ciency of 50% when the speed is greater than 5, and

a speed limit of 40.

θ = ω
ω = η1(ω)u

.
.

GEAR = 1

θ = ω
ω = η2(ω)u

.
.

GEAR = 2

θ = ω
ω = η3(ω)u

.
.

GEAR = 3

Fig. 7: A 3-gear automatic transmission.

Since the properties of interest here are related to ! only, we partition the !-axis into a

union of intervals Q that preserves the proposition on e�ciency. The abstraction consists

of a plant variable q, which takes values in Q, and a mode variable p, which takes values

in P = {0,±1,±2,±3}. Here, ± denotes accelerating modes and decelerating modes,
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To synthesize a switching protocol that realizes the reachability ^(q2), we solve a

two-player game as introduced in Section III-B. The switching protocol can be extracted

from a finite automaton with 32 state.

We then consider the synthesis of a switching protocol that guarantees the invariance

property, i.e., q2 ! ⇤q2. For this purpose, we further partition q2 into six subregions

as shown in Figure 5. We again obtain an over-approximation and solve a two-player

game. The winning protocol can be extracted from a finite automaton with 7 state. A

simulation result illustrating a continuous implementation of this protocol is shown in

Figure 6.

20 20.5 21 21.5 22
18

18.5

19

19.5

20

y

x

Fig. 5: A further partition of the region q2 (indicated by the red square) in Figure 4 for

synthesizing a switching protocol that achieves invariance within the region q2.

B. Automatic transmission

Consider a 3-gear automatic transmission system [9], [36] shown in Figure 7. The

longitudinal position of the car and its velocity are denoted by ✓ and !, respectively.

The transmission model has three di↵erent gears. For simplicity, the throttle position,

denoted by u, takes value 1 in accelerating mode and �1 in decelerating modes. The

specification concerns the e�ciency of the automatic transmission and we use the

functions

⌘i(!) = 0.99 exp
 

� (! � ai)2

64

!

+ 0.01

to model the e�ciency of gears i = 1, 2, 3, where a1 = 10, a2 = 20, a3 = 30, as similarly

considered in [9]. The acceleration in mode i is given by the product of the throttle
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respectively. We also consider a starting mode 0. According to this abstraction, we have

a deterministic transition system for each of the 7 modes. Therefore, the switching

synthesis problem can be solved by model checking. A simulation result is shown in

Figure 8, illustrating a continuous implementation of this strategy.

0 100 200 300 400 500 600
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40

0 100 200 300 400 500 600
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¹(t)

(̈t)
=̈5

Fig. 8: Simulation results for Example 2: the upper figure shows the speed vs. time,

while the lower figure shows the real-time e�ciency of the transmission, where the

specified level 50% is indicated by the red line.

C. Robot motion planning

Consider a kinematic model of a unicycle-type wheeled mobile robot [21] in 2D plane:
2
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Here, x, y are the coordinates of the middle point between the driving wheels; ✓ is the

heading angle of the vehicle relative to the x-axis of the coordinate system; v and w are

the control inputs, which are the linear and angular velocity, respectively.

To cast the motion planning of this robot as a switching synthesis problem, we con-

sider a situation where the heading angles are restricted to a finite set
n

✓p : p = 1, · · · , 8
o

,

where ✓p 2 Ip and Ip are non-overlapping subintervals of [0, 2⇡). Here we allow the
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Fig. 6: A simulation illustrating the continuous implementation of a switching protocol

that guarantees the invariance property ⇤(18  x  20 ^ 20  y  22): the red line

represents the temperature of the heater and blue line indicates the room temperature.

and transmission e�ciency. The switching synthesis problem is to find a gear switching

strategy to maintain a certain level of transmission e�ciency when the speed is above

certain value. Formally, we consider a specification

⇤(! � 5! ⌘ � 0.5) ^ (0  !  40),

which consists of a minimum e�ciency of 50% when the speed is greater than 5, and

a speed limit of 40.

θ = ω
ω = η1(ω)u

.
.

GEAR = 1

θ = ω
ω = η2(ω)u

.
.

GEAR = 2

θ = ω
ω = η3(ω)u

.
.

GEAR = 3

Fig. 7: A 3-gear automatic transmission.

Since the properties of interest here are related to ! only, we partition the !-axis into a

union of intervals Q that preserves the proposition on e�ciency. The abstraction consists

of a plant variable q, which takes values in Q, and a mode variable p, which takes values

in P = {0,±1,±2,±3}. Here, ± denotes accelerating modes and decelerating modes,
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Switching synthesis by two-player game

• Given an over-approximation {Tp} and an LTL specification φ.

• A state of the game is s=(e, q, p)∈                 , where
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adversaries that try to falsify 's, while the switching mode is the controlled variable

that tries to force the overall system to satisfy 's. We emphasize that, within the

same framework, we can incorporate real environment into the system, by adding

environment variables e that explicitly accounts for adversaries. Such adversaries do

not impact the continuous dynamics of the system directly, but rather constrain its

behavior through GR(1) specifications of the form

' = (('q ^ 'e)! 's), (7)

where 'e specifies allowable environment behaviors and 's is a system level specifi-

cation that enforces correct behaviors for all valid environment behaviors. To be more

precise, for ↵ 2 �

q, s, e
 

, each '↵ in (7) has the following structure:

'↵ := '↵init ^
^

i2I↵1

⇤'↵1,i ^
^

i2I↵2

⇤^'↵2,i,

where '↵init is a propositional formula characterizing the initial conditions; '↵1,i are tran-

sition relations characterizing safe, allowable moves and propositional formulas charac-

terizing invariants; and '↵2,i are propositional formulas characterizing states that should

be attained infinitely often. Many interesting temporal specifications can be transformed

into this form. The readers can refer to [7], [26] for more precise treatment on how to

use GR(1) game to solve LTL synthesis in many interesting cases (see also [23] for more

examples). A winning strategy for the system, i.e., a strategy such that formula (7) is

satisfied, can be solved by a symbolic algorithm within time complexity that is cubic in

the size of the state space [7], [26].

We can formally describe our game approach for switching synthesis as follows.

Two-Player Game: A state of the game s = (e, q, p) is in E ⇥ Q ⇥ P, where E, Q,

and P represent finite sets of environment states, plant states, and switching modes,

respectively. A transition of the game is a move of the environment and a move of the

plant, followed by a move of the switching mode. A switching strategy can be defined

as a partial function (s0s1 · · · st�1, (qt, et)) 7! pt, which chooses a switching mode based on

the state sequence so far and the current moves of the environment and the plant. In

this sense, a switching strategy is a winning strategy for the switching system such that

the specification ' is met for all behaviors of the environment and the plant. We say that
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respectively. A transition of the game is a move of the environment and a move of the

plant, followed by a move of the switching mode. A switching strategy can be defined

as a partial function (s0s1 · · · st�1, (qt, et)) 7! pt, which chooses a switching mode based on

the state sequence so far and the current moves of the environment and the plant. In

this sense, a switching strategy is a winning strategy for the switching system such that
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not impact the continuous dynamics of the system directly, but rather constrain its
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' = (('q ^ 'e)! 's), (7)
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^

i2I↵2

⇤^'↵2,i,

where '↵init is a propositional formula characterizing the initial conditions; '↵1,i are tran-

sition relations characterizing safe, allowable moves and propositional formulas charac-

terizing invariants; and '↵2,i are propositional formulas characterizing states that should

be attained infinitely often. Many interesting temporal specifications can be transformed

into this form. The readers can refer to [7], [26] for more precise treatment on how to

use GR(1) game to solve LTL synthesis in many interesting cases (see also [23] for more

examples). A winning strategy for the system, i.e., a strategy such that formula (7) is

satisfied, can be solved by a symbolic algorithm within time complexity that is cubic in

the size of the state space [7], [26].

We can formally describe our game approach for switching synthesis as follows.

Two-Player Game: A state of the game s = (e, q, p) is in E ⇥ Q ⇥ P, where E, Q,

and P represent finite sets of environment states, plant states, and switching modes,

respectively. A transition of the game is a move of the environment and a move of the

plant, followed by a move of the switching mode. A switching strategy can be defined

as a partial function (s0s1 · · · st�1, (qt, et)) 7! pt, which chooses a switching mode based on

the state sequence so far and the current moves of the environment and the plant. In

this sense, a switching strategy is a winning strategy for the switching system such that

the specification ' is met for all behaviors of the environment and the plant. We say that
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respectively. We also consider a starting mode 0. According to this abstraction, we have

a deterministic transition system for each of the 7 modes. Therefore, the switching

synthesis problem can be solved by model checking. A simulation result is shown in

Figure 8, illustrating a continuous implementation of this strategy.
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Fig. 8: Simulation results for Example 2: the upper figure shows the speed vs. time,

while the lower figure shows the real-time e�ciency of the transmission, where the

specified level 50% is indicated by the red line.

C. Robot motion planning

Consider a kinematic model of a unicycle-type wheeled mobile robot [21] in 2D plane:
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Here, x, y are the coordinates of the middle point between the driving wheels; ✓ is the

heading angle of the vehicle relative to the x-axis of the coordinate system; v and w are

the control inputs, which are the linear and angular velocity, respectively.

To cast the motion planning of this robot as a switching synthesis problem, we con-

sider a situation where the heading angles are restricted to a finite set
n

✓p : p = 1, · · · , 8
o

,

where ✓p 2 Ip and Ip are non-overlapping subintervals of [0, 2⇡). Here we allow the

September 16, 2011 DRAFT

Limited circulation. For review only

Preprint submitted to IEEE Transactions on Automatic Control. Received: September 16, 2011 22:13:00 PST

DRAFT 28

heading angle to be within certain intervals to capture possible measurements errors or

disturbances. The set of angles considered in this example is shown in Figure 9, where

✓i can be an arbitrary angle in ((i � 1)⇡/4, i⇡/4), for i = 1, · · · , 8.

θ1

θ2θ3

θ4

θ5

θ5 θ5

θ5

 θ = 0

Fig. 9: Eight di↵erent heading angles of the robot.

Equation (10) can now be viewed as a switched system with four di↵erent modes
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ẋ

ẏ
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where v0 > 0 is some constant speed. These dynamics can be achieved with inputs

(v,w) = (v0, 0) in (10) with a desired heading angle in ✓p 2 Ip. Transitions between

di↵erent heading angles are now regarded as mode transitions, and the transition can

be rendered through ẋ = ẏ = 0 and ✓̇ = !0, by letting inputs (v,w) = (0,w0) in (10). In

this sense, transitions can be made freely among di↵erent modes.
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q1 q3

q2 q0

q1 q3

q2

Fig. 10: The workspace for Example 3 and its partition.
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We consider a workspace shown on the left side of Figure 10, which is a square of

size 10. The robot is expected to satisfy the following desired properties:

(P1) Visit each of the blue cells, labeled as q1, q2, and q3, infinitely often.

(P2) Eventually go to the green cell q0 after a PARK signal is received.

Here, the PARK signal is an environment variable that constrains the behavior of the

robot. The following assumption is made on the PARK signal.

(S1) Infinitely often, PARK signal is not received.

Fig. 11: Simulation results for Example 3: (a) The upper left figure shows simulation

results without obstacles; (b) the upper middle and right figures show simulation results

with di↵erent static obstacles; (c) the lower figures show simulation results with a

moving obstacle that occupies a square of size 2 and rambles horizontally under certain

assumptions on its speed. The blue squares are the regions that the robot has to visit

infinitely often. The green square is where the robot should eventually visit once a

PARK signal is received. The obstacles are indicated by red, the trajectories of the robot

are depicted by black curves, and the current positions of the robot are represented by

the magenta dots.
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heading angle to be within certain intervals to capture possible measurements errors or

disturbances. The set of angles considered in this example is shown in Figure 9, where

✓i can be an arbitrary angle in ((i � 1)⇡/4, i⇡/4), for i = 1, · · · , 8.

θ1

θ2θ3

θ4

θ5

θ5 θ5

θ5

 θ = 0

Fig. 9: Eight di↵erent heading angles of the robot.

Equation (10) can now be viewed as a switched system with four di↵erent modes
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, (11)

where v0 > 0 is some constant speed. These dynamics can be achieved with inputs

(v,w) = (v0, 0) in (10) with a desired heading angle in ✓p 2 Ip. Transitions between

di↵erent heading angles are now regarded as mode transitions, and the transition can

be rendered through ẋ = ẏ = 0 and ✓̇ = !0, by letting inputs (v,w) = (0,w0) in (10). In

this sense, transitions can be made freely among di↵erent modes.

q0

q1 q3

q2 q0

q1 q3

q2

Fig. 10: The workspace for Example 3 and its partition.
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Specification

P1

P2
□◇q1 ∧ □◇q2 ∧□◇q3

□(PARK →◇q0)

Design a switching sequence 
such that

while avoiding static and 
moving obstacles.

q0

q1 q3

q2 q0

q1 q3

q2

Fig. 2: The workspace for Example 3 and its partition.

(P1) Visit each of the blue cells, labeled as q1, q2, and q3,
infinitely often.

(P2) Eventually go to the green cell q0 after a PARK signal
is received.

Here, the PARK signal is an environment variable that con-
strains the behavior of the robot. The following assumption
is made on the PARK signal.
(S1) Infinitely often, PARK signal is not received.

Fig. 3: Simulation results for Example 3: (a) The upper
left figure shows simulation results without obstacles; (b)
the upper middle and right figures show simulation results
with different static obstacles; (c) the lower figures show
simulation results with a moving obstacle that occupies a
square of size 2 and rambles horizontally under certain
assumptions on its speed. The blue squares are the regions
that the robot has to visit infinitely often. The green square is
where the robot should eventually visit once a PARK signal is
received. The obstacles are indicated by red, the trajectories
of the robot are depicted by black curves, and the current
positions of the robot are represented by the magenta dots.

To synthesize a planner for this example, we introduce
a partition of the workspace as shown on the right side
of Figure 2, in which each cell of size 1 is partitioned
into two triangles. In each mode, we can determine the
discrete transition relations according to Definition 3 and
obtain an over-approximation of the system. Solving a two-
player game as introduced in Section III-B gives a winning
strategy that guarantees that the robot satisfies the given
properties (P1) and (P2). In addition, we synthesize switching
strategies for a workspace occupied with both static and
moving obstacles. Snapshots of simulation results are shown

in Figure 3, which illustrate continuous implementations of
different switching strategies that are synthesized to achieve
the specification under different situations with or without
obstacles.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we considered the problem of synthesizing
switching protocols for nonlinear hybrid systems subject to
exogenous disturbances. These protocols guarantee that the
trajectories of the system satisfy certain high-level specifi-
cations expressed in linear temporal logic. We employed a
hierarchical approach where the switching synthesis problem
was lifted to discrete domain through finite-state abstractions.
Two different types of finite-state transition systems, namely
under-approximations and over-approximations, that abstract
the behavior of the underlying continuous dynamical system
were introduced. It was shown that the discrete synthesis
problem for an under-approximation led to a model checking
problem. On the other hand, the discrete synthesis problem
for an over-approximation was recast as a two-player tem-
poral logic game. In both cases, off-the-shelf software can
be used to solve the resulting problems. Moreover, existence
of solutions to the discrete synthesis problem guarantees the
existence of continuous implementations that are correct by
construction.

This paper can be seen in the context of abstraction-
based methods for controller synthesis and, in this sense,
is closely related to existing work on construction of finite
abstractions for nonlinear and hybrid systems (see [4] for
an earlier review). Exact finite discrete abstractions, in the
sense of bisimulation relations that require a one-to-one
correspondence between system trajectories, are known to
only exist for rather limited classes of systems [4]. Recent
work therefore has focused on formulating relaxed notions of
bisimulation relations, such as approximate and alternating
bisimulation relations [30], [31]. In [32]–[34], it has been
shown that approximate and approximate alternating bismu-
lations can be obtained between a quantized control system
and a finite transition system, if the underlying continuous-
time nonlinear system is incrementally stable. In particular,
the work by Girard et al. [32] focuses on incrementally
stable switched systems. More recently, Zamani et al. [35]
shows that such stability conditions can be further relaxed to
incremental forward completeness. In general, these works
focus on proving existence of approximate abstractions, and
do not explicitly address the problem of controller synthesis
for enforcing high-level specifications. Exceptions are [36]
and [37], where, respectively, approximate bisimulations and
approximate simulations are used to synthesize time-optimal
controllers, which aim to steer, in minimal time, the state of
the system to a desired target while remaining safe.

In this paper, we defined two types of abstractions, namely
under- and over-approximations. While they resemble sim-
ulation and alternating simulation relations (as in [37]),
respectively, they are based on the notion of language in-
clusion, which is in general a weaker notion than simula-
tion, between the continuous-time systems and the discrete

Over-approximation

q0

q1 q3

q2 q0

q1 q3

q2

Fig. 2: The workspace for Example 3 and its partition.

(P1) Visit each of the blue cells, labeled as q1, q2, and q3,
infinitely often.

(P2) Eventually go to the green cell q0 after a PARK signal
is received.

Here, the PARK signal is an environment variable that con-
strains the behavior of the robot. The following assumption
is made on the PARK signal.
(S1) Infinitely often, PARK signal is not received.

Fig. 3: Simulation results for Example 3: (a) The upper
left figure shows simulation results without obstacles; (b)
the upper middle and right figures show simulation results
with different static obstacles; (c) the lower figures show
simulation results with a moving obstacle that occupies a
square of size 2 and rambles horizontally under certain
assumptions on its speed. The blue squares are the regions
that the robot has to visit infinitely often. The green square is
where the robot should eventually visit once a PARK signal is
received. The obstacles are indicated by red, the trajectories
of the robot are depicted by black curves, and the current
positions of the robot are represented by the magenta dots.

To synthesize a planner for this example, we introduce
a partition of the workspace as shown on the right side
of Figure 2, in which each cell of size 1 is partitioned
into two triangles. In each mode, we can determine the
discrete transition relations according to Definition 3 and
obtain an over-approximation of the system. Solving a two-
player game as introduced in Section III-B gives a winning
strategy that guarantees that the robot satisfies the given
properties (P1) and (P2). In addition, we synthesize switching
strategies for a workspace occupied with both static and
moving obstacles. Snapshots of simulation results are shown

in Figure 3, which illustrate continuous implementations of
different switching strategies that are synthesized to achieve
the specification under different situations with or without
obstacles.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we considered the problem of synthesizing
switching protocols for nonlinear hybrid systems subject to
exogenous disturbances. These protocols guarantee that the
trajectories of the system satisfy certain high-level specifi-
cations expressed in linear temporal logic. We employed a
hierarchical approach where the switching synthesis problem
was lifted to discrete domain through finite-state abstractions.
Two different types of finite-state transition systems, namely
under-approximations and over-approximations, that abstract
the behavior of the underlying continuous dynamical system
were introduced. It was shown that the discrete synthesis
problem for an under-approximation led to a model checking
problem. On the other hand, the discrete synthesis problem
for an over-approximation was recast as a two-player tem-
poral logic game. In both cases, off-the-shelf software can
be used to solve the resulting problems. Moreover, existence
of solutions to the discrete synthesis problem guarantees the
existence of continuous implementations that are correct by
construction.

This paper can be seen in the context of abstraction-
based methods for controller synthesis and, in this sense,
is closely related to existing work on construction of finite
abstractions for nonlinear and hybrid systems (see [4] for
an earlier review). Exact finite discrete abstractions, in the
sense of bisimulation relations that require a one-to-one
correspondence between system trajectories, are known to
only exist for rather limited classes of systems [4]. Recent
work therefore has focused on formulating relaxed notions of
bisimulation relations, such as approximate and alternating
bisimulation relations [30], [31]. In [32]–[34], it has been
shown that approximate and approximate alternating bismu-
lations can be obtained between a quantized control system
and a finite transition system, if the underlying continuous-
time nonlinear system is incrementally stable. In particular,
the work by Girard et al. [32] focuses on incrementally
stable switched systems. More recently, Zamani et al. [35]
shows that such stability conditions can be further relaxed to
incremental forward completeness. In general, these works
focus on proving existence of approximate abstractions, and
do not explicitly address the problem of controller synthesis
for enforcing high-level specifications. Exceptions are [36]
and [37], where, respectively, approximate bisimulations and
approximate simulations are used to synthesize time-optimal
controllers, which aim to steer, in minimal time, the state of
the system to a desired target while remaining safe.

In this paper, we defined two types of abstractions, namely
under- and over-approximations. While they resemble sim-
ulation and alternating simulation relations (as in [37]),
respectively, they are based on the notion of language in-
clusion, which is in general a weaker notion than simula-
tion, between the continuous-time systems and the discrete
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Example of a feasible 
but not necessarily 

“optimal”:
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Wolff, T., Murray, 2012

Slide courtesy of Wolff.



Ufuk Topcu 31 Slide courtesy of Wolff.

(for finite-memory strategies)



•For each accepting vertex (state) s ∈ V, define Fk(v) as the minimum 
cost of length k from s to v

•Fk(v) can be computed by dynamic programming:

•Complexity: O(|V||E|).

Fk(v) = min
(u,v)2E

Fk�1(u) + c(u, v)

Ufuk Topcu

Computation of an optimal, accepting cycle 
[for w(e) = 1 for each transition e]

32

•Can search in each strongly connected 
component G = (V,E) of the product automaton 
with at least one accepting cycle

•Fk(s): Minimum cost of cycle of length k through the accepting state s

•Complexity in general: O(na(|V||E|+|V|2log|V|) with na accepting states
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