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Outline:
- Compositional synthesis of control protocols
- Synthesis of switching sequences
+ Optimality in discrete synthesis




Decompositions in the state space

Decompositions
induced by ...

receding horizon goal

distributed synthesis = underlying network
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Smart camera { - static cameras for tracking targets

networks - pan-tilt-zoom (PTZ) for active recognition
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Goal: synthesize control protocols for PTZ to ensure
that one high resolution image of each target is
captured at least once

Synthesis of Embedded Control Software
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Synthesis of protocols for active surveillance
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System:
- region of view of PTZs  Environment specifications:

- governed by finite - At most N targets at a time.
state automata - Every target remains at least T time
steps and eventually leaves.

- Can only enter/exit through doors.
- Can only move to neighbors.

Additional requirement:
- Zoom-in the corner
cells infinitely often.
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Centralized vs. decentralized control architecture

tracking
controller
subsystem
PTZ-2

——————

M.
0o
A\ 4
j
| [

How to design control

controller-1 protocols that can be
R & PTZ-| » synthesized
tracking /'/ * implemented
subsystem % in a decentralized way!?
I What information exchange
2 % PTZ-2 & interface models are

needed?
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Compositional Synthesis
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Goal: Find control
protocols for PTZ-1 &
PTZ-2 so that

Pe — Ps hOlCIS.

Simple & not very useful composition:

Any execution of the env’t, satisfying e, also satisfies Pe; /\ e,
Any execution of the system, satisfying ¥s, /\ ¥s,, also satisfies ¥s

No common controlled variables in ¥s; and ¥s»

There exist control protocols that realize ¥e; ™ ¥s:& FPea = ¥ss

= V. — Qs is realized.
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Centradl Compositional
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(Refined) Compositional Synthesis

As before:

Refined interfaces:

There exist control protocols that realize
Ay exgeuion pbthoapy)h sagislying P ahso)satisfiss, Fep) e
Any execution of the system, satisfying ¥s, /\ ¥s,, also satisfies ¥s
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Application to a (very simple) smart
camera hetwork

IsZoomed & StepsinZone

: ¢1 and @) ‘
limit the number of unzoomed targets

k entering zone 2 from zone | )
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Case Study: Synthesis of Protocols for
Electric Power Management

Multiple criticality levels: Environment variables:

» flight controllers increasing * wind gust (w)
* active de-icing criticality * outside temperature (T)

« environmental control Controlled variables:
- altitude
- power supply to different
components

For environment & control variables,
use crude discretization over their
respective ranges. For example,

T € {low, low-medium, medium-high, high}
representing the range of [—22°F, 32° ]

Dependent (state) variables:

* level of ice accumulation

- state-of-charge of the batteries
* cabin pressure level

Source: http://www.e-envi2009.org/presentations/S3/Derouineau.pdf
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Modeling & The Dependent Variables

ICIn : : power increase . . reduction in
airspeed reduction climb-rate reduction

Use models based on ﬁnite leve to regain airspeed control authority
transitions S)’Stems from a trace < 10 knots < 10% < 10% no effect
light 10 — 19 knots 10 — 19% 10 — 19% no effect
combination of empirical
moderate 20 — 39 knots 20 — 39% > 20% o
data and first principles. sensitive response

severe > 40 knots unable unable limited or no response

slow or overly

model of icing level model of cabin pressure level
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—> temperature

State-of-charge evolves with:

b[t + 1] = min{ B, b[t] + P — p[t] — pa[t] — pe[t]} Transitions model the

A gap between requested

storage  generation | h i
: : power supply to eac and supplied power for
capacity capacity functionality each fupnpctionzlity.
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Sample Specifications

Resource constraint:

Prioritization:

Safety:

Performance:

Assumptions:

Ufuk Topcu

power requests from flight controller (f),
deicing (d), and pressure control (e):

re=r¢(h,a,w)
Tq = Td(T, h)

(ps + pa + pe < P+ b) ro = (T, h)

(py = 1y)
O(ps = high A pg = high = p. = low)

Altitude cannot change too much between to consecutive instants, e.g.,
[J(h = low = (oh # medium-high A oh # high))

lce accumulation limits allowable altitude change, e.g.,

[J(a = severe = oh = h)

Ice accumulation cannot be severe: [(a # severe)

Cabin pressure does not exceed the level at 8000 ft.
Always go back to the desirable altitude: [J ¢ (h = high)

Wind gusts cannot be severe too many consecutive steps.
(1 > Ny = o(w # severe)

No abrupt change in outside temperature, e.g.,

(T = medium-low = oT" # high)

Notation may not be fully explained.Ask, if confused!!
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Dynamic power allocation allows reductions in peak power
(i.e., generator weight) requirements.

Formulate as a temporal

environment variables & energy storage logic, "eaCtL‘fe planning
e problem

severe ] H

~

MH

~ SRR AL (@environment
ML} - \ ;
NPinitial

/\Spcriticality)

Lt ‘
0 10 15 20
t

power requests & supplies

pf Td o pd Te T e
3.0 ‘ AT ‘ 2.0 ‘ - ‘ -
1 1 n . ' ] 1
' d
2.5 N I "o ! ! !
: A 1.5 A AW .
] ' v [ ! ' 1 1

201 ¢«

R " ! di
] A W ~10f[ I\ . !

Ao [ © P b :
Loty osl| 14| ,: (Soperformance

0.5[ | i\

0_0._'I R 1 ‘ ‘ 0.0 o

0 5 1(;5 15 20 — 0 ‘ | /\SOSa,fet )
Yy
[ J
dependent variables

severef

mod}

C

I light

trace| e Td € {O, 1, 2,3}
S re € {0,1,2}
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Conventional vs. Boeing 787 Electric Power Network Structure

pre-/87

Q9

@

OO

B

External Power
115 Vac Feeder 115 Vac

Generator
1120 KVA

115 Vac or
28 Vde Wire \

APU Generator

/87: distributed

G0

fh, ,— Fomvard EE Bay

r

External Power
2% 115Vac, 90 kVA

p’

230 Vac Feeder
Generator
2 x 250 kVA

Aft E/E Bay
External Power
2 x 115 Vac, 90 kVA Loads

APU Generator

Remote Power :
2 %225 kVA

Distribution Unit
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Distributed resource allocation

flight | : Controlled variables:
control] -Power supplies to each function
: - Altitude

active
deicing

Environment variables:
-Wind gusts

2 | -Outside temperature
ﬁeak power py ot tore internal | | -Generator health status

temperature

: health 2 — control | Dependent variables:
-|generator 2 >|switch 2 : : :
- — . ‘Level of ice accumulation
o lpressure| - State-of-charge of the battery
Ure "1 control : :
-Cabin pressure & temperature

generator 2 feedback
peak power refinement dynamic

—7\ allocation Interface refinements

no réfinement

N {_serial
centralized: refinement

>

3 4 6
generator 1 peak power
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Compositional Synthesis of Distributed Protocols

Pe =7 Ps

—

———

“‘weaker” “stronger”
environment system

assumptions requirements

controlled subsys
local controller O
physical coupling —»
information flow --»
exogenous signal —»

Extra (mild) technical conditions: No common controlled variables & loops are well-posed.

Theorem: p. — s is realizable if every .. — @4, Is realizable.

Contracts formalize the coupling and information exchange between subsystems.
Trade-offs:

expressiveness need for coordination

of contracts ' & computational cost
Ufuk Topcu 16
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Motivation -- Switching control protocols

How to “automatically” design switching control
protocols (high-level discrete decision making)
that:

y

—/\ 3 * regulate low-level, continuous dynamics;
O=N

* realize high-level specifications; and

e respond to external events in real-time,

with “correctness guarantee’.

Why switching controllers?

e Situations where continuous, smooth feedback controllers are not
sufficient/available.

* No need to redesign underlying dynamics/controllers.

* Handle mixture of discrete and continuous decision making.




Schematic description

blant

controllers

switching protocol

environment signal

system behavior

system specification

environment assumption

system guarantee

Design O such that P satisfies ¢




System model

Continuous-time switched systems:

x=f,(x,d), peP

a finite collection of modes

nonlinear vector fields

system state

exogenous disturbance




System specification

* Linear temporal logic (LTL) extends propositional logic
with '

A . \,
A(and), v (or) o(eventually), o(always),
7 (not), = (imply) o(next), U (until) ...

* Allows to reason about infinite sequences of states

- state: an evaluation of all variables (environment+system)
e LTL formulas can describe sets of allowable behavior

- safety specs: what actions are allowed

- fairness: when an action can be taken (e.g., infinitely often)

* No strict notion of time. Only ordering of events.

* LTL-x: we consider LTL without the ©(next) operator to specify system
properties for continuous-time systems.




Slide courtesy of Jun Liu

Overview of solution strategy

* Given model + spec
x — fp(xld)/ P S 7) and (p 2 ((Pe — (PS)

e Compute finite-state, proposition

preserving approximations. abstraction

* Solve a discrete synthesis problem and

obtain a discrete switching strategy O.

* Implement the switching strategy O

continuously to ensure that all trajectories
of X = f,(x, d) satisfies . implementation

Questions:

nat approximations are appropriate and how to compute them!?

nat discrete synthesis problems to solve and how to solve them?




Under- and over-approximations

Consider an abstraction map T: X = Q, and a family of finite transition
systems

{«7‘,9 = (Q QD) : pE?’}.

Under-approximation:
* Given q,q" € Q with ¢g#q ,if g LR q’, then for all xo

eT'(q), there exists a finite T>0, such that all trajectories

of X = f,(x,d) starting from xo satisfy

EN)eTNq) &BHeT ' (uUT(g) telo,1l

o If g 5 q,then T'(q) is positively invariant w.r.t. X = f,(x, d)
In other words
e Every execution of 7, can be implemented by trajectories of X = f,(x, d)

e T,is a deterministic TS.




Under- and over-approximations

Consider an abstraction map T: X = Q, and a family of finite transition
systems

{7‘,9 = (Q QD) : pE?’}.

Over-approximation:

* Given q,q" € Q with g#q', we have g 5 q’, if there exists
xo €T!(q), finite T>0,and some trajectory of X = f,(x, d)
starting from xo satisfy

E)eT ) &) eT (@UT () telo,rl.

e Write( 5 q,if T'(q) contains a complete trajectory of X = f,(x,d)

In other words

e Every trajectory of X = f,(x,d) is represented by an execution of T,

e T, can be a nondeterministic TS.




How to compute these approximations!?

Abstraction Algorithm | (over-approximation)

Initialize S=Q, Sy = Qy, A=Pand - =QAXP X Q Note:

for i=1:|P|do _
forj=1:|Q|do POIYtOPeS
for k = 1: Neighbors(T~'(q;)) do - check
F = commonFacet(T~"(q;), T~ (qx)) if the facet F is blocked in

if isBlocked(T~*(q,), F, pi) then —=— \(qj, i, qx) mode p

end if .
end for - check if a
if isTransient(q;, p;) then —=— \(q;, i, ;) cell g is transient in mode
end if b

end for - Neighbors(T"'(q))

end for
return (S, Sy, A, —) - commonFacet(T'(q), T"'(q))
Can be built upon:
e Reachability analysis for affine systems (e.g. Habets et al (2006)), multi-
affine systems (e.g. Bleta & Habets (2006)), and polynomial systems
(e.g. Ben Sassi and Girard (2012)).




Switching synthesis by model checking

 Given an under-approximation {7,} and an LTL specification .

e Construct a product TS = (QX P, Q) xPo, —) by adding (q, p)— (q’, p) if
and only if g 5 q’.

* Check if all executions of TS satisfy (.

* [F TS ¥ 1, a counterexample is found, of the form

(QOIPO) — (5]11191) — (ﬂz,pz) —> (q3,p3) — e

* The counterexample gives a “correct” switching strategy for (I).

* If TS = =, inclusive.
Note:

* The strategy obtained is an open-loop strategy.

e Rely on under-approximations being deterministic.




Example: synthesis by model checking

3-gear automatic transmission Efficiency

' y,

é:a) I é:a) ——— é:a)

(w —a;)?
64

ni(w) = 0.99 exp (—

\

w =1 (wu | w=1n,(0u (< w =1, (w)u

GEAR =1 GEAR =2 GEAR =3

a1 = 10, iy = 20, A3 = 30

Specification

Ow=>5—->1n>05)A(0<w<40)

., States in the finite-state
abstraction

IPARAAAAAIERAING ), o of et
o] gear € {l, 2, 3}

) uef-1,1)

| | |
100 200 300




Switching synthesis by two-player game

 Given an over-approximation {7,} and an LTL specification ¢p.

e A state of the game is s=(e,q,p)e & X Q X P, where

E environment states

Q plant states

P switching modes

. . . allowable moves
Specification: < GR(!)

P = ((Pg A Pe) = Qs), Pa'=|Pigie A /\ Oy A /\ 0095, | a € 14,5, €}
\‘ ielix ielg N
° Switching strategy: initial conditions \goal

(S0S1 - * " St-1, (Elt, e1)) — Pt

* Both g and e are treated as adversary.




Example: synthesis by game solving

2d robot motion planning: Over-approximation

. s o 4|
cos@ 0 0 N .
v X Vo cos 0,
sin@ O] | A~ " | = .
- w| 6. y Vo sin 0,
) - 0 0

(%, y) position
v linear velocity

w angular velocity _ a9 _ 1]
Simulation results

mode heading angles 0,
PARK environment signal

Specification

Design a switching sequence
such that

P 008qg) A 842 ATOQ3
P2 O(PARK —<q0)
while avoiding static and

moving obstacles.




Slide courtesy of Wolff.

Motivation

Goal:

@ Optimal control for an autonomous system
doing a complex task

Challenges:
@ Reasoning about how system properties change over time

@ Specifying properties like safety, response, priority, liveness, and
persistence

@ Optimizing the system trajectory to conserve fuel or minimize time

Example of a feasible
but not necessarily
“optimal™:

Ufuk Topcu



Problem Description Wolf, T., Murray, 2012

Simple example: (START)

(10,1)
(fuel,time)

T= (01

4
fuel,time
' (1,1)

{PICKUP)
@ Task: repeatedly visit PICKUP

Given:
@ System model: transition system 7 with costs and weights
@ Task specification: linear temporal logic (LTL) formula ¢

Ufuk Topcu Slide courtesy of Wolff.



Solution overview (for finite-memory strategies)

1. Construct the product automaton P =7 x A,
{START}

(10,1)
-PICKUP PICKUP PICKUP
P= (o 1) (10,1) @

-PICKUP

(1,1)
{PICKUP} p = repeatedly visit PICKUP

Ufuk Topcu Slide courtesy of Wolff.



Computation of an optimal, accepting cycle
[for w(e) = 1 for each transition e]

-Can search in each strongly connected
component G = (V,E) of the product automaton
with at least one accepting cycle

-For each accepting vertex (state) s € V, define Fk(v) as the minimum
cost of length k from s to v

Fk(v) can be computed by dynamic programming:

Fi(v) = <uH§§2EF’f‘1(u) + ¢(u, v)

-Complexity: O(|V||E]).

Fk(s): Minimum cost of cycle of length k through the accepting state s

-Complexity in general: O(na(|V||E|+|V|4log|V|) with na accepting states

Ufuk Topcu



Example—autonomous driving

Task: repeatedly visit a, b, and ¢ and avoid obstacles x
LTL spec: p=00Ca AO0ObADOOC A O-X

X X[ X[ X[ X

X XIXIXIX
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

X (unit)
Figure: Driving task, with optimal run (blue) and feasible run (red).

Cost: Jopt =49 and Jgas = 71 (units)
CPU time: t,5 = 2.5 and tg,s = 0.68 (sec)

Ufuk Topcu 33 Slide courtesy of Wolff.




