Lecture 6 Abstractions for the Analysis and Synthesis of Control Protocols for Hybrid Systems

Ufuk Topcu

Nok Wongpiromsarn

Richard M. Murray

EECI, 20 March 2013

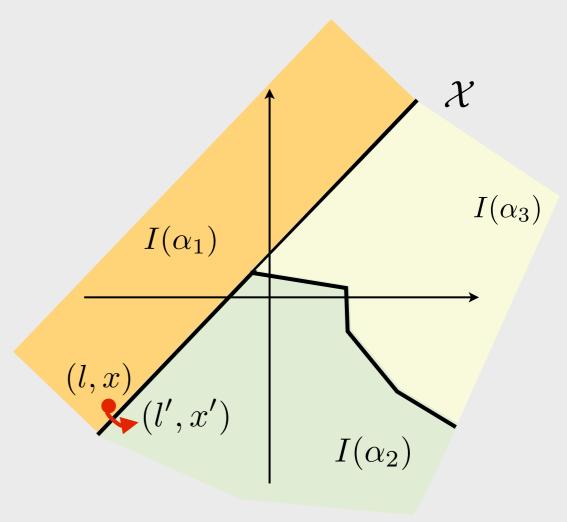
Outline:

- Finite-state approximations of hybrid systems
- Use of model checking for the verification of hybrid systems
- Construction of finite-state abstractions for synthesis
- "Approximate" abstractions

A (simple) hybrid system model

Hybrid system: $H = (\mathcal{X}, L, X_0, I, F, T)$ with

- \bullet \mathcal{X} , continuous state space;
- L, finite set of locations (modes);
- Overall state space $X = \mathcal{X} \times L$;
- $X_0 \subseteq X$, set of initial states;
- $I: L \to 2^{\mathcal{X}}$, invariant that maps $l \in L$ to the set of possible continuous states while in location l;
- $F: X \to 2^{\mathbb{R}^n}$, set of vector fields, i.e., $\dot{x} \in F(l, x)$;
- $T \subseteq X \times X$, relation capturing discrete transitions between locations.



$$L = \{\alpha_1, \alpha_2, \alpha_3\}$$

Specifications

Given: $H = (\mathcal{X}, L, X_0, I, F, T)$

Solution at time t with the initial condition $x_0 \in \mathcal{X}_0$: $\phi(t; x_0)$

• With the simple model *H*, specifying the initial state also specifies the initial mode.

Sample temporal properties:

• Reacha

exists f

 $\phi($

- <u>Stability</u>: Given equilibrium $x_e \in \mathcal{X}$, for all $x_0 \in \mathcal{X}_0 \subseteq \mathcal{X}$, $\phi(t; x_0) \in \mathcal{X}$, $\forall t$ and $\phi(t; x_0) \to x_e, \ t \to \infty$
- <u>Safety</u>: Given $\mathcal{X}_{unsafe} \subseteq \mathcal{X}$, safety property holds if there exists <u>no</u> t_{unsafe} and trajectory with initial condition $x_0 \in \mathcal{X}_0$,

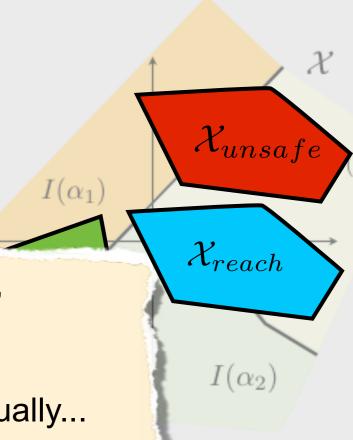
stability: ∀ initial conditions, "eventually always..."

safety: ∀ initial conditions, always...

reachability: ∃ an initial condition such that eventually...

eventuality: ∀ initial conditions, eventually...

- <u>Eventuality</u>: reachable from every initial condition
- Combinations of the above, e.g., starting in X_A , reach both X_B and X_C , but X_B will not be reached before X_C is reached while staying safe.



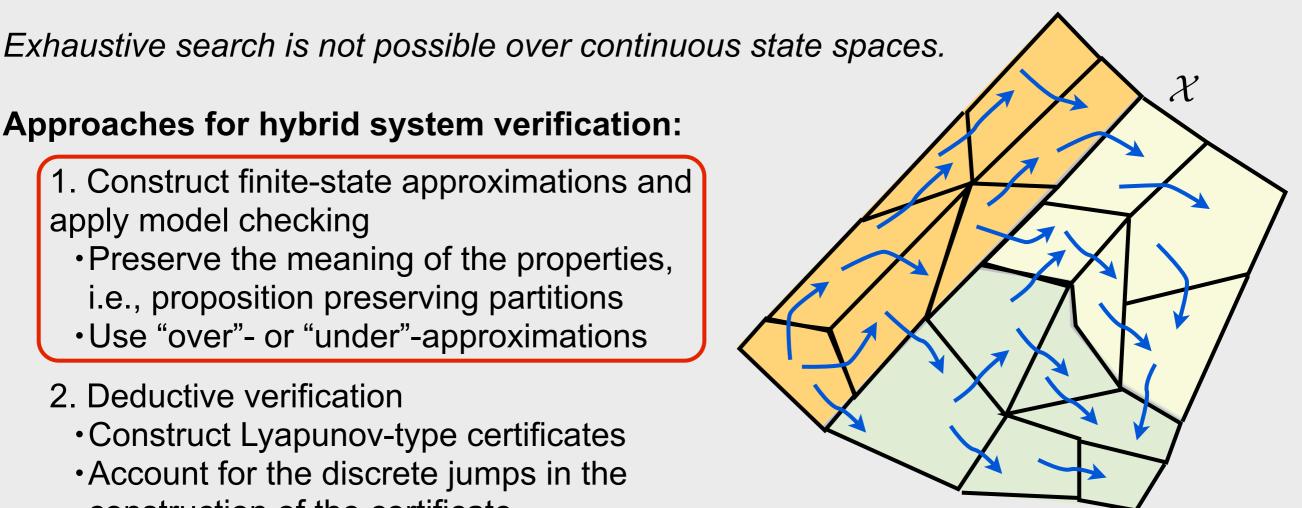
Analysis of hybrid systems

Why not directly use model checking?

- Model checking applied to finite transitions systems
- Exhaustively search for counterexamples....
 - if found, property does not hold.
 - if there is no counterexample in all possible executions, the property is verified.

Approaches for hybrid system verification:

- 1. Construct finite-state approximations and apply model checking
 - Preserve the meaning of the properties, i.e., proposition preserving partitions
 - Use "over"- or "under"-approximations
- 2. Deductive verification
 - Construct Lyapunov-type certificates
 - Account for the discrete jumps in the construction of the certificate
- 3. Explicitly construct the set of reachable states
 - Limited classes of temporal properties (e.g., reachability and safety)
 - Not covered in this course

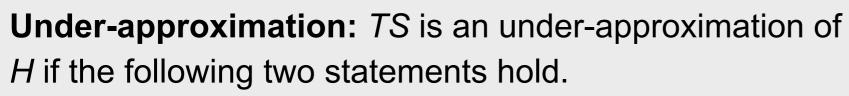


Finite-state, under- and over-approximations

Hybrid system: $H = (\mathcal{X}, L, X_0, I, F, \rightarrow_H)$

Finite-transition system: $TS = (Q, \rightarrow, Q_0)$

Define the map $T:Q\to 2^{\mathcal{X}}$ For discrete state q, $T^{-1}(q)$ is the corresponding cell in \mathcal{X} .



•Given $q, q' \in Q$ with $q \neq q'$, if $q \rightarrow q'$, then for all $x_0 \in T^{-1}(q)$, there exists finite $\tau > 0$ such that

$$\phi(\tau; x_0) \in T^{-1}(q'), \quad \phi(t; x_0) \in T^{-1}(q) \cup T^{-1}(q'), \quad \forall t \in [0, \tau]$$

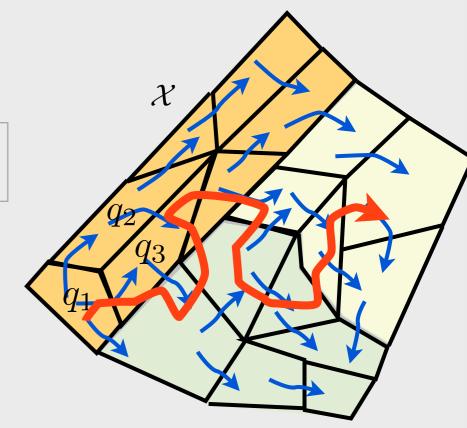
•If $q \to q$, then $T^{-1}(q)$ is positively-invariant.

In other words:

- Every discrete trajectory in an under-approximation *TS* can be implemented by *H*.
- •H "simulates" TS.

Over-approximation: TS is an over-approximation of H, if for each discrete transition in TS, there is a "possibility" to be implemented by H.

Possibility induced by the coarseness of the partition.



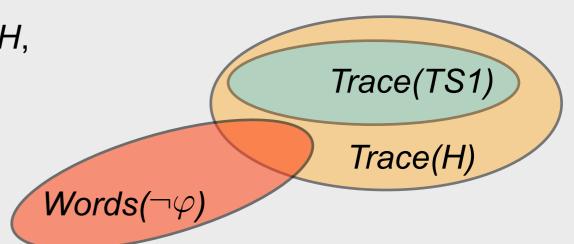
Use of under-approximations

Let the following be given.

- A hybrid system *H*,
- a finite-state, under-approximation *TS1* for *H*,

Verification

- Let an LTL specification φ be given.
- Question: $H \models \varphi$?
- Model check " $TS1 \models \varphi$?"



H <u>cannot</u> satisfy the specification.

$$TS1 \not\models \varphi$$

$$\downarrow \downarrow$$

$$H \not\models \varphi$$

$$Words(\neg \varphi) \cap Trace(TS1)$$
 is empty

Inconclusive

Logic synthesis:

- If $Words(\varphi) \cap Trace(TS1)$ is nonempty, there exists a trajectory of TS1 which satisfies φ and can be implemented by H.
- Otherwise, inconclusive.

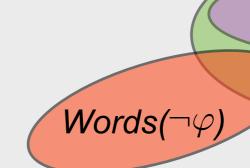
Use of over-approximations

Hybrid system H and a finite-state, over-approximation TS2 for H.

Verification

 $Words(\varphi) \cap Trace(TS2)$ is nonempty

Inconclusive



Trace(H)
Trace(TS2)

Words
$$(\neg \varphi) \cap \operatorname{Trace}(TS2)$$
 is empty \Downarrow Words $(\neg \varphi) \cap \operatorname{Trace}(H)$ is empty

H satisfies the specification.

$$TS2 \models \varphi$$

$$\downarrow \downarrow$$

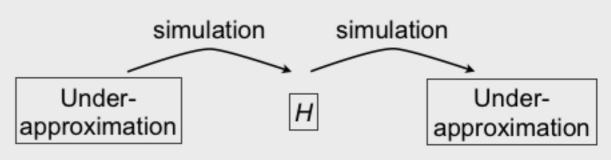
$$H \models \varphi$$

Logic synthesis:

- •If $Words(\varphi) \cap Trace(TS2)$ is empty, no valid trajectories for TS2 or H.
- Otherwise, inconclusive.

Remarks:

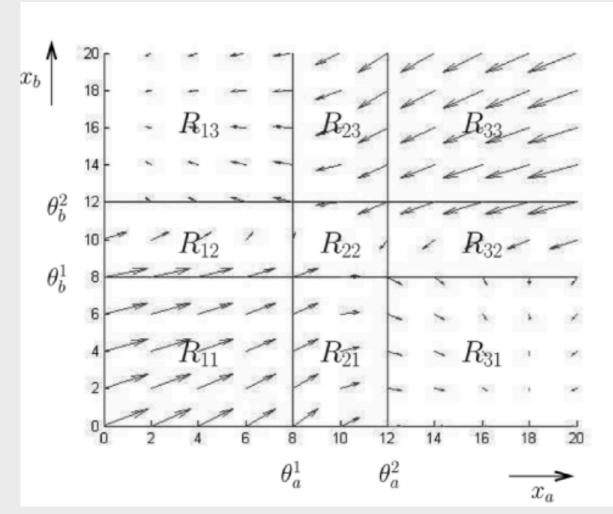
- Under- and over-approximations give partial results.
- Potential remedies:
 - Finer approximations
 - Bisimulations



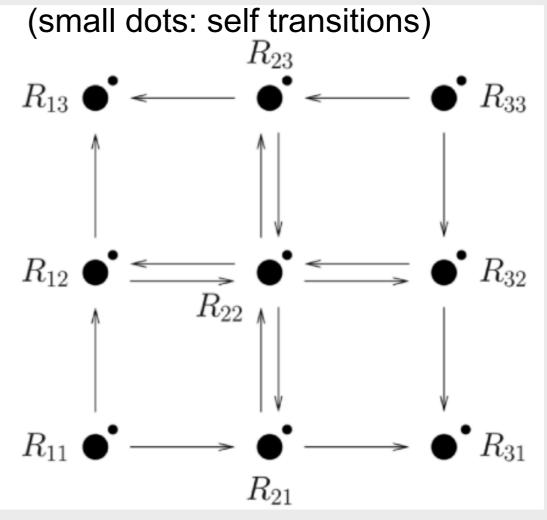
Example: verification

System models:

Continuous vector field:



Discrete over-approximation:



Specifications:

$$(x_a < \theta_a^1 \land x_b > \theta_b^2 \to \square (x_a < \theta_a^1 \land x_b > \theta_b^2))$$

$$\land (x_b < \theta_b^1 \land x_a > \theta_a^2 \to \square (x_b < \theta_b^1 \land x_a > \theta_a^2))$$

Holds for the over-approximation; hence, also for the system itself.

$$\Diamond \left(x_a < \theta_a^2 \lor x_b < \theta_b^2 \right)$$

Does not hold for the over-approximation.

Example from "Temporal logic analysis of gene networks under parametric uncertainty," Batt, Belta, Weiss, Joint special issue of IEEE TAC & Trans on Circuits, 2008.

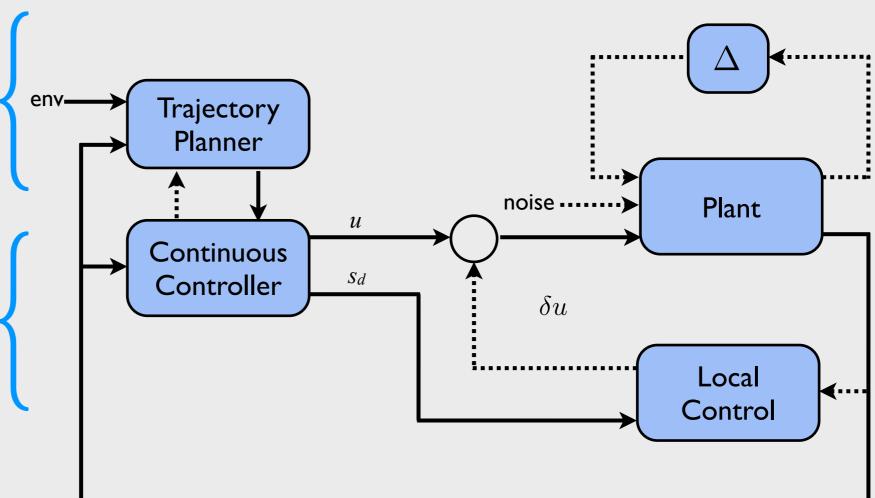
How to construct a finite-state abstraction?

Focus on synthesis: Construct a finite-state under-approximation (of the underlying continuous/hybrid dynamics) such that

- the finite-state model is used in discrete planning, and
- •all provably correct discrete plans can be implemented at the continuous level.

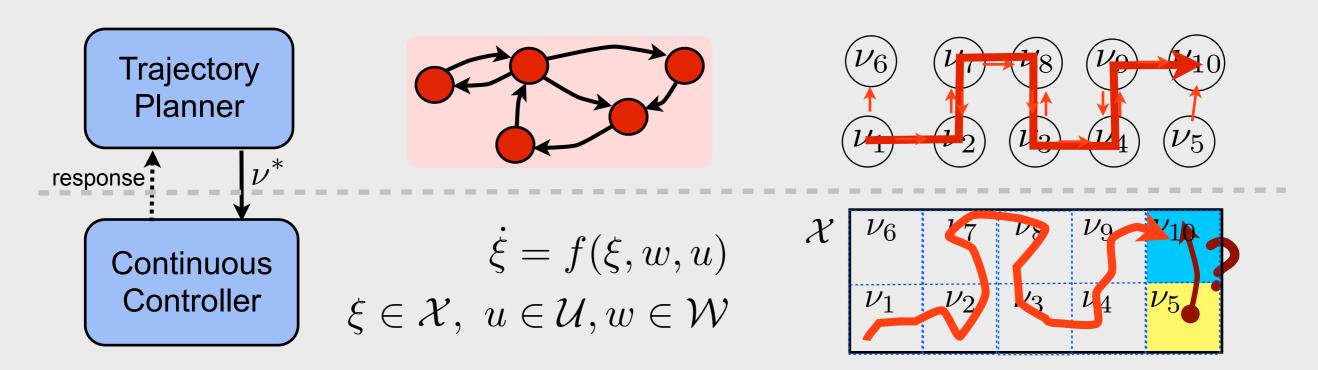
Discrete planner
ensures that
the spec is satisfied

Continuous controller
implements
the discrete plan
(handles low-level
dynamics & constraints)



Incorporating continuous dynamics -- overview

Main idea:



Theorem: For any discrete run satisfying the specification, there exists an admissible control signal leading to a continuous trajectory satisfying the specification.

Proof: Constructive → Finite-state model + Continuous control signals.

Abstraction refinement for reducing potential conservatism.

Finite state abstraction

Given:

- •A system with controlled variables $s \in S$ in domain dom(S) and environment variables $e \in E$ in domain dom(E).
- •Define v = (s, e), $V = S \cup E$ and $dom(V) = dom(S) \times dom(E)$.
- •Controlled variables evolve with (for t = 0,1,2,...):

$$s[t+1] = As[t] + B_u u[t] + B_d d[t] \longleftarrow \text{ admissible control inputs}$$

$$u[t] \in U \longleftarrow \text{ admissible control inputs}$$

$$d[t] \in D \longleftarrow \text{ exogenous disturbances}$$

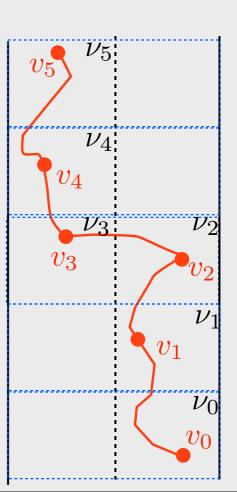
$$s[0] \in dom(S)$$

$$s[t+1] \in dom(S)$$

$$s[t+1] \in dom(S)$$

•System specification φ

Find: A finite transition system with discrete states ν such that for any sequence $\nu_0\nu_1\dots$ satisfying φ , (very roughly speaking) there exists a sequence of admissible control signals leading to an infinite sequence $v_0v_1v_2\dots$ that satisfies φ .

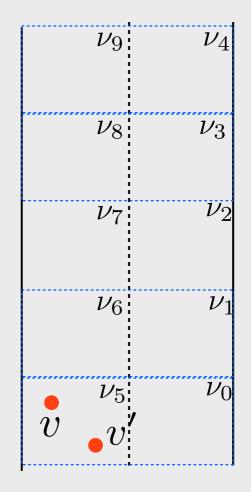


Proposition preserving partition

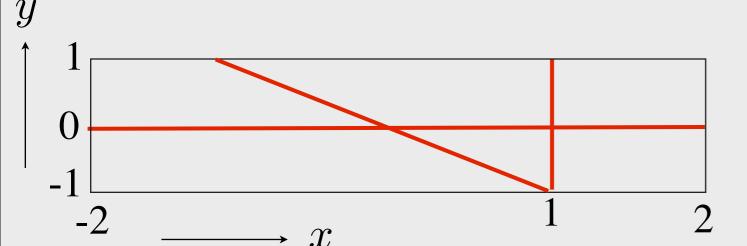
Given dom(V) and atomic propositions in Π .

A partition of dom(V) is said to be proposition preserving if, for any atomic proposition $\pi \in \Pi$ and any states v and v' that belong to the same cell of the partition, v satisfies π if and only if v' satisfies π .

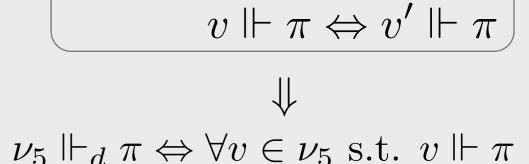
A discrete state ν is said to satisfy π if and only if there exists a continuous state v, in the cell labeled, that satisfies π .



Example:
$$\Pi = \{x \le 1, y \ge 0, x + y \ge 0, \ldots\}$$



$\nu_5 \Vdash_d \pi \Leftrightarrow \exists v \in \nu_5 \text{ s.t. } v \Vdash \pi$ + proposition preserving:



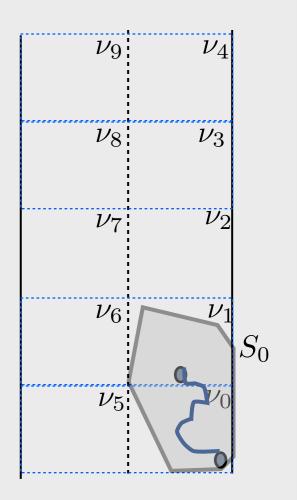
Finite-time reachability

A discrete state ν_j is finite-time reachable from a discrete state ν_i , only if starting from any $s[0] \in T_s^{-1}(\nu_i)$, there exists

- a finite horizon length $N \in \{0, 1, \ldots\}$
- for <u>any</u> allowable disturbance, there exists
 - $u[0], u[1], \dots, u[N-1] \in U \text{ such that }$

$$s[N] \in T_s^{-1}(\nu_j)$$

$$s[t] \in T_s^{-1}(\nu_i) \cup T_s^{-1}(\nu_j), \ \forall t \in \{0, \dots, N\}$$



Verifying the reachability relation:

- Compute the set S_0 of s[0] from which $T_s(\nu_j)$ can be reached under the system dynamics in a pre-specified time N.
- Check whether $T_s^{-1}(\nu_i) \subseteq S_0$.

$$\begin{array}{l} \text{system} \\ \text{dynamics} \end{array} \left\{ \begin{array}{l} s[t+1] = As[t] + B_u u[t] + B_d d[t] \\ u[t] \in U \\ d[t] \in D \\ s[0] \in dom(S) \\ s[t+1] \in dom(S) \end{array} \right.$$

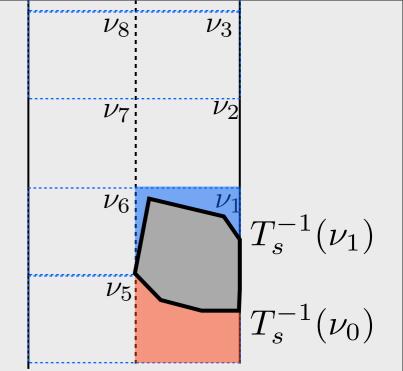
Computing S_0

Given N and polyhedral sets

$$T_s^{-1}(\nu_i) = \{s \in \mathbb{R}^n : L_1 s \le M_1\}$$

 $U = \{u \in \mathbb{R}^m : L_2 u \le M_2\}$
 $T_s^{-1}(\nu_i) = \{s \in \mathbb{R}^n : L_3 s \le M_3\}.$

 S_0 is computed as the set of s_0 such that there exist $u[0], \ldots, u[N-1]$ satisfying $L_2u[t] \leq M_2$, for $t \in \{0, \ldots, N-1\}$, leading to



$$L_1 s[t] \le M_1 \text{ for } t = 0, \dots, N-1$$

$$L_3s[N] \leq M_3$$

affine in s0 and u

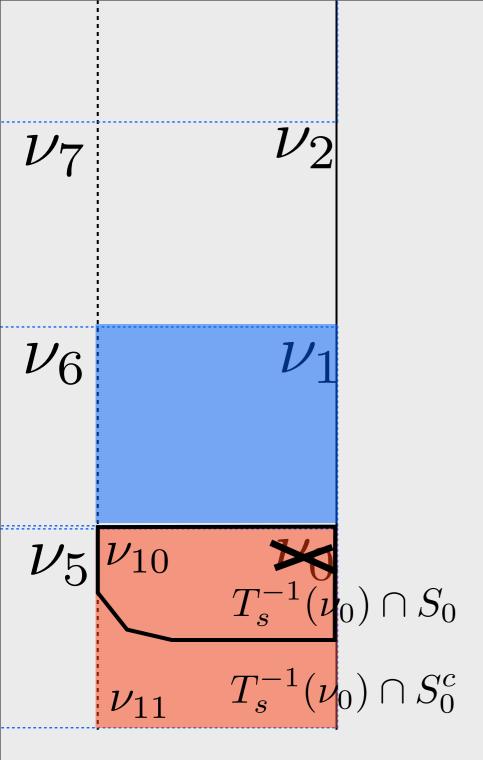
where

$$s[t] = A^t s_0 + \sum_{k=0}^{t-1} (A^k B_u u[t-1-k] + A^k B_d d[t-1-k]),$$

for all $d[0], \ldots, d[N-1] \in D$ (D polyhedral).

Put together: S_0 is computed as a polytope projection:

$$S_0 = \left\{ s_0 \in \mathbb{R}^n : \exists \hat{u} \in \mathbb{R}^{mN} \text{ s.t. } L \left[\begin{array}{c} s_0 \\ \hat{u} \end{array} \right] \leq M - G\hat{d}, \ \forall \hat{d} \in \bar{D}^N \right\}$$
 stacking of u and d set of vertices of $D^N = D \times \cdots \times D$



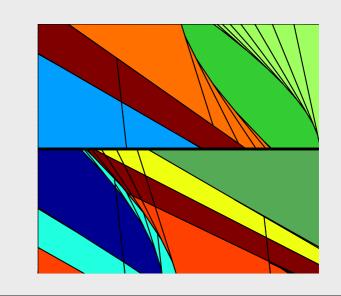
Refining the partition

While checking the reachability from $T_s^{-1}(\nu_i)$ to $T_s^{-1}(\nu_j)$, if $T_s^{-1}(\nu_i) \nsubseteq S_0$, then

- Split $T_s^{-1}(\nu_i) \cap S_0$ and $T_s^{-1}(\nu_i) \cap S_0^c$
- Remove ν_i from the set of discrete states
- Add two new discrete states corresponding to $T_s^{-1}(\nu_i) \cap S_0$ and $T_s^{-1}(\nu_i) \cap S_0^c$
- Repeat until no cell can be sub-partitioned s.t. the volumes of the two resulting new cells both greater than Vol_{min} .
- Smaller Vol_{min} leads to more cells in the partition and more allowable transitions.
- If the initial partition is proposition preserving, so is the resulting.

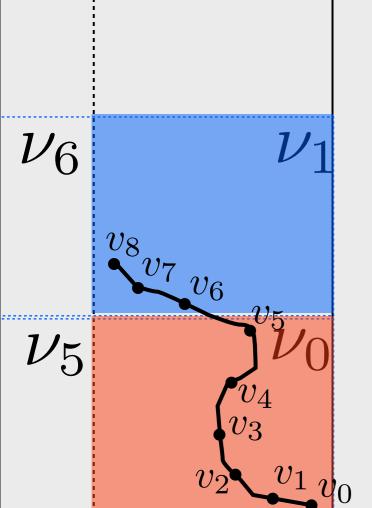
Define the finite transition system \mathbb{D} , an abstraction of \mathbb{S} as:

- $\mathcal{V} := \mathcal{S} \times \mathcal{E}$, set of discrete states
- (both controller and environment)
- $\nu_i = (\varsigma_i, \epsilon_i) \rightarrow v_j = (\varsigma_j, \epsilon_j)$ only if ς_j is reachable from ς_i .



ν_7

Correctness of the hierarchical implementation



Using

- Proposition preserving property of the partition
- $\mathbb D$ only includes the transitions that are implemented by the control signal u within some finite time (by construction through the reachability formulation)
- Stutter invariance of the specification φ , ...

Two words σ_1 and σ_2 over 2^{AP} are stutter equivalent, if there exists an infinite sequence $A_0A_1A_2...$ of sets of atomic propositions and natural numbers $n_0, n_1, n_2, ...$ and $m_0, m_1, m_2, ...$ such that σ_1 and σ_2 are of the form

$$\sigma_1 = A_0^{n_0} A_1^{n_1} A_2^{n_2} \dots \qquad \sigma_2 = A_0^{m_0} A_1^{m_1} A_2^{m_2} \dots$$

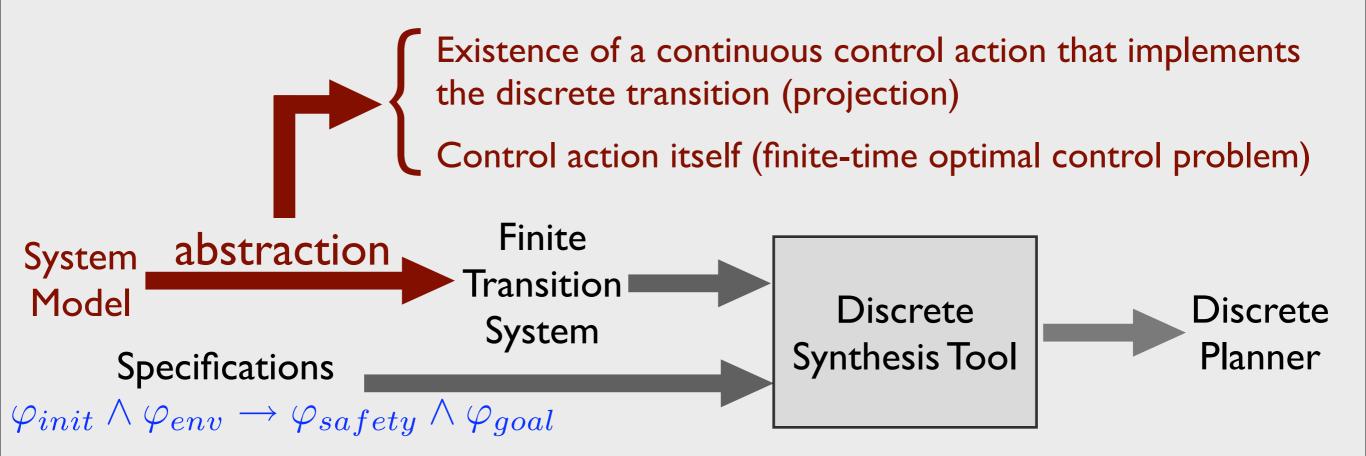
An LT property P is stutter-invariant if for any word $\sigma \in P$ all stutter-equivalent words are also contained in P.

Example: $v_0v_1 \dots v_8 \dots$ and $\nu_0\nu_1 \dots$ are stutter-equivalent.

...we can prove:

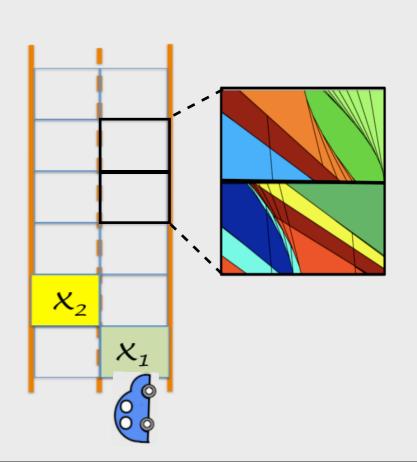
Let $\sigma_d = \nu_0 \nu_1 \dots$ be a sequence in \mathbb{D} with $\nu_k \to \nu_{k+1}$, $\nu_k = (\varsigma_k, \epsilon_k)$, $\varsigma_k \in \mathcal{S}$ and $\epsilon_k \in \mathcal{E}$. If $\sigma_d \models_d \varphi$, then by applying a sequence of control signals from the Reachability Problem with initial set $T_s^{-1}(\varsigma_k)$ and final set $T_s^{-1}(\varsigma_{k+1})$, the sequence of continuous states $\sigma = v_0 v_1 v_2 \dots$ satisfies φ .

How to use abstractions for synthesis?



Starting with a proposition preserving partition:

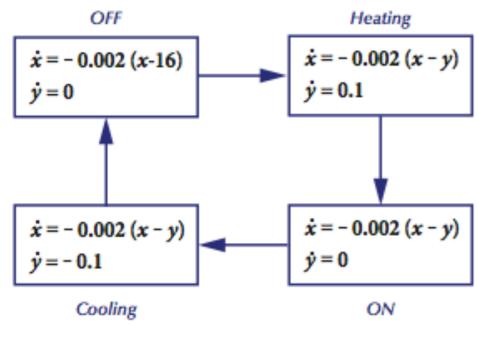
- Finite-time reachability to determine discrete transitions
- Refine the partition to increase the number of valid discrete transitions

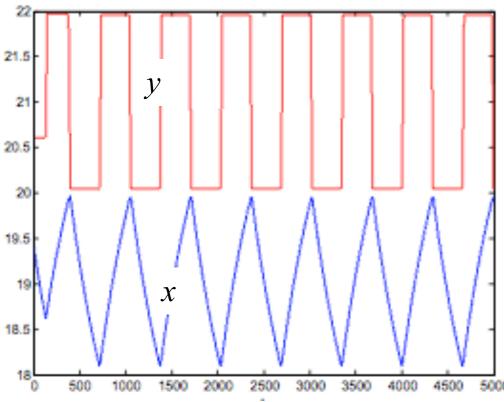


Example: synthesis

A four-mode thermostat:

x: room temperature, *y*: heater temp



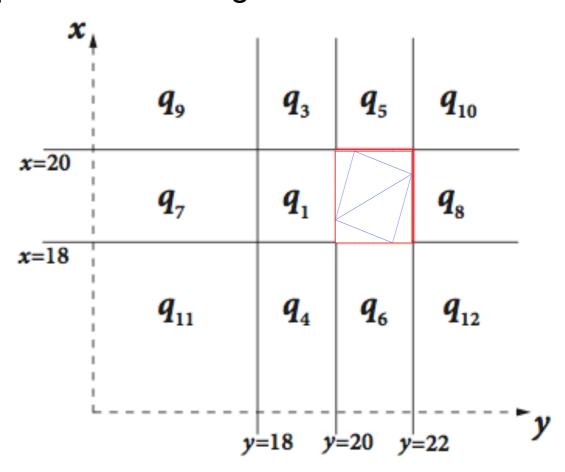


Find a switching sequence such that:

$$(18 \le x \le 20 \land 20 \le y \le 22) \rightarrow$$

$$\Box (18 \le x \le 20 \land 20 \le y \le 22))$$

Construct an over-approximation using the partition in the figure below.



States in the finite-state abstraction:

$$(q_{i,mode})$$

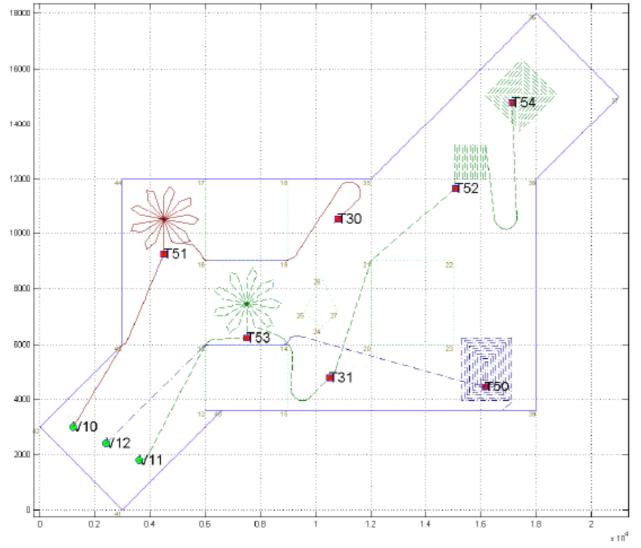
mode ∈ {off, heating, on, cooling}

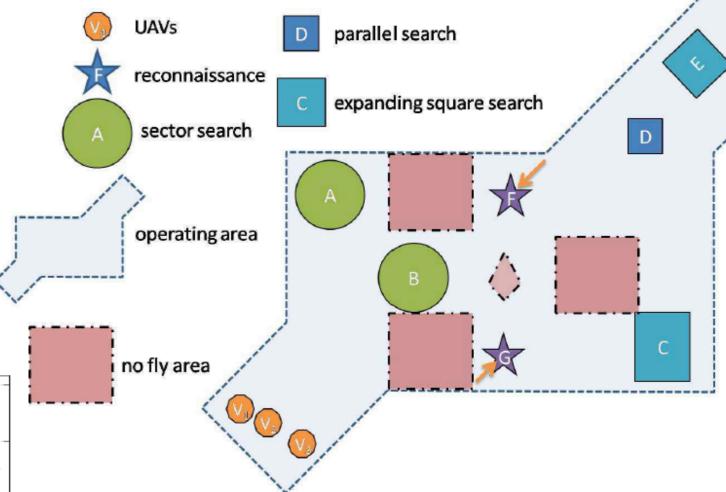
Abstractions using primitives

A task-level abstraction of the system using a library of primitives (low-level controllers) for

- executing tasks and
- transitioning between tasks

Figures from "Assignment of Heterogeneous Tasks to a Set of Heterogeneous Unmanned Aerial Vehicles," Rasmussen & Kingston (AFRL).

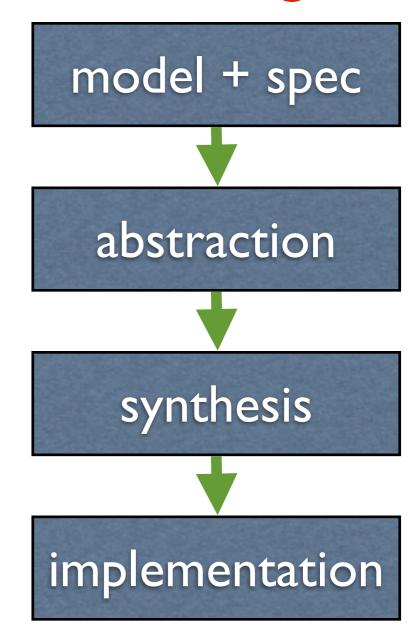




- The level of abstraction dictates the level at which it can be specified.
- Task-level abstraction allows tasklevel specifications, e.g.
 - never enter no-fly-area
 - every reconnaissance is eventually followed by a search
 - pop-up tasks have priority

Abstraction-based hierarchical control design

- Given $\dot{x} = f(x, u)$ and LTL formula ϕ .
- Compute finite-state, proposition preserving approximations.
- Solve a discrete synthesis problem and obtain a discrete control strategy.
- Implement the discrete control strategy to ensure that all trajectories of $\dot{x} = f(x, u)$ satisfies ϕ .



Issues:

- What approximations are appropriate and how to compute them?
- What discrete synthesis problems to solve and how to solve them?

Motion planning for flat systems

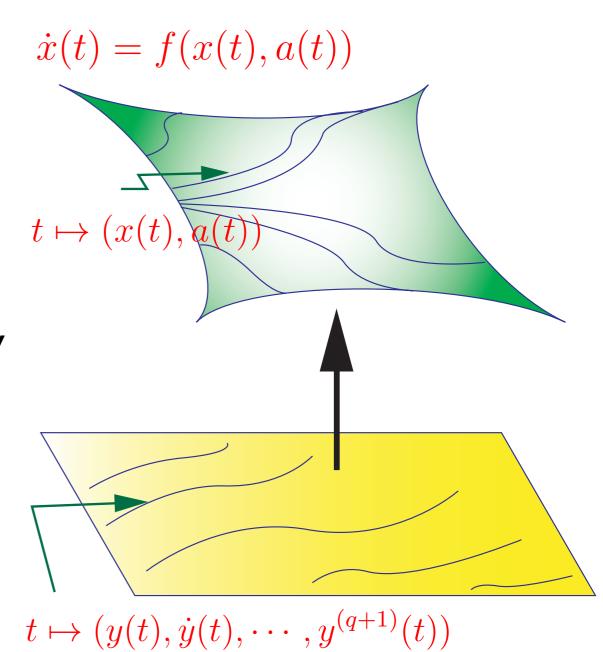
• Flat systems:

$$\dot{x} = f(x, a), \quad y = h(x),$$
 $x = \Gamma(y, \dot{y}, \dots, y^{(q)}),$
 $a = \Theta(y, \dot{y}, \dots, y^{(q+1)}).$

• To every curve $t \mapsto y(t)$ that is sufficiently smooth, there corresponds a trajectory

$$t \mapsto \begin{bmatrix} x(t) \\ a(t) \end{bmatrix} = \begin{bmatrix} \Gamma(y(t), \dot{y}(t), \cdots, y^{(q)}(t)) \\ \Theta(y(t), \dot{y}(t), \cdots, y^{(q+1)}(t)) \end{bmatrix}$$

that identically satisfies the system equation.



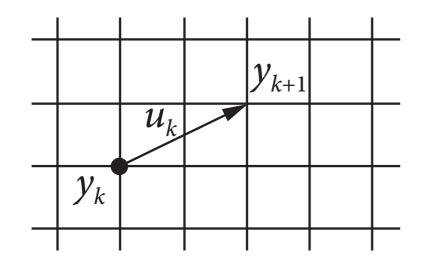
Construction of finite abstraction

• Let \mathbb{Z}^m denote the integral lattice in \mathbb{R}^m and define

$$U_{\mu} := \mu \mathbb{Z}^m \cap U, \quad Y_{\eta} := \eta \mathbb{Z}^m \cap Y, \quad \mu \mathbb{Z}^m := \{ \mu z : z \in \mathbb{Z}^m \}$$

where U and Y are compacts in \mathbb{R}^m and $\mu > 0$, $\eta > 0$.

ullet Define a labelled transition system $\,TS=(Y_\eta,U_\mu,
ightarrow)$ by



$$\begin{pmatrix} k & k & k+1 \end{pmatrix}$$
 if and only of $u_k = (y_{k+1} - y_k)/ au$

where $\tau = \eta/\mu$.

• The abstraction is trivial in the sense that it connects all grid points as long as they can be reached at a "feasible rate".

Continuous-time implementation

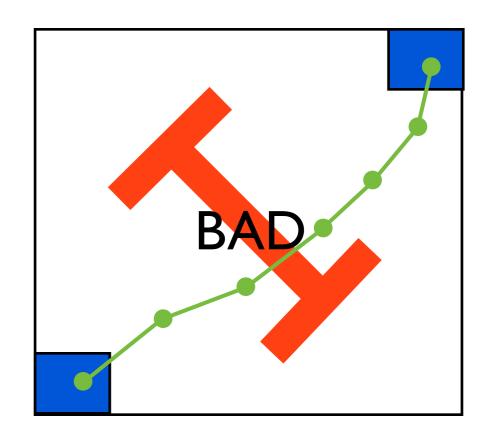
- Consider a sequence y_0, y_1, y_2, \cdots such that $y_0 \models \varphi$
- Suppose y(t) is a continuous-time output trajectory such that

$$y(0) = y_0, \ y(\tau) = y_1, \ \cdots, \ y(k\tau) = y_k, \cdots$$

• Does this output trajectory satisfy $y(0) \Vdash \varphi$?

Correctness of y(t) depends on

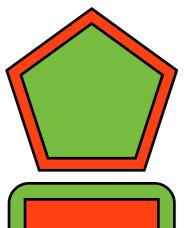
- Size of sampling time.
- Rate of dynamics.
- How "robust" does $y_0 \models \varphi$?



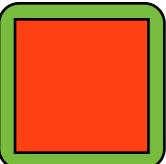
Robust interpretation of LTL formulas

• We use a notion of robustness for an LTL formula to be satisfied (Fainekos et al. (2009)).

ε-contraction and ε-inflation of atomic propositions (sets)



$$\llbracket \pi_{\varepsilon} \rrbracket := \{ z \in \llbracket \pi \rrbracket : z + \varepsilon \mathbb{B} \in \llbracket \pi \rrbracket \}$$



$$\llbracket \pi^{\varepsilon} \rrbracket := \llbracket \pi \rrbracket + \varepsilon \mathbb{B}$$

ε-contraction $φ^ε$ (ε-inflation $φ_ε$) of an LTL formula φ

- Write any given LTL formula ϕ in Negation Normal Form (NNF).
- Treat negations of atomic propositions as new atomic propositions.
- Replace all atomic propositions by their ϵ -contraction. " ϕ^{ϵ} is satisfied" implies " ϕ is satisfied with a robustness margin ϵ ".

Reasoning of correctness between sequences and trajectories

Sequence to trajectory:

y(t): linear interpolation at y_k 's

$$\sup_{k\geq 0} |y_{k+1} - y_k| \leq \Delta \\
y_0 \models \varphi$$

$$y(0) \Vdash \varphi^{\Delta/2}$$

Trajectory to sequence:

y(t) is Lipschitz with constant γ

$$\begin{cases} y_k = y(k\tau) \\ y(0) \Vdash \varphi \end{cases} \Longrightarrow y_0 \vDash \varphi^{\gamma\tau/2}$$

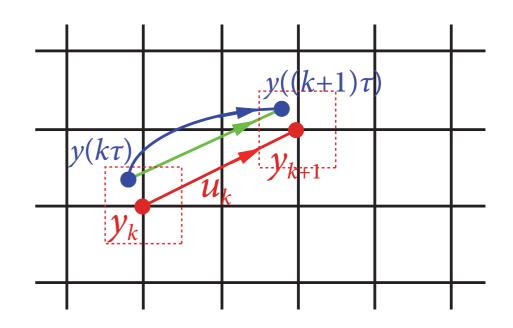
Generating correct trajectories for flat systems

Consider the following trajectories:

 $\tilde{y}(t)$: linear interpolation at y_k 's

 $\hat{y}(t)$: linear interpolation at y(kT)'s

y(t): the output to be generated



Polynomial basis:

$$y(t) = \sum_{i=0}^{2q+1} c_i (t - k\tau)^i / \tau^i, \quad t \in [k\tau, (k+1)\tau]$$

Error estimate:

$$|y(t) - \hat{y}(t)| \le C\tau, \quad t \in [k\tau, (k+1)\tau]$$

Correctness implication:

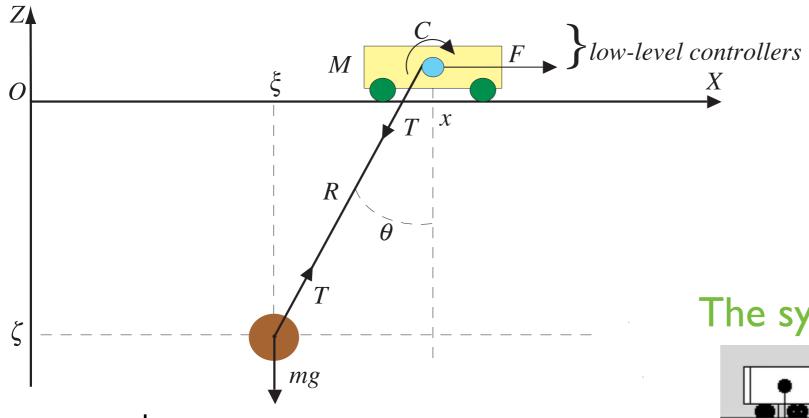
$$y_0 \vDash \varphi_\delta \Longrightarrow y(0) \Vdash \varphi_\varepsilon \Longrightarrow y(0) \Vdash \varphi$$

provided that

$$0 < \varepsilon \le \delta - u_{\text{max}} \tau / 2 - \eta / 2 - C\tau$$
, $|u| \le u_{\text{max}}$ for all $u \in U_{\mu}$

Control of 2-D overhead crane

Overhead crane (Levine, 2009)



(ξ, ζ)	position of load
X	position of trolley
R	length of rope
Т	tension of rope
θ	angle of rope
F	force
С	torque

Equation of motion

$$m\ddot{\xi} = -T\sin\theta$$

$$m\ddot{\zeta} = T\cos\theta - mg$$

$$M\ddot{x} = -\gamma_1(\dot{x}) + F + T\sin\theta$$

$$\frac{J}{\rho}\ddot{R} = -\gamma_2(\dot{R}) - C + T\rho$$

$$\xi = x + R\sin\theta$$

$$\zeta = -R\cos\theta.$$

The system has flat outputs (ξ, ζ) .

