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• Brief review: where we are at in the course so far
• Barrier certificates and verification of hybrid control systems
• Verification of async control protocols for multi-agent, cooperative control
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Formal Methods for System Verification
Specification using LTL
• Linear temporal logic (LTL)

is a math’l language for 
describing linear-time prop’s

• Provides a particularly useful
set of operators for construc-
ting LT properties without 
specifying sets

Methods for verifying an LTL 
specification
• Theorem proving: use formal

logical manipulations to show
that a property is satisfied for a
given system model
• Model checking: explicitly check all possible executions of a system model and verify 

that each of them satisfies the formal specification
- Roughly like trying to prove stability by simulating every initial condition
- Works because discrete transition systems have finite number of states
- Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)
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Subsystem/agent dynamics - continuous

Agent mode (or “role”) - discrete
•             encodes internal state + 

relationship to current task

• Transition 

Communications graph
• Encodes the system information flow

• Neighbor set 

Communications channel
• Communicated information can be lost, 

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode task as finite horizon optimal 

control + temporal logic (assume coupled)

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

Hybrid, Multi-Agent System Description
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Hybrid system: H = (X , L,X0, I, F, T ) with

• X , continuous state space;

• L, finite set of locations (modes);

• Overall state space X = X � L;

• X0 ⇥ X, set of initial states;

• I : L⇤ 2X , invariant that maps
l ⌅ L to the set of possible
continuous states while in location l;

• F : X ⇤ 2Rn

, set of vector fields,
i.e., ẋ ⌅ F (l, x);

• T ⇥ X �X, relation capturing
discrete transitions between locations.

I(�1)

X

L = {�1, �2, �3}

I(�2)

I(�3)

(l, x)
(l�, x�)

A (simple) hybrid system model
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Verification of hybrid systems: Overview
Why not directly use model checking?
• Model checking applied to finite transitions systems
• Exhaustively search for counterexamples....

• if found, property does not hold.
• if there is no counterexample in all possible executions, the property is verified. 

Exhaustive search is not possible over continuous state spaces. 

Approaches for hybrid system verification: 
1. Construct finite-state approximations and 
apply model checking

•Preserve the meaning of the properties, 
i.e., proposition preserving partitions

•Use “over”- or “under”-approximations

X

2. Deductive verification
•Construct Lyapunov-type certificates
•Account for the discrete jumps in the 
construction of the certificate

3. Explicitly construct the set of reachable states
•Limited classes of temporal properties (e.g., reachability and safety)
•Not covered in this lecture
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What does deductive verification mean?
Example with continuous, nonlinear dynamics:

ẋ(t) = f(x(t))

where                                                 is an asymptotically stable equilibrium.                                                 x(t) 2 Rn
, f(0) = 0, x = 0

Region-of-attraction: R :=
n

x : lim
t!1

�(t;x) = 0
o

Question 1 (a system analysis question):
Given                , is      invariant and            ? S ⇢ Rn S S � R the question we want to answer

V : Rn ! R
Question 2 (an algebraic question):
Does there exist a continuously differentiable function                      such that 

• V is positive definite,
• V(0) = 0,
•  
•             ?
� := {x : V (x) � 1} ⇥ {x : ⌅V · f(x) < 0} ⇤ {0}
S ✓ ⌦

the question we attempt to answer

Yes to Question 2  → Yes to Question 1.
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Barrier Certificates - Safety

Xunsafe

Xinitial

X

Safety property holds if there exists 
no             and trajectory such that:             T � 0

x = �(0;x) � Xinitial

�(T ;x) � Xunsafe

�(t;x) � X ⇥t � [0, T ].

ẋ(t) = f(x(t))
Suppose there exists a differentiable 
function B such that

Then, the safety property holds.  

B(x) � 0, ⇤x ⇥ Xinitial

B(x) > 0, ⇤x ⇥ Xunsafe

�B

�x
f(x) � 0, ⇤x ⇥ X .

Continuous dynamics: Hybrid dynamics:
H = (X , L,X0, I, F, T )

Suppose there exist differentiable functions      
(for each mode) such that

Then, the safety property holds.  

Bl

Bl(x) � 0, ⇤x ⇥ I(l) ⌅ Xinitial

Bl(x) > 0, ⇥x � I(l) ⇤ Xunsafe

�Bl

�x
F (x)  0, 8x 2 I(l)

Bl0(x
0
)�Bl(x)  0, for each jump

(l, x) ! (l0, x0)
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Barrier Certificates - Eventuality
Eventuality property holds if for all            
                   ,

for some non-negative T.

�(T ;x0) � Xtarget

x0 � Xinitial

�(t;x0) � X , ⇥t � [0, T ]

ẋ(t) = f(x(t))

Xinitial

X
Xtarget

X , Xtarget, Xinitial are bounded

Suppose that f is continuously differentiable 
and there exists a continuously differentiable 
function B such that

Then, the eventuality property holds.  

B(x) � 0, ⇤x ⇥ Xinitial

B(x) > 0, ⇤x ⇥ �X\�Xtarget

�B

�x
(x) · f(x) < 0, ⇤x ⇥ X\Xtargetleave X\Xtarget in finite time

don’t leave X
before reaching Xtarget

notation: set closure

• Straightforward extensions for hybrid dynamics as in safety verification are possible.
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Composing Barrier Certificates 79
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Figure 4.5: Verifying the temporal properties of a Van der Pol oscillator with dis-
turbance. We want to verify that under all possible disturbance input, if the system
starts in XA, then both XB and XC are reached in finite time, but XC will not be
reached before the system reaches XB. The nominal trajectory of the system (i.e., for
d = 0) starting at x = (0, 2) is depicted by the solid curve.

where d is the disturbance input, taking its value in D = [−0.25, 0.25] ⊂ R. Let

X = {x ∈ R2 : 0.5 ≤ ‖x‖2 ≤ 5}. In addition, let

XA = {x ∈ R
2 : (x1)

2 + (x2 − 2)2 ≤ 1},

XB = {x ∈ R
2 : (x1 − 2)2 + (x2)

2 ≤ 1},

XC = {x ∈ R
2 : (x1)

2 + (x2 + 2)2 ≤ 1}.

These sets are depicted in Figure 4.5, where a nominal trajectory of the system

starting at x = (0, 2) is also shown. Our objective in this example is to verify that

under all possible piecewise continuous and bounded disturbance d(t), if the system

starts in XA, then both XB and XC are reached in finite time, but XC will not be

reached before the system reaches XB.

To verify this temporal specification, we will search for two barrier certificates
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B1(x) and B2(x) satisfying the following conditions:



















B1(x) ≤ 0 ∀x ∈ XA,

B1(x) > 0 ∀x ∈ ∂X ∪ XC ,

∂B1

∂x (x)f(x, d) ≤ −ε ∀(x, d) ∈ (X \ XB) ×D,


















B2(x) ≤ 0 ∀x ∈ XA,

B2(x) > 0 ∀x ∈ ∂X ,

∂B2

∂x (x)f(x, d) ≤ −ε ∀x ∈ (X \ XC) ×D,

for some positive ε. Using sum of squares optimization, polynomial B1(x) and B2(x)

of degree ten can be found, thus the temporal specification is verified.

If system starts in XA,
then both XB and XC

are reached in finite
time, but XC will not
be reached before
system reaches XB .

Prajna, Ph.D. Thesis,  2005.
incorporating 
disturbances and 
uncertainties
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Constructing Barrier Certificates
Step 1: System properties → algebraic conditions
• Lyapunov functions, barrier certificates, dissipation 

inequalities

Step 2: Algebraic conditions → numerical optimization
• Restrict attention to polynomial vector fields, polynomial certificates
• S-procedure like conditions for set containment constraints
• Sum-of-square (SOS) relaxations for polynomial non-negativity
• Convert to semi-definite programming (SDP) problems

Step 3: Solve resulting set of SDPs
• Often in the form of linear matrix inequalities (LMIs)

Step 4: Construct polynomial certificates based on SDP 
solutions

More details: see references on course web page
• Basic message: using barrier certificates we can verify some LTL-like properties for 

hybrid dynamical systems
• Problems: properties are somewhat limited; computations become intractable quickly

{

Generally
taken care of 
by software 
packages.

{
Problem-

dependent
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RoboFlag Subproblems
1.Formation control

• Maintain positions to 
guard defense zone

2.Distributed estimation
• Fuse sensor data to 

determine opponent 
location

3.Distributed assignment
• Assign individuals to tag 

incoming vehicles

Desirable features for designing and verifying distributed protocols
• Controls: stability, performance, robustness
• Computer science: safety, fairness, liveness
• Real-world: delays, asynchronous executions, (information loss)
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Distributed Decision Making: RoboFlag Drill
Klavins

CDC, 03

Task description
• Incoming robots should be blocked by 

defending robots
• Incoming robots are assigned randomly to 

whoever is free
• Defending robots must move to block, but 

cannot run into or cross over others
• Allow robots to communicate with left and 

right neighbors and switch assignments

Goals
• Would like a provably correct, distributed 

protocol for solving this problem
• Should (eventually) allow for lost data, 

incomplete information

Questions
• How do we describe task in terms of LTL?
• Given a protocol, how do we prove specs?
• How do we design the protocol given specs?

zi

yj
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P(k1,k2) := {
  initializers
  guard1:rule1
  guard2:rule2
   ...

}

S(k1,k2):=P(k1,k2)+C(k1+1) sharing y,u

"soup" of 
guarded commands

composition = union

non-shared variables 
remain local to 

component programs

CCL: Computation and Control Language
Formal Language for Provably Correct Control Protocols

CCL Interpreter

Formal programming lang-
uage for control and comp-
utation. Interfaces with 
libraries in other languages. 

Automated Verification
CCL encoded in the Isabelle 
theorem prover; basic specs 
verified semi-automatically. 
Investigating various model 
checking tools.

Formal Results
Formal semantics in transition 
systems and temporal logic. 
RoboFlag drill formalized and 
basic algorithms verified.

CCL Protocol for
Decentralized 

Target Allocation
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Guarded Command Programs

• Non-deterministic execution schedule 
models concurrency

• Easy to reason about programs
• Guarded commands = update functions
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g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8

P = ( I,                                    )

Initial 
Predicate

Command 
Soup

x > 0 : x' < x

inbox(i) : x' =recv(i)

current state

Any sequence of states produced by this process is a possible behavior 
of the system. We want to reason about them all. 

CCL

Choose s so that s |= I 

Choose g:r 

g(s)?

Choose s' so that r(s,s')
set s := s'

yesno

skip
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Scheduling and Composition

15

Program composition:
(I1,C1) + (I2,C2) = ( I1∧I2, C1∪C2 )

EPOCH
Each command is 
executed before any 
are again.

SYNCH(τ)
In any interval, the difference in 
the number of times any two 
commands are executed is ≤ τ.

UNITY
Each command must be 
executed infinitely often.

CCL
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include standard.ccl

program plant ( a, b, x0, delta ) := { 
  x := x0; 
  y := x; 
  u := 0.0; 
  true : { 
    x := x + delta * ( a * x + b * u ), 
    y := x, 
    print ( " x = ", x, "\n" ) 
  }; 
}; 

program control() := {
  y := 0.0; 
  u := 0.0; 
  true : { u := -y }; 
}; 

program sys ( a, b, x0 ) := plant ( a, b, x0, 0.1 ) +
                            control ( 2*a/b ) sharing u, y;

exec sys ( 3.1, 0.75, 15.23 ); 

An Example CCL Program

  x = 3.216250
  x = 3.095641
  x = 2.979554
  x = 2.867821
  x = 2.760278
  x = 2.656767
  x = 2.557138
  x = 2.461246
  x = 2.368949
  x = 2.280113
  x = 2.194609
  x = 2.112311
  x = 2.033100
  x = 1.956858
  x = 1.883476
  x = 1.812846
  x = 1.744864
  x = 1.679432
  x = 1.616453

  ...
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Defensive Zone
0

a b

c

Example: RoboFlag Drill
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Defensive Zone
0

a b

c

i        j

α(j) is too far down 
for i to get

RoboFlag Control Protocol

=
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fun r i j . 
  if red[alpha[j]][1] < abs ( blue[i] - 
red[alpha[j]][0] ) 
    then 1 
    else 0
  end;

fun switch i j .  
  r i j + r j i < r i i + r j j 
  | ( r i j + r j i = r i i + r j j 
    & red[alpha[i]][0]  > red[alpha[j][0] );

program ProtoPair ( i, j ) := {

  temp := 0;

  switch i j : {
    temp := alpha[i],
    alpha[i] := alpha[j],
    alpha[j] := temp,
  }

};

program Blue ( i ) := {

  red[alpha[i]][0] > blue[i] & blue[i] + 
delta < toplimit i : {
    blue[i] := blue[i] + delta
  }

  red[alpha[i]][0] < blue[i] & blue[i] - 
delta > botlimit i : {
    blue[i] := blue[i] - delta
  }

};

CCL Program for Switching Assignments

program Red ( i ) := {

  red[i][1] > delta : { 
    red[i][1] := red[i][1] - delta
  }

  red[i][1] < delta : {
    red[i] := { rrand 0 n, rrand lowerlimit 
n }
  }

};
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Safety (Defenders do not collide) 

Stability (switch predicate stays false)

“Lyapunov” stability
• Let ρ be the number of blue robots that are too far away to reach their red robots

• Let β be the total number of conflicts in the current assignment

• Define the Lyapunov function that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.

20

V =
⇤�

n

2

⇥
+ 1

⌅
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n⇥

i=1

n⇥

j=i+1

⇥(i, j) where ⇥(i, j) =

�
1 if x�(i) > x�(j)

0 otherwise
� =

n�

i=1

r(i, i)

• skip  ∀v . v’ = v state remains unchanged  
• p co q ¨(p → [(◯q ∨ skip) ∧ ◊◯q]) 

  “if p is true, then next time state 
  changes, q will be true”

True if robots i and i +1 have targets
that cause crossed paths
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Thm  Prf(n) ⊨ ¨ zi < zi+1

- For the RoboFlag drill with n defenders and n attackers, the location of defender  
will always be to the left of defender i+1.

More notation:
• Hoare triple notation: {p} a {q} ≡ ∀ s → t, s ⊨ p → t ⊨ q

- {p} a {q} is true if the predicate p being true implies that q is true after action a

Lemma (Klavins, 5.2) Let P = (I, C) be a program and p and q be predicates.  If for all 
commands c in C we have {p} c {q} then P ⊨ p co q.

- If p is true then any action in the program P that can be applied in the current 
state leaves q true

- Thus to check if p co q is true for a program, check each possible action

Proof.  Using the lemma, it suffices to check that for all commands c in C we have {p} c 
{q}, where p = q = zi < zi+1.  So, we need to show that if zi < zi+1 then any command that 
changes zi or zi+1 leaves the order unchanged.  Two cases: i moves or i+1 moves.  For 
the first case, {p} c {q} becomes

From the definition of the guarded command, this is true.  Similar for second case. 

Sketch of Proof for RoboFlag Drill
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zi < zi+1 ⇤ (zi < x�(i) ⇤ zi < zi+1 � � : z�
i = zi + �) =⇥ z�
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RoboFlag Simulation

Project 2: create a model of the RoboFlag drill in Promela
and verify correctness using SPIN model checker

Project 3: create a specification for the RoboFlag drill and
synthesize a (decentralized) protocol to solve it [later]
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Planner Stack
Mission Planner performs high level decision-making
• Graph search for best routes; replan if routes are blocked

Traffic Planner handles rules of the road
• Control execution of path following & planning (multi-point turns)
• Encode traffic rules - when can we change lanes, proceed thru intersection, etc

Path Planner/Path Follower generate trajectories and track them
• Optimized trajectory generation + PID control (w/ anti-windup)
• Substantial control logic to handle failures, command interface, etc

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Burdick et al, 2007
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Verification of Periodically Controlled Hybrid Systems
Hybrid system: continuous dynamics + discrete updates
• Vehicle

- Captures the state (position, orientation and velocity) of the 
vehicle.

- Specifies the dynamics of the autonomous ground vehicle 
with respect to the acceleration and the angle of the 
steering wheel.

- Limits the magnitude of the steering input to ϕmax.
• Controller

- Receives the state of the vehicle, a path and an externally 
triggered brake input.

- Periodically computes the input steering 
- Restricts the steering angle to δv for mechanical protection 

of the steering.
- Sampling period: Δ ∈ R+.

• Desired properties
- (Safety) At all reachable states, the deviation of the vehicle 

from the current path is upper-bounded by emax.
- (Progress) The vehicle reaches successive waypoints.

24

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Wongpiromsarn, Mitra and M
HSCC09
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Periodically Controlled Hybrid Automata (PCHA)
PCHA setup
• Continuous dynamics with piecewise constant inputs

• Controller executes with period T ∈ [Δ1, Δ2]

• Input commands are received asynchronously
• Execution consists of trajectory segments + discrete updates
• Verify safety (avoid collisions) + performance (turn corner)

Proof technique: verify invariant (safe) set via barrier functions
• Let I be an (safe) set specified by a set of functions Fi(x) ≥ 0
• Step 1: show that the control action renders I invariant
• Step 2: show that between updates we can bound the continuous

trajectories to live within appropriate sets
• Step 3: show progress by moving between nested collection of

invariant sets I1 → I2, etc

Remarks
• Can use this to show that settings in Alice were not properly chosen; modified 

settings lead to proper operation (after the fact)
• Very difficult to find invariant sets (barrier functions) for given control system...

25

Wongpiromsarn, Mitra and M
HSCC09
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Verification of hybrid systems: Overview
Why not directly use model checking?
• Model checking applied to finite transitions systems
• Exhaustively search for counterexamples....

• if found, property does not hold.
• if there is no counterexample in all possible executions, the property is verified. 

Exhaustive search is not possible over continuous state spaces. 

Approaches for hybrid system verification: 
1. Construct finite-state approximations and 
apply model checking

•Preserve the meaning of the properties, 
i.e., proposition preserving partitions

•Use “over”- or “under”-approximations

X

2. Deductive verification
•Construct Lyapunov-type certificates
•Account for the discrete jumps in the 
construction of the certificate

3. Explicitly construct the set of reachable states
•Limited classes of temporal properties (e.g., reachability and safety)
•Not covered in this lecture


