

Lecture 3 Linear Temporal Logic (LTL)

Richard M. Murray Nok Wongpiromsarn Ufuk Topcu California Institute of Technology

EECI, 18 March 2013

Outline

- Syntax and semantics of LTL
- Specifying properties in LTL
- Equivalence of LTL formulas
- Fairness in LTL
- Other temporal logics (if time)

Principles of Model Checking, Christel Baier and Joost-Pieter Katoen. MIT Press, 2008.

Chapter 5

Formal Methods for System Verification

Specification using LTL

- Linear temporal logic (LTL) is a math'l language for describing linear-time prop's
- Provides a particularly useful set of operators for constructing LT properties without specifying sets

Methods for verifying an LTL specification

• *Theorem proving*: use formal logical manipulations to show that a property is satisfied for a given system model

- *Model checking*: explicitly check all possible executions of a system model and verify that each of them satisfies the formal specification
 - Roughly like trying to prove stability by simulating every initial condition
 - Works because discrete transition systems have finite number of states
 - Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)

Temporal Logic Operators

Two key operators in temporal logic

- ◊ "eventually" a property is satisfied at some point in the future
- □ "always" a property is satisfied now and forever into the future

"Temporal" refers underlying nature of time

- *Linear* temporal logic \Rightarrow each moment in time has a well-defined successor moment
- *Branching* temporal logic \Rightarrow reason about multiple possible time courses
- "Temporal" here refers to "ordered events"; no explicit notion of time

LTL = linear temporal logic

- Specific class of operators for specifying linear time properties
- Introduced by Pneuli in the 1970s (recently passed away)
- Large collection of tools for specification, design, analysis

Other temporal logics

- CTL = computation tree logic (branching time; will see later, if time)
- TCTL = timed CTL check to make sure certain events occur in a certain time
- TLA = temporal logic of actions (Lamport) [variant of LTL]
- µ calculus = for reactive systems; add "least fixed point" operator (more on Thu)

Syntax of LTL

LTL formulas:

 $arphi ::= ext{true} ig| a ig| arphi_1 \wedge arphi_2 ig|
eg arphi ig| igot| igot| igot| arphi_1 \, {\sf U} \, arphi_2$

- a = atomic proposition
- \bigcirc = "next": φ is true at next step
- U = "until": φ₂ is true at some point, φ₁ is true until that time

Operator precedence

- Unary bind stronger than binary
- U takes precedence over \land,\lor and \rightarrow

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

• Same notation as linear time properties: $\sigma \models \phi$ (path "satisfies" specification)

EECI, Mar 2013

Additional Operators and Formulas

"Primary" temporal logic operators

- Eventually $\Diamond \phi$:= true U ϕ ϕ will become true at some point in the future
- Always $\Box \phi := \neg \Diamond \neg \phi$ ϕ is always true; "(never (eventually $(\neg \phi)$))"

Some common composite operators

- $p \rightarrow \Diamond q$ p implies eventually q (response)
- $p \rightarrow q U r$ p implies q until r (precedence)
- $\Box \Diamond p$ always eventually p (progress)
- $\Diamond \Box p$ eventually always p (stability)
- $\Diamond p \rightarrow \Diamond q$ eventually p implies eventually q (correlation)

Operator precedence

- Unary binds stronger than binary
- Bind from right to left:
 □◊p = (□ (◊p))
 p U q U r = p U (q U r)
- U takes precedence over \land, \lor and \rightarrow

Example: Traffic Light

System description

- Focus on lights in on particular direction
- Light can be any of three colors: green, yellow, read
- Atomic propositions = light color

Ordering specifications

• Liveness: "traffic light is green infinitely often"

□◊green

• Chronological ordering: "once red, the light cannot become green immediately"

 $\Box \text{ (red} \rightarrow \neg \bigcirc \text{green)}$

• More detailed: "once red, the light always becomes green eventually after being yellow for some time"

 $\Box(\text{red} \rightarrow (\Diamond \text{ green } \land (\neg \text{ green } U \text{ yellow})))$

 $\Box (red \rightarrow \bigcirc (red \ U \ (yellow \ \land \bigcirc (yellow \ U \ green))))$

Progress property

• Every request will eventually lead to a response

```
\Box (request \rightarrow \diamondresponse)
```


Semantics: when does a path satisfy an LTL spec?

Definition 5.6. Semantics of LTL (Interpretation over Words) Let φ be an LTL formula over AP. The LT property induced by φ is

$$Words(\varphi) = \left\{ \sigma \in (2^{AP})^{\omega} \mid \sigma \models \varphi \right\}$$

where the satisfaction relation $\models \subseteq (2^{AP})^{\omega} \times \text{LTL}$ is the smallest relation with the properties in Figure 5.2.

Figure 5.2: LTL semantics (satisfaction relation \models) for infinite words over 2^{AP} .

EECI, Mar 2013

Richard M. Murray, Caltech CDS

Semantics of LTL

The semantics of the combinations of \Box and \Diamond can now be derived:

$$\sigma \models \Box \Diamond \varphi \quad \text{iff} \quad \stackrel{\infty}{\exists} j. \ \sigma[j \dots] \models \varphi$$
$$\sigma \models \Diamond \Box \varphi \quad \text{iff} \quad \stackrel{\infty}{\forall} j. \ \sigma[j \dots] \models \varphi.$$

Here, $\stackrel{\infty}{\exists} j$ means $\forall i \ge 0$. $\exists j \ge i$, "for infinitely many $j \in \mathbb{N}$ ", while $\stackrel{\infty}{\forall} j$ stands for $\exists i \ge 0$. $\forall j \ge i$, "for almost all $j \in \mathbb{N}$ ".

Definition 5.7. Semantics of LTL over Paths and States

Let $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system without terminal states, and let φ be an LTL-formula over AP.

• For infinite path fragment π of TS, the satisfaction relation is defined by

$$\pi \models \varphi$$
 iff $trace(\pi) \models \varphi$.

• For state $s \in S$, the satisfaction relation \models is defined by

 $s \models \varphi$ iff $(\forall \pi \in Paths(s), \pi \models \varphi).$

• TS satisfies φ , denoted $TS \models \varphi$, if $Traces(TS) \subseteq Words(\varphi)$.

Semantics of LTL

From this definition, it immediately follows that

```
TS \models \varphi
iff
Traces(TS) \subseteq Words(\varphi)
iff
TS \models Words(\varphi)
iff
\pi \models \varphi \text{ for all } \pi \in Paths(TS)
iff
s_0 \models \varphi \text{ for all } s_0 \in I.
```

Remarks

- Which condition you use depends on type of problem under consideration
- For reasoning about correctness, look for (lack of) intersection between sets:

(* Definition 5.7 *)

(* Definition of \models for LT properties *)

(* Definition of $Words(\varphi)$ *)

(* Definition 5.7 of \models for states *)

"Quiz"

Consider the following transition system

Consider the transition system TS depicted in Figure 5.3 with the set of propositions $AP = \{a, b\}$. For example, we have that $TS \models \Box a$, since all states are labeled with a, and hence, all traces of TS are words of the form $A_0 A_1 A_2 \ldots$ with $a \in A_i$ for all $i \ge 0$. Thus, $s_i \models \Box a$ for i = 1, 2, 3. Moreover:

 $s_1 \models \bigcirc (a \land b)$ since $s_2 \models a \land b$ and s_2 is the only successor of s_1

 $s_2 \not\models \bigcirc (a \land b) \text{ and } s_3 \not\models \bigcirc (a \land b) \text{ as } s_3 \in Post(s_2), s_3 \in Post(s_3) \text{ and } s_3 \not\models a \land b.$

This yields $TS \not\models \bigcirc (a \land b)$ as s_3 is an initial state for which $s_3 \not\models \bigcirc (a \land b)$. As another example:

$$TS \models \Box(\neg b \to \Box(a \land \neg b)),$$

since s_3 is the only $\neg b$ state, s_3 cannot be left anymore, and $a \land \neg b$ in s_3 is true. However,

$$TS \not\models b \cup (a \land \neg b),$$

since the initial path $(s_1s_2)^{\omega}$ does not visit a state for which $a \wedge \neg b$ holds. Note that the initial path $(s_1s_2)^*s_3^{\omega}$ satisfies $b \cup (a \wedge \neg b)$.

EECI, Mar 2013

Richard M. Murray, Caltech CDS

Specifying Timed Properties for Synchronous Systems

For synchronous systems, LTL can be used as a formalism to specify "real-time" properties that refer to a discrete time scale. Recall that in synchronous systems, the involved processes proceed in a lock step fashion, i.e., at each discrete time instance each process performs a (sometimes idle) step. In this kind of system, the next-step operator \bigcirc has a "timed" interpretation: $\bigcirc \varphi$ states that "at the next time instant φ holds". By putting applications of \bigcirc in sequence, we obtain, e.g.:

$$\bigcirc^{k} \varphi \stackrel{\text{\tiny def}}{=} \underbrace{\bigcirc \bigcirc \ldots \bigcirc}_{k\text{-times}} \varphi \qquad \quad \text{``φ holds after (exactly) k time instants"}$$

Assertions like " φ will hold within at most k time instants" are obtained by

$$\Diamond^{\leqslant k} \varphi = \bigvee_{0 \leqslant i \leqslant k} \bigcirc^i \varphi.$$

Statements like " φ holds now and will hold during the next k instants" can be represented as follows:

$$\Box^{\leqslant k}\varphi = \neg \Diamond^{\leqslant k} \neg \varphi = \neg \bigvee_{0 \leqslant i \leqslant k} \bigcirc^{i} \neg \varphi.$$

Remark

• Idea can be extended to non-synchronous case (eg, Timed CTL [later])

EECI, Mar 2013

Equivalence of LTL Formulas

Definition 5.17. Equivalence of LTL Formulae

LTL formulae φ_1, φ_2 are *equivalent*, denoted $\varphi_1 \equiv \varphi_2$, if $Words(\varphi_1) = Words(\varphi_2)$.

duality law	idempotency law
$\neg \bigcirc \varphi \equiv \bigcirc \neg \varphi$	$\Diamond \Diamond \varphi \equiv \Diamond \varphi$
$\neg \Diamond \varphi \equiv \Box \neg \varphi$	$\Box \Box \varphi \equiv \Box \varphi$
$\neg \Box \varphi \equiv \Diamond \neg \varphi$	$\varphi U \left(\varphi U \psi \right) \; \equiv \; \varphi U \psi$
	$(\varphi U \psi) U \psi \;\; \equiv \;\; \varphi U \psi$
absorption law	expansion law
$\Diamond \Box \Diamond \varphi \equiv \Box \Diamond \varphi$	$\varphi U \psi \; \equiv \; \psi \; \lor \; (\varphi \wedge \bigcirc (\varphi U \psi))$
$\Box \Diamond \Box \varphi \equiv \Diamond \Box \varphi$	$\Diamond \psi \equiv \psi \lor \bigcirc \Diamond \psi$
	$\Box \psi \equiv \psi \land \bigcirc \Box \psi$
distributive law	Non-identities
$\bigcirc (\varphi \cup \psi) \equiv (\bigcirc \phi \cup \psi)$	$(\varphi) \cup (\bigcirc \psi) \bullet \land (a \land b) \neq \land a \land \diamond b$
$\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor$	• $\Box(a \lor b) \neq \Box a \lor \Box b$
$\Box(\varphi \wedge \psi) \equiv \Box \varphi /$	$\nabla \Box \psi$

CDC, 03 LTL Specs for Control Protocols: RoboFlag Drill

Task description

- Incoming robots should be blocked by defending robots
- Incoming robots are assigned randomly to whoever is free
- Defending robots must move to block, but cannot run into or cross over others
- Allow robots to communicate with left and right neighbors and switch assignments

Goals

- Would like a provably correct, distributed protocol for solving this problem
- Should (eventually) allow for lost data, incomplete information

Questions

- How do we describe task in terms of LTL?
- Given a protocol, how do we prove specs?
- How do we design the protocol given specs?

Klavins

Properties for RoboFlag program

CCL formulas (will cover in more detail later)

- q' o q evaluate q at the next action in path
- $p \rightarrow q$ $\Box(p \rightarrow \Diamond q)$ "
- p **co** q "□(p → ○q)"

"p leads to q": if p is true, q will eventually be true

if p is true, then next time state changes, q will be true

Safety (Defenders do not collide)

 $z_i < z_{i+1}$ co $z_i < z_{i+1}$

Stability (switch predicate stays false)

True if robots i and i +1 have targets that cause crossed paths

 $\forall i . y_i > 2\delta \land z_i + 2\delta < z_{i+1} \land \neg switch_{i,i+1} \mathbf{co} \neg switch_{i,i+1}$

Robots are "far enough" apart.

"Lyapunov" stability

- Remains to show that we actually approach the goal (robots line up with targets)
- Will see later we can do this using a Lyapunov function

Fairness

Mainly an issue with concurrent processes

- To make sure that the proper interaction occurs, often need to know that each process gets executed reasonably often
- Multi-threaded version: each thread should receive some fraction of processes time

Two issues: implementation and specification

- Q1: How do we implement our algorithms to insure that we get "fairness" in execution
- Q2: how do we model fairness in a formal way to reason about program correctness

Example: Fairness in RoboFlag Drill

• To show that algorithm behaves properly, need to know that each agent communicates with neighbors regularly (infinitely often), in each direction

Difficulty in describing fairness depends on the logical formalism

- Turns out to be pretty easy to describe fairness in linear temporal logic
- Much more difficult to describe fairness for other temporal logics (eg, CTL & variants)

Fairness Properties in LTL

Definition 5.25 LTL Fairness Constraints and Assumptions

Let Φ and Ψ be propositional logical formulas over a set of atomic propositions

1. An *unconditional LTL fairness constraint* is an LTL formula of the form *ufair* = $\Box \Diamond \Psi$.

2. A strong LTL fairness condition is an LTL formula of the form sfair = $\Box \Diamond \Phi \longrightarrow \Box \Diamond \Psi$.

3. A weak LTL fairness constraint is an LTL formula of the form $w_{fair} = \Diamond \Box \Phi \longrightarrow \Box \Diamond \Psi$.

An *LTL fairness assumption* is a conjunction of LTL fairness constraints (of any arbitrary type).

 $fair = ufair \land sfair \land wfair.$

Rules of thumb

- strong (or unconditional) fairness: useful for solving contentions
- weak fairness: sufficient for resolving the non-determinism due to interleaving.

Fairness Properties in LTL

Fair paths and traces

$$\begin{aligned} FairPaths(s) &= \{ \pi \in Paths(s) \mid \pi \models fair \}, \\ FairTraces(s) &= \{ trace(\pi) \mid \pi \in FairPaths(s) \}. \end{aligned}$$

Definition 5.26. Satisfaction Relation for LTL with Fairness

For state s in transition system TS (over AP) without terminal states, LTL formula φ , and LTL fairness assumption *fair* let

$$s \models_{fair} \varphi$$
 iff $\forall \pi \in FairPaths(s). \pi \models \varphi$ and
 $TS \models_{fair} \varphi$ iff $\forall s_0 \in I. s_0 \models_{fair} \varphi.$

Theorem 5.30. Reduction of \models_{fair} to \models

For transition system TS without terminal states, LTL formula φ , and LTL fairness assumption fair:

$$TS \models_{fair} \varphi$$
 if and only if $TS \models (fair \rightarrow \varphi)$.

EECI, Mar 2013

Richard M. Murray, Caltech CDS

Branching Time and Computational Tree Logic

Consider transition systems with multiple branches

- Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)
- In this case, there might be *multiple* paths from a given state
- Q: in evaluating a temporal logic property, which execution branch to we check?

Computational tree logic: allow evaluation over some or all paths

$$\begin{array}{ll} s \models \exists \varphi & \quad \text{iff} & \pi \models \varphi \text{ for some } \pi \in Paths(s) \\ s \models \forall \varphi & \quad \text{iff} & \pi \models \varphi \text{ for all } \pi \in Paths(s) \end{array}$$

Example: Triply Redundant Control Systems

Systems consists of three processors and a single voter

- si,j = i processors up, j voters up
- Assume processors fail one at a time; voter can fail at any time
- If voter fails, reset to fully functioning state (all three processors up)
- System is operation if at least 2 processors remain operational

Properties we might like to prove

Property	Formalization in CTL	
Possibly the system never goes down	$\exists \Box \neg down$	Holds
Invariantly the system never goes down	$\forall \Box \neg down$	Doesn't hold
It is always possible to start as new	$\forall \Box \exists \Diamond up_3$	Holds
The system always eventually goes down and is operational until going down	$\forall ((up_3 \lor up_2) \cup down)$	Doesn't hold

Other Types of Temporal Logic

CTL ≠ LTL

- Can show that LTL and CTL are not proper subsets of each other
- LTL reasons over a complete path; CTL from a given state

A spect	Linear time	Branching time
"behavior"path-based:in a state s $trace(s)$		state-based: computation tree of s
temporal logic	LTL: path formulae φ $s \models \varphi$ iff $\forall \pi \in Paths(s). \pi \models \varphi$	CTL: state formulae existential path quantification $\exists \varphi$ universal path quantification: $\forall \varphi$

CTL* captures both

$$\Phi ::= \mathrm{true} \ \left| \begin{array}{c|c} a \end{array} \right| \ \Phi_1 \wedge \Phi_2 \ \left| \begin{array}{c|c} \neg \Phi \end{array} \right| \ \exists \varphi \qquad \varphi ::= \Phi \ \left| \begin{array}{c|c} \varphi_1 \wedge \varphi_2 \end{array} \right| \ \neg \varphi \ \left| \begin{array}{c|c} \bigcirc \varphi \end{array} \right| \ \varphi_1 \, \mathrm{U} \, \varphi_2$$

Timed Computational Tree Logic

- Extend notions of transition systems and CTL to include "clocks" (multiple clocks OK)
- Transitions can depend on the value of clocks
- Can require that certain properties happen within a given time window

$$\forall \Box (far \longrightarrow \forall \Diamond^{\leqslant 1} \forall \Box^{\leqslant 1} up)$$

Summary: Specifying Behavior with LTL

Description

- State of the system is a snapshot of values of all variables
- Reason about *paths* σ: sequence of states of the system
- No strict notion of time, just ordering of events
- Actions are relations between states: state s is related to state t by action a if a takes s to t (via prime notation: x' = x + 1)
- *Formulas* (specifications) describe the set of allowable behaviors
- Safety specification: what actions are allowed
- Fairness specification: when can a component take an action (eg, infinitely often)

Example

- Action: *a* ≡ x' = x + 1
- Behavior: $\sigma \equiv x := 1, x := 2, x := 3, ...$
- Safety: $\Box x > 0$ (true for this behavior)
- Fairness: $\Box(x' = x + 1 \lor x' = x) \land \Box \Diamond (x' \neq x)$

- $\Box p =$ **always** p (invariance)
- $\Diamond p =$ **eventually** p (guarantee)
- $p \rightarrow \Diamond q = p$ implies eventually q (response)
- $p \rightarrow q \ \mathcal{U} r = p$ implies q until r (precedence)
- □◊p = always eventually p (progress)
- \laple \Box p = eventually always p (stability)
- ◊p → ◊q = eventually p implies eventually q (correlation)

Properties

- Can reason about time by adding "time variables" (t' = t + 1)
- Specifications and proofs can be difficult to interpret by hand, but computer tools existing (eg, TLC, Isabelle, PVS, SPIN, etc)