Lecture 3
Linear Temporal Logic (LTL)

Richard M. Murray
Nok Wongpiromsarn Ufuk Topcu
California Institute of Technology

EECI, 18 March 2013

Outline
e Syntax and semantics of LTL
» Specifying properties in LTL
* Equivalence of LTL formulas
* Fairness in LTL

Principles of Model
Checking,

Christel Baier and
Joost-Pieter Katoen.
MIT Press, 2008.

Principles of Model Checking

* Other temporal logics (if time) e Chapter 5

Formal Methods for System Verification

Specification using LTL requirements assumptions
- - on the system | (on the unknowns, e.g.,
* Linear temporal logic (LTL) (behavif:') environment behavior) system

is a math’l language for
describing linear-time prop’s

e Provides a particularly useful
formal system

set of operators for construc- e e e

ting LT properties without

specifying sets K
Methods for verifying an LTL
specification

® Theorem proving: use formal
logical manipulations to show o N controller that render no“such
1 icfi satistie violate
that a property is satisfied for a (+certificate) (+counterexample)] :{}e system to, controller
) sfy pec’s exists
given system model

® Model checking: explicitly check all possible executions of a system model and verify
that each of them satisfies the formal specification

- Roughly like trying to prove stability by simulating every initial condition
- Works because discrete transition systems have finite number of states
- Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)

EECI, Mar 2013 Richard M. Murray, Caltech CDS 2

Temporal Logic Operators

Two key operators in temporal logic
e (“eventually” - a property is satisfied at some point in the future
e [1 “always” - a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time
® [inear temporal logic = each moment in time has a well-defined successor moment

® Branching temporal logic = reason about multiple possible time courses
® “Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic
® Specific class of operators for specifying linear time properties
® |ntroduced by Pneuli in the 1970s (recently passed away)
® | arge collection of tools for specification, design, analysis

Other temporal logics
e CTL = computation tree logic (branching time; will see later, if time)
e TCTL =timed CTL - check to make sure certain events occur in a certain time
e TLA = temporal logic of actions (Lamport) [variant of LTL]
® 1 calculus = for reactive systems; add “least fixed point” operator (more on Thu)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Syntax of LTL

LTL formulas:

pu=true | a | 991/\992' | O¢ | prUp2

® a = atomic proposition Operator precedence
e (O ="“next” @ is true at next step e Unary bind stronger than binary
e U = “until”: @2 is true at some point, e U takes precedence over A, v and —

@1 is true until that time

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

a arbitrary arbitrary arbitrary arbitrary

. N N\ N\ o o .

atomic prop.a (J)——())) ~() >
arbitrary a arbitrary arbitrary arbitrary

™ N R N N _

next step Oa ()) ()) ~) -
a —1b a N\ _1b a —1b b arbitrary

. Y N\ R N N\ —.
until aUb ()) ())) -

® Same notation as linear time properties: o £ ¢ (path “satisfies” specification)

EECI,Mar 2013 Richard M. Murray, Caltech CDS

Additional Operators and Formulas

“Primary” temporal logic operators
e Eventually 0¢ :=trueU ¢ ¢ will become true at some point in the future
e Always O¢ := 07 ¢ is always true; “(never (eventually (7¢)))”

1A -0 - a arbitrary

eventually 0a ()——() ())) -

)\ |r J
NN Ny ANy

a a a a a
always o (O -0 -0 0 -0 -
Some common composite operators Operator precedence
® p— 0q p implies eventually q (response) * Unary binds stronger
o . than binary
ep—->qUr p implies q until r (precedence) e Bind from right to left:
e [10p always eventually p (progress) C0p = (O (0p))
e Op eventually always p (stability) pUqUr=pU(qUr)
L e U takes precedence over
® Op — 0q eventually p implies eventually q A, v and —

(correlation)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Example: Traffic Light

System description
® Focus on lights in on particular direction
e | ight can be any of three colors: green, yellow, read
e Atomic propositions = light color

red /yellow

Ordering specifications
® | iveness: “traffic light is green infinitely often”
J0green

® Chronological ordering: “once red, the light cannot become green immediately”
O (red - = O green)

® More detailed: “once red, the light always becomes green eventually after being
yellow for some time”

C(red — (¢ green A (™ green U yellow)))
C(red — © (red U (yellow A O (yellow U green))))
Progress property
® Every request will eventually lead to a response
O (request —» ¢response)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Semantics: when does a path satisfy an LTL spec?

Definition 5.6. Semantics of LTL (Interpretation over Words)
Let ¢ be an LTL formula over AP. The LT property induced by ¢ is

Words(¢) = {o € (2*7)* | o = o}

where the satisfaction relation = C (24P)“ x LTL is the smallest relation with the

properties in Figure 5.2. al
o [true
c FE a iff acAy (ie, Ay Fa)
o F pihp2 iff o1 ando =g o F Op iff 3j20.0...]F¢
o F e M oy o | Op iff ¥Vj20.0[j..]F¢
c E Qg iff ofl...]=A142A3...F ¢
o FE piUpy iff 3520.0j...] FE¢y and oli...| F¢y, forall0<i<j

Figure 5.2: LTL semantics (satisfaction relation =) for infinite words over 247,

EECI,Mar 2013 Richard M. Murray, Caltech CDS

Semantics of LTL

The semantics of the combinations of [J and ¢ can now be derived:
o | OQp iff oaoj. oj...]Eep
o0
o E OOy iff Vj olj...] Ee.

Here, 030 j means Vi = 0. d7 = i, “for infinitely many j € IN”, while :‘;/o j stands for
di =2 0. V5 = i, “for almost all 7 € IN”.

Definition 5.7. Semantics of LTL over Paths and States

Let TS = (S, Act,—,I,AP, L) be a transition system without terminal states, and let ¢
be an LTL-formula over AP.

e For infinite path fragment mw of TS, the satisfaction relation is defined by
mEe iff trace(w) = .
e For state s € S, the satisfaction relation = is defined by
sk iff (Vm € Paths(s). w =).
e TS satisfies ¢, denoted TS |= ¢, if Traces(TS) C Words(yp).

EECI,Mar 2013 Richard M. Murray, Caltech CDS

Semantics of LTL

From this definition, it immediately follows that

iff

iff

iff

iff

Remarks

e \Which condition you use depends on type of
problem under consideration

e For reasoning about correctness, look for
(lack of) intersection between sets:

EECI, Mar 2013

ITSE¢

Traces(TS) C Words(yp)

(* Definition 5.7 *)

(* Definition of = for LT properties *)
TS = Words(y)
(* Definition of Words(y) *)
7 = ¢ for all m € Paths(TS)
(* Definition 5.7 of = for states *)
3o = ¢ for all sy € I.

executions that
are possible and
invalid

Richard M. Murray, Caltech CDS

MQuizM

Consider the following transition system

{(Z,,b} {asb} {a’}
Consider the transition system TS depicted in Figure 5.3 with the set of propositions
AP = {a,b}. For example, we have that TS = Oa, since all states are labeled with a,

and hence, all traces of TS are words of the form AgA; As... with a € A; for all 2 = 0.
Thus, s; = Oa for i = 1,2, 3. Moreover:

31 = O(a Ab) since 32 = a A b and s is the only successor of s;
89 = (O (aAb) and s3 = (O (a A b) as s3 € Post(sy), s3 € Post(s3) and s3 = a A b.

This yields TS # (O (a A b) as s3 is an initial state for which s3 = (O (a A b). As another
example:
TS = O(=b — O(a A —b)),

since 83 is the only —b state, s3 cannot be left anymore, and a A —b in s3 is true. However,
TS # bU(a A —b),

since the initial path (s;82)“ does not visit a state for which a A —b holds. Note that the
initial path (s182)*s¥ satisfies bU (a A —b). o
EECI,Mar 2013 Richard M. Murray, Caltech CDS 10

Specifying Timed Properties for Synchronous Systems

For synchronous systems, LTL can be used as a formalism to specify “real-time” properties
that refer to a discrete time scale. Recall that in synchronous systems, the involved
processes proceed in a lock step fashion, i.e., at each discrete time instance each process
performs a (sometimes idle) step. In this kind of system, the next-step operator () has a
“timed” interpretation: () ¢ states that “at the next time instant ¢ holds”. By putting
applications of () in sequence, we obtain, e.g.:

OkFp = O0...0¢ “w holds after (exactly) k time instants”.

k-times

Assertions like “@ will hold within at most k time instants” are obtained by
0% = \/ O'e.
0<i<k

Statements like “@ holds now and will hold during the next k instants” can be represented
as follows:

Remark
® |dea can be extended to non-synchronous case (eg, Timed CTL [later])

EECI,Mar 2013 Richard M. Murray, Caltech CDS I

Equivalence of LTL Formulas

Definition 5.17. Equivalence of LTL Formulae
LTL formulae ¢, ¢, are equivalent, denoted ¢ = ¢, if Words(yp,) = Words(,).

duality law idempotency law
“O¢ = O PO = Op
-Qp = O-p O0p = Op
-Op = Oy pU(pUy) = pUY
(pUY)UY = pUy
absorption law expansion law
000p = Oy Uy = ¥ V (¢ A O(pUy))
O00¢ = OOy MW =9 v O
Oy = ¢ A OOy
distributive law Non-identities
OlpUy) = (Op)U(O¥) e 0(@anrb)=0andb
OlpVvy) = OpVOy ® O(avb)=0OavOb
OpAy) = OpAly

EECI,Mar 2013 Richard M. Murray, Caltech CDS

Klavins

LTL Specs for Control Protocols: RoboFlag Drill ="
Task description
® [ncoming robots should be blocked by
defending robots ?
® Incoming robots are assigned randomly to 1 r °°
whoever is free < ,
e Defending robots must move to block, but 1 ’ -
cannot run into or cross over others o
e Allow robots to communicate with left and 1 -
right neighbors and switch assignments o 1 1
3 o
Goals
e \Would like a provably correct, distributed 5
protocol for solving this problem
e Should (eventually) allow for lost data, a
incomplete information
Questions >
¢ How do we describe task in terms of LTL?
e Given a protocol, how do we prove specs? bjp * o8 & 5082
e How do we design the protocol given specs? ; * T ° i 10

EECI, Mar 2013 Richard M. Murray, Caltech CDS 13

Properties for RoboFlag program

CCL formulas (will cover in more detail later)

e q oq evaluate q at the next action in path
®*p~(Q L(p — 0q) “p leads to q”: if p is true, q will eventually be true
epcoq “Lp— oq)° if p is true, then next time state changes, q will be true

Safety (Defenders do not collide)
True if robots i and i +1 have targets

z; < zj41 €0 z; < Zj41 that cause crossed paths

Stability (switch predicate stays false) / \

Vi.y; > 20 Az + 20 < zj41 A —switch; ;41 €0 Dswitchy 4

— _/
~

Robots are "far enough" apart.

“Lyapunov” stability
e Remains to show that we actually approach the goal (robots line up with targets)
e Will see later we can do this using a Lyapunov function

EECI, Mar 2013 Richard M. Murray, Caltech CDS 14

Fairness

Mainly an issue with concurrent processes

e To make sure that the proper interaction
occurs, often need to know that each
process gets executed reasonably often

e Multi-threaded version: each thread should
receive some fraction of processes time

o
-
v
&
O
O
-
(28

rocess P
process Q

!

-

|
™
4

Two issues: implementation and specification |

e Q1: How do we implement our algorithms 2

to insure that we get “fairness” in execution S -

. . /’\/“/\/-

e Q2: how do we model fairness in a formal , ha®
way to reason about program correctness

Example: Fairness in RoboFlag Drill

e To show that algorithm behaves properly, need to know that each agent
communicates with neighbors regularly (infinitely often), in each direction

[
-
-
=
P

Difficulty in describing fairness depends on the logical formalism
e Turns out to be pretty easy to describe fairness in linear temporal logic
e Much more difficult to describe fairness for other temporal logics (eg, CTL & variants)

EECI, Mar 2013 Richard M. Murray, Caltech CDS

Fairness Properties in LTL

Definition 5.25 LTL Fairness Constraints and Assumptions

Let @ and W be propositional logical formulas
over a set of atomic propositions

1. An unconditional LTL fairness constraint is
an LTL formula of the form ufair = OQW.

2. A strong LTL fairness condition is an LTL
formula of the form sfair = O0® — OOW.

3. Aweak LTL fairness constraint is an LTL
formula of the form wfair = (0@ — OO.

An LTL fairness assumption is a conjunction of LTL fairness constraints (of any arbitrary
type).

fair = wufair A sfair A wfair.

Rules of thumb
e strong (or unconditional) fairness: useful for solving contentions
e weak fairness: sufficient for resolving the non-determinism due to interleaving.

EECI,Mar 2013 Richard M. Murray, Caltech CDS

Fairness Properties in LTL

Fair paths and traces
FairPaths(s) = {m € Paths(s) | 7 = fair },
FairTraces(s) = {trace(w) | w € FairPaths(s) }.

Definition 5.26. Satisfaction Relation for LTL with Fairness

For state s in transition system TS (over AP) without terminal states, LTL formula ¢,
and LTL fairness assumption fair let

8 Efur ¢ iff Vm € FairPaths(s).m = ¢ and
TS Efir ¢ it Vso € 1. 50 Efair -

Theorem 5.30. Reduction of =p,, to =

For transition system TS without terminal states, LTL formula @, and LTL fairness as-
sumption fair:
TS Efair ¢ if and only if TS = (fair —).

EECI,Mar 2013 Richard M. Murray, Caltech CDS

Branching Time and Computational Tree Logic

Consider transition systems with multiple branches
e Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)
® |n this case, there might be multiple paths from a given state
e Q: in evaluating a temporal logic property, which execution branch to we check?

(S(Ja 0)

(‘_5'_}: 1)

"

(52‘32) (53,2)
: / \
(s3,3) (82,3 (83,3)

/\&/\

{e=1z7#0} (20 (o) G2 (55,9

(a)

Computational tree logic: allow evaluation over some or all paths
8 = 3y iff « = ¢ for some 7 € Paths(s)
s =V iff « = ¢ for all # € Paths(s)

EECI, Mar 2013 Richard M. Murray, Caltech CDS 18

Example: Triply Redundant Control Systems

Systems consists of three processors
and a single voter

® si,j =i processors up, j voters up $0,1) Upy

e Assume processors fail one at a
time; voter can fail at any time

e |f voter fails, reset to fully functioning
state (all three processors up) doon

e System is operation if at least 2 processors
remain operational

Properties we might like to prove

Property Formalization in CTL

Possibly the system never goes down 30 - down Holds
Invariantly the system never goes down VLI - down Doesn’t hold
It is always possible to start as new VYU 3O up;y Holds

The system always eventually goes down
and is operational until going down ¥V ((upy V up,)Udown) Doesn'thold

EECI,Mar 2013 Richard M. Murray, Caltech CDS 19

Other Types of Temporal Logic

CTL #LTL |
Aspect Linear time Branching time
e Can show that LTL and
CTL are not proper sub-
sets of each other "‘bchavior” path-based: statcl-bascd:
In a state s trace(s) computation tree of s
® | TL reasons over a
Complete path’ CTL from temporal LTL: path formulae ¢ CTL: state formulae
a given state logic sE¢ iff existential path quantification 3y
Vrr € Paths(s).m = ¢ universal path quantification: Y
CTL* captures both
| |
® ::= true l a ‘ P, A Dy ~ - P ‘ 3(,9 wu=9 ‘ w1 A2 ‘ P :: O(p :: ('QIU(’QQ

I I

Timed Computational Tree Logic

e Extend notions of transition systems and CTL to
include “clocks” (multiple clocks OK)

—— approach ——
—{ far yY———{near)

. ezt enter
® Transitions can depend on the value of clocks Cao
e Can require that certain properties happen within a)
given time window /
after
vO(far — VOQ vOs! up) > 2 minutes

EECI,Mar 2013 Richard M. Murray, Caltech CDS 20

EECI, Mar 2013

Summary: Specifying Behavior with LTL

Description
e State of the system is a snapshot of values of all
variables
e Reason about paths o: sequence of states of the
system

e No strict notion of time, just ordering of events

Actions are relations between states: state s is
related to state t by action a if a takes s to ¢ (via
prime notation: X’ = x + 1)

e Formulas (specifications) describe the set of
allowable behaviors

e Safety specification: what actions are allowed

e Fairness specification: when can a component
take an action (eg, infinitely often)

Example
e Actionia=x=x+1
e Behavior:o=x:=1,x:=2, x:=3, ...
e Safety: [Ix > 0O (true for this behavior)
e Fairness: (X =x+1 v X =x) A O) (X #X)

[1p = always p (invariance)

Op = eventually p (guarantee)
p — {q = p implies eventually g
(response)

p— q Ur=pimplies g until r
(precedence)

Odp = always eventually p
(progress)

OOp = eventually always p
(stability)

Op — (g = eventually p implies
eventually g (correlation)

Properties

e Can reason about time by adding
“time variables” (t' =t + 1)

e Specifications and proofs can be
difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, SPIN, etc)

Richard M. Murray, Caltech CDS

