
Lecture 3
Linear Temporal Logic (LTL)

Richard M. Murray
Nok Wongpiromsarn Ufuk Topcu
California Institute of Technology

EECI, 18 March 2013
Outline

• Syntax and semantics of LTL
• Specifying properties in LTL
• Equivalence of LTL formulas
• Fairness in LTL
• Other temporal logics (if time)

Principles of Model
Checking,
Christel Baier and
Joost-Pieter Katoen.
MIT Press, 2008.

Chapter 5

Richard M. Murray, Caltech CDSEECI, Mar 2013

Formal Methods for System Verification
Specification using LTL
• Linear temporal logic (LTL)

is a math’l language for
describing linear-time prop’s
• Provides a particularly useful

set of operators for construc-
ting LT properties without
specifying sets

Methods for verifying an LTL
specification
• Theorem proving: use formal

logical manipulations to show
that a property is satisfied for a
given system model
• Model checking: explicitly check all possible executions of a system model and verify

that each of them satisfies the formal specification
- Roughly like trying to prove stability by simulating every initial condition
- Works because discrete transition systems have finite number of states
- Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)

2

Richard M. Murray, Caltech CDSEECI, Mar 2013

Temporal Logic Operators
Two key operators in temporal logic
• ◊ “eventually” - a property is satisfied at some point in the future

• ¨ “always” - a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time
• Linear temporal logic ⇒ each moment in time has a well-defined successor moment

• Branching temporal logic ⇒ reason about multiple possible time courses

• “Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic
• Specific class of operators for specifying linear time properties
• Introduced by Pneuli in the 1970s (recently passed away)
• Large collection of tools for specification, design, analysis

Other temporal logics
• CTL = computation tree logic (branching time; will see later, if time)
• TCTL = timed CTL - check to make sure certain events occur in a certain time
• TLA = temporal logic of actions (Lamport) [variant of LTL]
• µ calculus = for reactive systems; add “least fixed point” operator (more on Thu)

3

Richard M. Murray, Caltech CDSEECI, Mar 2013

Syntax of LTL
LTL formulas:

• a = atomic proposition

• ◯ = “next”: φ is true at next step

• U = “until”: φ2 is true at some point,
 φ1 is true until that time

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

• Same notation as linear time properties: σ ⊨ φ (path “satisfies” specification)

4

Operator precedence
• Unary bind stronger than binary

• U takes precedence over ∧, ∨ and →

Richard M. Murray, Caltech CDSEECI, Mar 2013

Additional Operators and Formulas
“Primary” temporal logic operators

• Eventually ◊ϕ := true U ϕ ϕ will become true at some point in the future

• Always ¨ϕ := ¬◊¬ϕ ϕ is always true; “(never (eventually (¬ϕ)))”

Some common composite operators

• p → ◊q p implies eventually q (response)

• p → q U r p implies q until r (precedence)

• ¨◊p always eventually p (progress)

• ◊¨p eventually always p (stability)

• ◊p → ◊q eventually p implies eventually q
 (correlation)

5

Operator precedence
• Unary binds stronger

than binary
• Bind from right to left:

¨◊p = (¨ (◊p))
p U q U r = p U (q U r)
• U takes precedence over

∧, ∨ and →

Richard M. Murray, Caltech CDSEECI, Mar 2013

Example: Traffic Light
System description
• Focus on lights in on particular direction
• Light can be any of three colors: green, yellow, read
• Atomic propositions = light color

Ordering specifications

• Liveness: “traffic light is green infinitely often”

• Chronological ordering: “once red, the light cannot become green immediately”

• More detailed: “once red, the light always becomes green eventually after being
yellow for some time”

Progress property

• Every request will eventually lead to a response

6

☐ (red → ¬ ◯ green)

☐(red → ◯ (red U (yellow ∧ ◯ (yellow U green))))

☐ (request → ◊response)

☐◊green

☐(red → (◊ green ∧ (¬ green U yellow)))

Richard M. Murray, Caltech CDSEECI, Mar 2013

Semantics: when does a path satisfy an LTL spec?

7

Richard M. Murray, Caltech CDSEECI, Mar 2013

Semantics of LTL

8

Richard M. Murray, Caltech CDSEECI, Mar 2013

Semantics of LTL

Remarks
• Which condition you use depends on type of

problem under consideration
• For reasoning about correctness, look for

(lack of) intersection between sets:

9

Richard M. Murray, Caltech CDSEECI, Mar 2013

Consider the following transition system

Property 1: TS |= [] a?
• Yes, all states are labeled with a

Property 2: TS |= X (a ^ b)?
• No: From s2 or s3, there are transitions for which a ^ b doesn’t hold

Property 3: TS |= [] (!b -> [](a ^ !b))?
• True

Property 4: TS |= b U (a ^ !b)?
• False: (s1s2)ω

”Quiz”

10

Richard M. Murray, Caltech CDSEECI, Mar 2013

Specifying Timed Properties for Synchronous Systems

Remark
• Idea can be extended to non-synchronous case (eg, Timed CTL [later])

11

Richard M. Murray, Caltech CDSEECI, Mar 2013

Equivalence of LTL Formulas

Non-identities
• ◊(a ∧ b) ≢ ◊a ∧ ◊b

• ☐(a ∨ b) ≢ ☐a ∨ ☐b

12

Richard M. Murray, Caltech CDSEECI, Mar 2013 13

LTL Specs for Control Protocols: RoboFlag Drill
Klavins

CDC, 03

Task description
• Incoming robots should be blocked by

defending robots
• Incoming robots are assigned randomly to

whoever is free
• Defending robots must move to block, but

cannot run into or cross over others
• Allow robots to communicate with left and

right neighbors and switch assignments

Goals
• Would like a provably correct, distributed

protocol for solving this problem
• Should (eventually) allow for lost data,

incomplete information

Questions
• How do we describe task in terms of LTL?
• Given a protocol, how do we prove specs?
• How do we design the protocol given specs?

zi

yj

Richard M. Murray, Caltech CDSEECI, Mar 2013

CCL formulas (will cover in more detail later)
• q’ ○ q evaluate q at the next action in path

• p ↝ q ¨(p → ◊q) “p leads to q”: if p is true, q will eventually be true

• p co q “¨(p → ○q) “ if p is true, then next time state changes, q will be true

Safety (Defenders do not collide)

Stability (switch predicate stays false)

“Lyapunov” stability
• Remains to show that we actually approach the goal (robots line up with targets)
• Will see later we can do this using a Lyapunov function

Properties for RoboFlag program

Robots are "far enough" apart.

14

True if robots i and i +1 have targets
that cause crossed paths

Richard M. Murray, Caltech CDSEECI, Mar 2013

Fairness
Mainly an issue with concurrent processes
• To make sure that the proper interaction

occurs, often need to know that each
process gets executed reasonably often
• Multi-threaded version: each thread should

receive some fraction of processes time

Two issues: implementation and specification
• Q1: How do we implement our algorithms

to insure that we get “fairness” in execution
• Q2: how do we model fairness in a formal

way to reason about program correctness

Example: Fairness in RoboFlag Drill
• To show that algorithm behaves properly, need to know that each agent

communicates with neighbors regularly (infinitely often), in each direction

Difficulty in describing fairness depends on the logical formalism
• Turns out to be pretty easy to describe fairness in linear temporal logic
• Much more difficult to describe fairness for other temporal logics (eg, CTL & variants)

15

Richard M. Murray, Caltech CDSEECI, Mar 2013

Fairness Properties in LTL
Definition 5.25 LTL Fairness Constraints and Assumptions

Let Φ and Ψ be propositional logical formulas
over a set of atomic propositions

1. An unconditional LTL fairness constraint is
an LTL formula of the form

2. A strong LTL fairness condition is an LTL
formula of the form

3. A weak LTL fairness constraint is an LTL
formula of the form

An LTL fairness assumption is a conjunction of LTL fairness constraints (of any arbitrary
type).

Rules of thumb
• strong (or unconditional) fairness: useful for solving contentions
• weak fairness: sufficient for resolving the non-determinism due to interleaving.

16

Richard M. Murray, Caltech CDSEECI, Mar 2013

Fairness Properties in LTL
Fair paths and traces

17

Richard M. Murray, Caltech CDSEECI, Mar 2013

Branching Time and Computational Tree Logic
Consider transition systems with multiple branches
• Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)
• In this case, there might be multiple paths from a given state
• Q: in evaluating a temporal logic property, which execution branch to we check?

Computational tree logic: allow evaluation over some or all paths

18

Richard M. Murray, Caltech CDSEECI, Mar 2013

Example: Triply Redundant Control Systems
Systems consists of three processors
and a single voter
• si,j = i processors up, j voters up
• Assume processors fail one at a

time; voter can fail at any time
• If voter fails, reset to fully functioning

state (all three processors up)
• System is operation if at least 2 processors

remain operational

Properties we might like to prove

19

Holds

Doesn’t hold

Doesn’t hold

Holds

Richard M. Murray, Caltech CDSEECI, Mar 2013

Other Types of Temporal Logic
CTL ≠ LTL
• Can show that LTL and

CTL are not proper sub-
sets of each other
• LTL reasons over a

complete path; CTL from
a given state

CTL* captures both

Timed Computational Tree Logic
• Extend notions of transition systems and CTL to

include “clocks” (multiple clocks OK)
• Transitions can depend on the value of clocks
• Can require that certain properties happen within a

given time window

20

Richard M. Murray, Caltech CDSEECI, Mar 2013

Summary: Specifying Behavior with LTL
Description
• State of the system is a snapshot of values of all

variables

• Reason about paths σ: sequence of states of the
system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is
related to state t by action a if a takes s to t (via
prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of
allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component
take an action (eg, infinitely often)

Example
• Action: a ≡ x’ = x + 1

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ...

• Safety: ¨x > 0 (true for this behavior)

• Fairness: ¨(x’ = x + 1 ∨ x’ = x) ∧ ¨◊ (x’ ≠ x)

Properties
• Can reason about time by adding

“time variables” (t’ = t + 1)

• Specifications and proofs can be
difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, SPIN, etc)

21

l ¨p ≡ always p (invariance)
l ◊p ≡ eventually p (guarantee)
l p → ◊q ≡ p implies eventually q

(response)
l p → q U r ≡ p implies q until r

(precedence)
l ¨◊p ≡ always eventually p

(progress)
l ◊¨p ≡ eventually always p

(stability)
l ◊p → ◊q ≡ eventually p implies

eventually q (correlation)

