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Formal Methods for System Verification
Specification using LTL
• Linear temporal logic (LTL)

is a math’l language for 
describing linear-time prop’s
• Provides a particularly useful

set of operators for construc-
ting LT properties without 
specifying sets

Methods for verifying an LTL 
specification
• Theorem proving: use formal

logical manipulations to show
that a property is satisfied for a
given system model
• Model checking: explicitly check all possible executions of a system model and verify 

that each of them satisfies the formal specification
- Roughly like trying to prove stability by simulating every initial condition
- Works because discrete transition systems have finite number of states
- Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)
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Temporal Logic Operators
Two key operators in temporal logic
• ◊      “eventually”  - a property is satisfied at some point in the future

• ¨     “always”  - a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time
• Linear temporal logic ⇒ each moment in time has a well-defined successor moment

• Branching temporal logic ⇒ reason about multiple possible time courses 

• “Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic
• Specific class of operators for specifying linear time properties
• Introduced by Pneuli in the 1970s (recently passed away)
• Large collection of tools for specification, design, analysis

Other temporal logics
• CTL = computation tree logic (branching time; will see later, if time)
• TCTL = timed CTL - check to make sure certain events occur in a certain time
• TLA = temporal logic of actions (Lamport) [variant of LTL]
• µ calculus = for reactive systems; add “least fixed point” operator (more on Thu)
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Syntax of LTL
LTL formulas:

• a = atomic proposition

• ◯ = “next”: φ is true at next step

• U = “until”: φ2 is true at some point,
        φ1 is true until that time

Formula evaluation: evaluate LTL propositions over a sequence of states (path):

• Same notation as linear time properties: σ ⊨ φ (path “satisfies” specification)    
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Operator precedence
• Unary bind stronger than binary 

• U takes precedence over ∧, ∨ and →
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Additional Operators and Formulas
“Primary” temporal logic operators

• Eventually   ◊ϕ := true U ϕ     ϕ will become true at some point in the future

• Always       ¨ϕ := ¬◊¬ϕ          ϕ is always true; “(never (eventually (¬ϕ)))”

Some common composite operators

• p → ◊q    p implies eventually q (response)

• p → q U r   p implies q until r (precedence)

• ¨◊p    always eventually p (progress)

• ◊¨p    eventually always p (stability)

• ◊p → ◊q    eventually p implies eventually q 
   (correlation)
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Operator precedence
• Unary binds stronger 

than binary
• Bind from right to left: 

¨◊p = (¨ (◊p))
p U q U r = p U (q U r)
• U takes precedence over 

∧, ∨ and →
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Example: Traffic Light
System description
• Focus on lights in on particular direction
• Light can be any of three colors: green, yellow, read
• Atomic propositions = light color

Ordering specifications

• Liveness: “traffic light is green infinitely often”

• Chronological ordering: “once red, the light cannot become green immediately”

• More detailed: “once red, the light always becomes green eventually after being 
yellow for some time”

Progress property

• Every request will eventually lead to a response
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☐ (red → ¬ ◯ green)

☐(red → ◯ (red U (yellow ∧ ◯ (yellow U green))))

☐ (request → ◊response)

☐◊green

☐(red → (◊ green ∧ (¬ green U yellow)))
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Semantics: when does a path satisfy an LTL spec?
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Semantics of LTL
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Semantics of LTL

Remarks
• Which condition you use depends on type of 

problem under consideration
• For reasoning about correctness, look for

(lack of) intersection between sets:
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Consider the following transition system

Property 1: TS |= [] a?
• Yes, all states are labeled with a

Property 2: TS |= X (a ^ b)?
• No: From s2 or s3, there are transitions for which a ^ b doesn’t hold

Property 3: TS |= [] (!b -> [](a ^ !b))?
• True

Property 4: TS |= b U (a ^ !b)?
• False: (s1s2)ω

”Quiz”
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Specifying Timed Properties for Synchronous Systems

Remark
• Idea can be extended to non-synchronous case (eg, Timed CTL [later])
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Equivalence of LTL Formulas

Non-identities
• ◊(a ∧ b) ≢ ◊a ∧ ◊b

• ☐(a ∨ b) ≢ ☐a ∨ ☐b
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LTL Specs for Control Protocols: RoboFlag Drill
Klavins

CDC, 03

Task description
• Incoming robots should be blocked by 

defending robots
• Incoming robots are assigned randomly to 

whoever is free
• Defending robots must move to block, but 

cannot run into or cross over others
• Allow robots to communicate with left and 

right neighbors and switch assignments

Goals
• Would like a provably correct, distributed 

protocol for solving this problem
• Should (eventually) allow for lost data, 

incomplete information

Questions
• How do we describe task in terms of LTL?
• Given a protocol, how do we prove specs?
• How do we design the protocol given specs?

zi
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CCL formulas (will cover in more detail later)
• q’   ○ q     evaluate q at the next action in path

• p ↝ q   ¨(p → ◊q)   “p leads to q”: if p is true, q will eventually be true

• p co q   “¨(p → ○q) “  if p is true, then next time state changes, q will be true

Safety (Defenders do not collide) 

Stability (switch predicate stays false)

“Lyapunov” stability
• Remains to show that we actually approach the goal (robots line up with targets)
• Will see later we can do this using a Lyapunov function

Properties for RoboFlag program

Robots are "far enough" apart.
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True if robots i and i +1 have targets
that cause crossed paths
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Fairness
Mainly an issue with concurrent processes
• To make sure that the proper interaction

occurs, often need to know that each
process gets executed reasonably often
• Multi-threaded version: each thread should

receive some fraction of processes time

Two issues: implementation and specification
• Q1: How do we implement our algorithms

to insure that we get “fairness” in execution
• Q2: how do we model fairness in a formal

way to reason about program correctness

Example: Fairness in RoboFlag Drill
• To show that algorithm behaves properly, need to know that each agent 

communicates with neighbors regularly (infinitely often), in each direction

Difficulty in describing fairness depends on the logical formalism
• Turns out to be pretty easy to describe fairness in linear temporal logic
• Much more difficult to describe fairness for other temporal logics (eg, CTL & variants)
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Fairness Properties in LTL
Definition 5.25    LTL Fairness Constraints and Assumptions

Let Φ and Ψ be propositional logical formulas 
over a set of atomic propositions

1. An unconditional LTL fairness constraint is 
an LTL formula of the form

2. A strong LTL fairness condition is an LTL 
formula of the form

3. A weak LTL fairness constraint is an LTL 
formula of the form

An LTL fairness assumption is a conjunction of LTL fairness constraints (of any arbitrary 
type).

Rules of thumb
• strong (or unconditional) fairness: useful for solving contentions
• weak fairness: sufficient for resolving the non-determinism due to interleaving.
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Fairness Properties in LTL 
Fair paths and traces
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Branching Time and Computational Tree Logic
Consider transition systems with multiple branches
• Eg, nondeterministic finite automata (NFA), nondeterministic Bucchi automata (NBA)
• In this case, there might be multiple paths from a given state
• Q: in evaluating a temporal logic property, which execution branch to we check?

Computational tree logic: allow evaluation over some or all paths
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Example: Triply Redundant Control Systems
Systems consists of three processors
and a single voter
• si,j = i processors up, j voters up
• Assume processors fail one at a

time; voter can fail at any time
• If voter fails, reset to fully functioning

state (all three processors up)
• System is operation if at least 2 processors 

remain operational

Properties we might like to prove
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Other Types of Temporal Logic
CTL ≠ LTL
• Can show that LTL and 

CTL are not proper sub-
sets of each other
• LTL reasons over a 

complete path; CTL from
a given state

CTL* captures both

Timed Computational Tree Logic
• Extend notions of transition systems and CTL to

include “clocks” (multiple clocks OK)
• Transitions can depend on the value of clocks
• Can require that certain properties happen within a 

given time window
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Summary: Specifying Behavior with LTL
Description
• State of the system is a snapshot of values of all 

variables

• Reason about paths σ: sequence of states of the 
system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is 
related to state t by action a if a takes s to t (via 
prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of 
allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component 
take an action (eg, infinitely often)

Example
• Action: a ≡ x’ = x + 1

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ...

• Safety: ¨x > 0 (true for this behavior)

• Fairness: ¨(x’ = x + 1 ∨ x’ = x) ∧ ¨◊ (x’ ≠ x)

Properties
• Can reason about time by adding 

“time variables” (t’ = t + 1)

• Specifications and proofs can be 
difficult to interpret by hand, but 
computer tools existing (eg, TLC, 
Isabelle, PVS, SPIN, etc)
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l ¨p ≡ always p (invariance)
l ◊p ≡ eventually p (guarantee)
l p → ◊q ≡ p implies eventually q 

(response)
l p → q U r ≡ p implies q until r 

(precedence)
l ¨◊p ≡ always eventually p 

(progress)
l ◊¨p ≡ eventually always p 

(stability)
l ◊p → ◊q ≡ eventually p implies 

eventually q (correlation)


