Lecture 2 Automata Theory

Ufuk Topcu

Nok Wongpiromsarn

Richard M. Murray

EECI, 18 March 2013

Outline

- Modeling (discrete) concurrent systems: transition systems, concurrency and interleaving
- Linear-time properties: invariants, safety and liveness properties

Principles of Model Checking, C. Baier and J.-P. Katoen, The MIT Press, 2008

Chapters 2.1, 2.2, 3.2-3.4

This short-course is on this picture applied to a particular class of systems/problems.

A *finite transition system* is a mathematical description of the behavior of systems, plants, controllers or environments with finite (discrete)

- inputs,
- outputs, and
- internal states and transitions between the states.

Example: Traffic logic planner in Alice.

environment

Preliminaries

A **proposition** is a statement that can be either true or false, but not both.

Examples:

- "Traffic light is green" is a proposition.
- "The front pad is occupied" is a proposition.
- "Is the front pad occupied?" is not a proposition.

An **atomic proposition** is one whose truth or falsity does not depend on the truth or falsity of any other proposition.

Examples:

- All propositions above are atomic propositions.
- "If traffic light is green, the car can drive" is <u>not</u> an atomic proposition.

For notational brevity, use propositional variables to abbreviate propositions. For example,

$$p \equiv$$
 Traffic light is green

 $q \equiv$ Front pad is occupied

A transition system TS is a tuple $TS = (S, Act, \rightarrow, I, AP, L)$, where

- S is a set of states,
- Act is a set of actions,
- $\rightarrow \subseteq S \times Act \times S$ is a transition relation,
- $I \subseteq S$ is a set of initial states,
- AP is a set of atomic propositions,
- $L: S \to 2^{AP}$ is a labeling function, and

TS is called finite if S, Act, and AP are finite.

- AP depends on the characteristics of the system of interest.
- For state *s*, *L*(*s*) is the set of atomic propositions that are satisfied at *s*.
- Labels model outputs or observables.
- Actions model inputs or "communication."

example

$$\begin{array}{l} S = \{q_0, q_1\} \\ Act = \{rear, front, both, neither\} \\ \rightarrow = \{(q_0, front, q_1), (q_1, neither, q_0), \\ (q_1, rear, q_1), \ldots\} \\ I = \{q_0\} \\ L(q_0) = \{door \ is \ not \ open\} \\ L(q_1) = \{door \ is \ open\} \end{array}$$

Propositional logic

Given finite set AP of atomic propositions, the set of propositional logic formulas is inductively defined by:

- true is a formula;
- any $a \in AP$ is a formula;
- if ϕ_1 , ϕ_2 , and ϕ are formulas, so are $\neg \phi$ and $\phi_1 \land \phi_2$; and
- nothing else is a formula.

Example propositional logic formulas obtained by applying the above four rules:

$$\phi_1 \lor \phi_2 := \neg (\neg \phi_1 \land \neg \phi_2)$$
$$\phi_1 \to \phi_2 := \neg \phi_1 \lor \phi_2$$

From "Specifying Systems" by L. Lamport: Propositional logic is the math of the Boolean values, true and false, and the operators $\neg, \land, \lor, \rightarrow$

The evaluation function $\mu : AP \to \{0, 1\}$ assigns a truth value to each $a \in AP$.

The truth value $\mu(\Phi)$ of a formula Φ is determined by substituting the values for the atomic propositions specified by μ .

Given:
$$AP = \{a, b, c\}, \ \mu(a) = 0$$
 and
 $\mu(b) = \mu(c) = 1.$
 $\Phi_1 = (a \land \neg b) \lor c, \ \mu(\Phi_1) = 1$
 $\Phi_2 = (a \land \neg b) \land c, \ \mu(\Phi_2) = 0$

Logical dynamical system as a finite transition system

$$\begin{aligned} x_1[k+1] &= x_2[k] \lor u[k], \quad x_1[0] = 0, \\ x_2[k+1] &= x_1[k] \land u[k], \quad x_2[0] = 1, \\ y[k] &= x_1[k] \oplus x_2[k] \\ & \checkmark \\ \phi_1 \oplus \phi_2 &:= (\neg \phi_1 \land \phi_2) \lor (\phi_1 \land \neg \phi_2) \\ \text{XOR (exclusive or) gives true only if} \end{aligned}$$

exactly one of the operands is true.

$$S = \{0, 1\}^{2}$$

$$Act = \{0, 1\}$$

$$I = \{(0, 1)\}$$

$$AP = \{y\}$$

$$L(x_{1}, x_{2}) = \begin{cases} \{y\} \text{ (indicating 1) if } x_{1} \oplus x_{2} = 1 \\ \emptyset \text{ (indicating 0) otherwise} \end{cases}$$

Concurrent systems

Systems in which multiple tasks can be executed at the same time potentially with inter-task communication and resource sharing.

Example: multi-threaded control

- Separate code into independent threads
- Switch between threads, allowing each to run simultaneously
- Potential problems: deadlocks, race conditions

Modes of communication between the subsystems:

- hand-shaking (leads to synchrony)
- changing the values of shared variables (leads to asynchrony)

Module	Threads
adrive (actuation)	19
trajFollower	10
astate (state estimator)	10
plannerModule	4
fusionMapper	16

Module	Threads
ladarFeeder (5)	8
stereoFeeder (2)	7
road (road follower)	5
superCon	3
DBS	3

^{*} doesn't count heartbeat and logging threads

Composition of transition systems (by handshaking)

Let $TS_1 = (S_1, Act_1, \rightarrow_1, I_1, AP_1, L_1)$ and $TS_2 = (S_2, Act_2, \rightarrow_2, I_2, AP_2, L_2)$ be transition systems. Their parallel composition, $TS_1 || TS_2$ is the transition system defined by

$$TS_1||TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \cup AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by the following rules:

- If $\alpha \in Act_1 \cap Act_2$, $s_1 \xrightarrow{\alpha} s_1 s_1'$, and $s_2 \xrightarrow{\alpha} s_2 s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2' \rangle$.
- If $\alpha \in Act_1 \setminus Act_2$ and $s_1 \xrightarrow{\alpha} s_1 s_1'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1', s_2 \rangle$.
- If $\alpha \in Act_2 \setminus Act_1$ and $s_2 \xrightarrow{\alpha}{\rightarrow} s_2 s_2'$, then $\langle s_1, s_2 \rangle \xrightarrow{\alpha}{\langle g_1 \rangle} \langle s_1, s_2' \rangle$.

Paths of a finite transition system

Given a transition system $TS = (S, Act, \rightarrow, I, AP, L)$. For $s \in S$,

$$Post(s) := \left\{ s' \in S : \exists a \in Act \text{ s.t. } s \xrightarrow{a} s' \right\}$$

- Example: $Post((0,0)) = \{(0,0),(1,0)\}.$
- A state *s* is *terminal* iff *Post*(*s*) is empty.
- A sequence of states, either finite π = s₀s₁s₂...s_n or infinite π = s₀s₁s₂..., is a path fragment if s_{i+1} ∈ Post(s_i), ∀i ≥ 0.

- A path is a path fragment s.t. $s_0 \in I$ and it is
 - either finite with terminal s_n • or infinite.
- Denote the set of paths in TS by Path(TS).

a path: $(0,1) \xrightarrow{,1} (1,0) \xrightarrow{1} (1,1) \xrightarrow{1} (1,1) \xrightarrow{0} \cdots$ not a path: $(1,0) \xrightarrow{0} (0,0) \xrightarrow{0} (0,0) \xrightarrow{1} (1,0) \xrightarrow{0} \cdots$ not a path: $(0,1) \xrightarrow{,1} (1,0) \xrightarrow{1} (1,1).$

Traces of a finite transition system

Consider a finite transition system $TS = (S, Act, \rightarrow, I, AP, L)$ with no terminal states (wlog). Equivalent FSMs w/ and w/o terminal state

The *trace* of an infinite path fragment $\pi = s_0 s_1 s_2 \dots$ is defined by

$$trace(\pi) = L(s_0)L(s_1)L(s_2)\dots$$

The set, Traces(TS), of traces of TS is defined by

 $Traces(TS) = \{trace(\pi): \pi \in Paths(TS)\}$

sequence of sets of atomic propositions that are valid in the states along the path

Linear-time properties

A linear-time (LT) property P over atomic propositions in AP is a set of infinite sequences over 2^{AP} .

Let P be an LT property over AP and $TS = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

TS satisfies P, denoted as $TS \models P$, iff (Traces(TS))P. traces of TSadmissible, desired, undesired, etc. behavior $[g_2]$ **Example:** $AP = \{red1, green1, red2, green2\}$ PI = "The first light is infinitely often green." $[A_0A_1A_2\ldots \text{ with } green_1 \in \mathcal{A}_i \subseteq 2^{\mathcal{A}} \text{ holds}$ for infinitely many i] q_2, s_1 q_2, s_2 $\sqrt{\{r1, g2\}} \{g1, r2\} \{r3, g2\} \{g1, r2\} \dots \\ \sqrt{\{g1\}} \{g1\} \{g1\} \{g1\} \{g1\} \dots \{g_1, g_2\} \dots \\ \sqrt{\{g_1, g_2\}} \dots$ $\checkmark \{g1, g2\}\{g1, g2\}\{g1, g2\}\dots$ $\times \{r1, q2\}\{r1q1\}\emptyset\emptyset\ldots$

P2 = "The lights are never both green simultaneously." $[A_0A_1A_2...$ with $green1 \notin A_i$ or $green2 \notin A_i$, for all $i \ge 0$]

The transition system satisfies P2, but it does not satisfy P1.

Invariants

An LT property P_{Φ} over AP is an *invariant* with respect to a propositional logic formula Φ over AP if

$$P_{\Phi} = \{A_0 A_1 A_2 \dots \in (2^{AP})^{\omega} : A_j \models \Phi \,\forall j \ge 0\}.$$

Notation: repeat infinitely many times

For $A \subseteq AP$, let the evaluation μ_A be the characteristic function of A.

 $A \models \Phi \text{ iff } \mu_A(\Phi) = 1$

<u>Example</u>: The LT property "the lights are never both green simultaneously" is an invariant with respect to $\Phi = \neg green1 \lor \neg green2$.

Given TS, Φ , and P_{Φ} , $TS \models P_{\Phi}$?

The following four statements are equivalent.

I.
$$TS \models P_{\Phi}$$

2.
$$trace(\pi) \in P_{\Phi}, \ \forall \pi \in Path(TS)$$

3.
$$L(s) \models \Phi$$
, $\forall s \in S$ on a path of TS
4. $L(s) \models \Phi$, $\forall s \in Reach(TS)$

A state s is reachable if there exists an execution fragment s.t. $s_0 \in I$ and $s_0 \xrightarrow{a_1} s_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} s_n = s$ Reach(TS) : set of reachable states in TS

Invariants are state properties. That is, for verification, find the reachable states and check Φ .

Safety properties

An LT property P_{safe} is a *safety* property if for all words $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite prefix $\hat{\sigma}$ of σ s.t.

 $P_{safe} \cap \{\sigma' \in (2^{AP})^{\omega} : \hat{\sigma} \text{ is a finite prefix of } \sigma'\} = \emptyset.$

Bad things have happened in the bad prefix $\hat{\sigma}$. Hence, no infinite word that starts with $\hat{\sigma}$ satisfies P_{safe} .

Example: AP = {red, green, yellow}

"At least one of the lights is always on" is a safety property.
{σ = A₀A₁... : A_j ⊆ AP ∧ A_j ≠ ∅} Bad prefixes: finite words that contain ∅.

• "Two lights are never on at the same time" is a safety property.

 $\{\sigma = A_0 A_1 \dots : A_j \subseteq AP \land card(A_j) \le 1\}$

Bad prefixes: finite words that contain {red,green}, {red,yellow}, and so on.

Any invariant is a safety property. There are safety properties that are not invariant.

Example: AP = {red, yellow}

"Each red is immediately preceded by a yellow" is a safety property, but not invariant (because it is not a state property).

Sample bad prefixes: $\emptyset \emptyset \{r\}$ $\{y\} \{y\} \{r\} \{r\} \emptyset \{r\}$

Liveness properties

An LT property P is a liveness property if and only if for each finite word w of 2^{AP} there exists an infinite word $\sigma \in (2^{AP})^{\omega}$ satisfying $w\sigma \in P$.

<u>Example</u>: Two traffic lights with $AP = \{red1, green1, red2, green2\}$

- First light will eventually turn green
- First light will turn green infinitely often

Use of liveness properties:

- specify the absence of (undesired) infinite loops or progress toward a goal.
- rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous execution, every process is activate infinitely often.

Example: Is the following a safety property? Liveness?

"the first light is eventually green after it is initially red three time instances in a row"

Answer: It is a combination of a safety and a liveness property.

- Liveness: any finite word can be extended by an infinite word $A_0A_1A_2...$ with $green 1 \in A_j$ for some $j \ge 0$.
- Safety: any finite word $A_0A_1A_2$ with $red1 \notin A_i$ for any $i \in \{0, 1, 2\}$ is a bad prefix.

<u>Safety</u>

state condition

something bad never happens <u>Liveness</u>

something good will happen eventually

violated at individual states

any infinite run violating the property has a finite prefix

violated only by infinite runs

verification: find the reachable states and check the invariant condition verification:

verification:

?

Nondeterministic finite automaton (NFA)

A nondeterministic finite automaton $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ is a tuple with

- A is a set of states,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function,
- $Q_0 \subseteq Q$ is a set of initial states, and
- $F \subseteq Q$ is a set of accept (or: final) states.

set of finite words

Let $w = A_1 \dots A_n \in \hat{\Sigma}^*$ be a finite word. A *run* for w in \mathcal{A} is a finite sequence of states $q_0q_1 \dots q_n$ s.t.

$$- q_0 \in Q_0$$

- $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \le i < n$

A run $q_0q_1 \ldots q_n$ is called accepting if $q_n \in F$.

A finite word in accepted if it leads to an accepting run.

The accepted language $\mathcal{L}(\mathcal{A})$ of \mathcal{A} is the set of finite words in Σ^* accepted by \mathcal{A} .

Regular safety properties

A set $\mathcal{L} \subseteq \Sigma^*$ of finite strings is called a regular language \mathcal{L} if there is a nondeterministic finite automaton \mathcal{A} s.t. $\mathcal{L} = \mathcal{L}(\mathcal{A})$.

A safety property P_{safe} over AP is called *regular* if its set of bad prefixes constitutes a regular language over 2^{AP} .

That is: \exists NFA \mathcal{A} s.t. $\mathcal{L}(\mathcal{A}) = \text{bad prefixes of } P_{safe}$

<u>Example</u>: AP = {red, green, yellow} "Each red must be preceded immediately by a yellow" is a regular safety property.

Sample bad prefixes:

- {}{}{red}
- {}{red}
- {yellow}{yellow}{green}{red}

• $A_0A_1 \dots A_n$ s.t. $n > 0, red \in A_n$, and $yellow \notin A_{n-1}$

general form of minimal bad prefixes

NFA: $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

language (set of

finite words)

accepted by

the NFA

Verifying regular safety properties

Given a transition system TS and a regular safety property P_{safe} , both over the atomic propositions AP.

Let \mathcal{A} be an NFA s.t. $\mathcal{L}(\mathcal{A}) = BadPref(P_{safe}).$

For words w and σ , w. σ denotes their concatenation.

<u>Safety</u>

state condition

something bad never happens <u>Liveness</u>

something good will happen eventually

violated at individual states

any infinite run violating the property has a finite prefix

violated only by infinite runs

verification: find the reachable states and check the invariant condition verification: based on nondeterministic finite automaton which accepts "finite runs" verification:

?

Nondeterministic Buchi automaton (NBA)

A nondeterministic Buchi automaton is same as an NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ with its runs interpreted differently.

Let $w = A_1 A_2 \ldots \in \Sigma^{\omega}$ be an infinite string. A *run* for w in \mathcal{A} is an infinite sequence $q_0 q_1 \ldots$ of states s.t.

- $q_0 \in Q_0$ and - $q_0 \xrightarrow{A_1} q_1 \xrightarrow{A_2} q_2 \xrightarrow{A_3} \dots$

A run is *accepting* if $q_j \in F$ for infinitely many j.

A string w is accepted by \mathcal{A} if there is an accepting run of w in \mathcal{A} .

 $\mathcal{L}_{\omega}(\mathcal{A})$: set of infinite strings accepted by \mathcal{A} .

A set of infinite string $\mathcal{L}_{\omega} \subseteq \Sigma^{\omega}$ is called an ω -regular language if there is an NBA \mathcal{A} s.t. $\mathcal{L}_{\omega} = \mathcal{L}_{\omega}(\mathcal{A})$.

The NBA on the right accepts the infinite words satisfying the LT property: "infinitely often green."

NBA: $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$

ω -Regular Properties

An LT property P over AP is called ω -regular if P is an ω -regular language over 2^{AP} .

Invariant, regular safety, and various liveness properties are ω -regular.

Let P be an ω -regular property and \mathcal{A} be an NBA that represents the "bad traces" for P.

Basic idea behind model checking ω -regular properties:

$$TS \not\models P \quad \text{if and only if} \quad Traces(TS) \not\subseteq P$$

if and only if
$$Traces(TS) \cap \left((2^{AP})^{\omega} \setminus P \right) \neq \emptyset$$

if and only if
$$Traces(TS) \cap \overline{P} \neq \emptyset$$

if and only if
$$Traces(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset$$

<u>Safety</u>

state condition

something bad never happens <u>Liveness</u>

something good will happen eventually

violated at individual states

any infinite run violating the property has a finite prefix

violated only by infinite runs

verification: find the reachable states and check the invariant condition verification: based on nondeterministic finite automaton which accepts "finite runs" verification: based on nondeterministic Buchi automaton which accepts infinite runs