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This lecture 
is an intro 
to these. 
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This short-course is on this picture applied to a particular class 
of systems/problems. 

formal 
specifications

system 
model



A finite transition system is a mathematical description of the behavior of 
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states. 

Finite transition system

front 
pad

rear
pad

door
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rear, both, neither front, rear, both
front

neither

q1
{door is open}

q0

{door is not open}



Finite transition system
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Example: Traffic logic planner in Alice. 

DR = drive.
STO = stop.
NP = no passing, no 
reversing.
P = passing, no reversing.
PR = passing, reversing 
allowed.
S = safe clearance with 
obstacle.
A = aggressive clearance 
with obstacle.
B = no clearance with 
obstacle.

Partial nomenclature:



Finite transition system
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Example: Traffic lights. 
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A proposition is a statement that can be either true or false, but not both.

Examples:
• “Traffic light is green” is a proposition.
• “The front pad is occupied” is a proposition.
• “Is the front pad occupied?” is not a proposition.

An atomic proposition is one whose truth or falsity does not depend on the 
truth or falsity of any other proposition.

Examples:
• All propositions above are atomic propositions.
• “If traffic light is green, the car can drive” is not an atomic proposition.

Preliminaries 

For notational brevity, use propositional variables to abbreviate propositions. For 
example, 

p � Tra�c light is green

q � Front pad is occupied
6



Finite transition system
A transition system TS is a tuple TS = (S, Act,⇤, I, AP,L), where

• S is a set of states,

• Act is a set of actions,

• ⇤⇥ S �Act� S is a transition relation,

• I ⇥ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S ⇤ 2AP is a labeling function, and

TS is called finite if S, Act, and AP are finite.
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q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

S = {q0, q1}
Act = {rear, front, both, neither}
�= {(q0, front, q1), (q1, neither, q0),

(q1, rear, q1), . . .}
I = {q0}
L(q0) = {door is not open}
L(q1) = {door is open}

example

• AP depends on the 
characteristics of the 
system of interest.

• For state s, L(s) is the set 
of atomic propositions 
that are satisfied at s.

• Labels model outputs or 
observables.

• Actions model inputs or 
“communication.”



Propositional logic
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Given finite set AP of atomic propositions, the set of 
propositional logic formulas is inductively defined by:
- true is a formula;
- any a � AP is a formula;
- if �1, �2, and � are formulas, so are ¬� and �1 ⇥ �2; and
- nothing else is a formula.

Notation 
•Connectives:

•1 for “true” and 0 for “false.”

¬ (negation), ⇥ (and)
⇤ (or), � (implies)

Example propositional logic 
formulas obtained by applying the 
above four rules:

�1 ⇤ �2 := ¬(¬�1 ⇥ ¬�2)
�1 � �2 := ¬�1 ⇤ �2

From “Specifying Systems” by 
L. Lamport: Propositional logic 
is the math of the Boolean 
values, true and false, and the 
operators ¬,⇥,⇤,�

The evaluation function µ : AP � {0, 1}
assigns a truth value to each a ⇥ AP.

Given: AP = {a, b, c}, µ(a) = 0 and
µ(b) = µ(c) = 1.

�1 = (a � ¬b) ⇥ c, µ(�1) = 1
�2 = (a � ¬b) � c, µ(�2) = 0

The truth value µ(�) of a formula �
is determined by substituting the
values for the atomic propositions
specified by µ.



Logical dynamical system as a finite transition system

x1[k + 1] = x2[k] ⇤ u[k], x1[0] = 0,

x2[k + 1] = x1[k] ⇥ u[k], x2[0] = 1,

y[k] = x1[k]� x2[k]

XOR (exclusive or) gives true only if 
exactly one of the operands is true.

S = {0, 1]}2

Act = {0, 1}
I = {(0, 1)}

AP = {y}

L(x1, x2) =
�

{y} (indicating 1) if x1 � x2 = 0
⇥ (indicating 0) otherwise
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�1 � �2 := (¬�1 ⇥ �2) ⇤ (�1 ⇥ ¬�2)

1



Modes of communication 
between the subsystems:
• hand-shaking (leads to 

synchrony)
• changing the values of 

shared variables (leads to 
asynchrony)

Example: multi-threaded control

• Separate code into 
independent threads

• Switch between threads, 
allowing each to run 
simultaneously

• Potential problems: 
deadlocks, race conditions

Thread Usage in Alice (DGC05)

Concurrent systems
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Systems in which multiple tasks can be executed at the same time potentially with inter-task 
communication and resource sharing.



Composition of transition systems (by handshaking)
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traffic 
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Let TS1 = (S1, Act1,!1, I1, AP1, L1) and TS2 = (S2, Act2,!2, I2, AP2, L2)

be transition systems. Their parallel composition, TS1||TS2 is the transition

system defined by

TS1||TS2 = (S1 ⇥ S2, Act1 [Act2,!, I1 ⇥ I2, AP1 [AP2, L)

where L(hs1, s2i) = L1(s1) [ L2(s2) and ! is defined by the following rules:

• If ↵ 2 Act1 \Act2, s1
↵!1 s0

1, and s2
↵!2 s0

2, then hs1, s2i
↵! hs0

1, s
0
2i.

• If ↵ 2 Act1 \ Act2 and s1
↵!1 s0

1, then hs1, s2i
↵! hs0

1, s2i.

• If ↵ 2 Act2 \ Act1 and s2
↵!2 s0

2, then hs1, s2i
↵! hs1, s0

2i.
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� = s0s1s2 . . .
• A sequence of states, either finite                           
   or infinite                       , is a path fragment if 

� = s0s1s2 . . . sn

si+1 ⇥ Post(si), ⇤i � 0.

(0, 1) 0,1��⇥ (1, 0) 1�⇥ (1, 1).

(0, 1) 0,1��⇥ (1, 0) 1�⇥ (1, 1) 1�⇥ (1, 1) 0�⇥ · · ·

(1, 0) 0�⇥ (0, 0) 0�⇥ (0, 0) 1�⇥ (1, 0) 0�⇥ · · ·

Given a transition system                                         .
For 

• Example: Post((0,0)) = {(0,0),(1,0)}. 

Paths of a finite transition system
TS = (S, Act,�, I, AP,L)

q
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• A path is a path fragment s.t. 
and it is 

• either finite with terminal
• or infinite.  

• Denote the set of paths 
in TS by               .

s0 � I

sn

Path(TS)

a path:

not a path:

not a path:

s � S,

Post(s) :=
�

s� ⇤ S : ⌅a ⇤ Act s.t. s
a�⇥ s�

⇥

• A state s is terminal iff Post(s) is empty.



Traces of a finite transition system
Equivalent FSMs w/ and w/o terminal stateConsider a finite transition system                                        

with no terminal states (wlog).
TS = (S, Act,�, I, AP,L)

The trace of an infinite path fragment                       is defined by

The set,                   , of traces of TS is defined by
                                                                               .
 

� = s0s1s2 . . .

trace(�) = L(s0)L(s1)L(s2) . . .

Traces(TS) = {trace(�) : � � Paths(TS)}
Traces(TS) sequence of sets of atomic 

propositions that are valid in 
the states along the path
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q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

Actions: f, f, n, b, f, f, b, . . .
Path: q0q1q1q0q0q1q1q1 . . .
Trace: ¬o, o, o,¬o,¬o, o, o, o, . . .

(with some abuse of notation)
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states The transition system 
satisfies P2, but it does 
not satisfy P1.

Linear-time properties

Let P be an LT property over AP and TS = (S, Act,⇥, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, i� Traces(TS) � P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

P1 = “The first light is infinitely often green.”

[A0A1A2 . . . with green1 ⇥ Ai � 2AP holds
for infinitely many i]

AP = {red1, green1, red2, green2}Example:

{r1, g2}{g1, r2}{r1, g2}{g1, r2} . . .
�{g1}�{g1}�{g1}� . . .
{g1, g2}{g1, g2}{g1, g2} . . .
{r1, g2}{r1g1}�� . . .

⇥
⇥
⇥

�

P2 = “The lights are never both green simultaneously.”
[A0A1A2 . . . with green1 /⇥ Ai or green2 /⇥ Ai,
for all i � 0]
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traces of TS
admissible, desired, undesired, etc. behavior



Notation: repeat 
infinitely many times

For A � AP , let the
evaluation µA be the
characteristic function
of A.

A |= � i⇥ µA(�) = 1

Invariants

P� = {A0A1A2 . . . ⇥ (2AP )� : Aj |= � ⇤j � 0}.

Example: The LT property “the lights are never both green simultaneously” is an 
invariant with respect to                                       .� = ¬green1 � ¬green2
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An LT property P� over AP is an invariant with
respect to a propositional logic formula � over AP if

Given TS, �, and P�, TS |= P�?

The following four statements are 
equivalent.
1. 
2. 
3. 
4. 

TS |= P�

trace(�) � P�, ⇥� � Path(TS)
L(s) |= �, ⇥s � S on a path of TS

L(s) |= �, ⇥s � Reach(TS)

A state s is reachable if there exists an 
execution fragment s.t.            and

                  : set of reachable states in TS

 

s0 � I

s0
a1�⇥ s1

a2�⇥ · · · an��⇥ sn = s

Reach(TS)

Invariants are state properties. 
That is, for verification, find the 
reachable states and check    .�



Safety properties

Psafe ⇤ {�� � (2AP )� : �̂ is a finite prefix of ��} = ⇥.

An LT property Psafe is a safety property if for all words
� � (2AP )�\Psafe there exists a finite prefix �̂ of � s.t.

Bad things have happened in the bad prefix    . Hence, no infinite word that
starts with    satisfies          .      

�̂
�̂ Psafe

Example:   AP = {red, green, yellow}

• “At least one of the lights is always on” 
is a safety property.

{� = A0A1 . . . : Aj � AP ⌅Aj ⇥= ⇤}
Bad prefixes: finite words that contain   . �

• “Two lights are never on at the same 
time” is a safety property.

{� = A0A1 . . . : Aj � AP ⇤ card(Aj) ⇥ 1}

Bad prefixes: finite words that contain 
{red,green}, {red,yellow}, and so on.

16

Any invariant is a safety 
property. There are safety 
properties that are not invariant.

Example:   AP = {red, yellow}

“Each red is immediately preceded 
by a yellow” is a safety property, 
but not invariant (because it is not 
a state property). 

Sample bad prefixes: 
��{r}
{y}{y}{r}{r}�{r}



Example: Two traffic lights with 
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties
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An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word � � (2AP )�

satisfying w� � P.

AP = {red1, green1, red2, green2}

Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous 
execution, every process is activate infinitely often.

Example: Is the following a safety property? Liveness?

“the first light is eventually green 
after it is initially red three time instances in a row”

green1 � Aj j � 0
A0A1A2

Answer: It is a combination of a safety and a liveness property.
• Liveness: any finite word can be extended by an infinite word                    with                      
                        for some           . 
• Safety: any finite word                with                 for any                   is a bad prefix.                                          

A0A1A2 . . .

red1 /� Ai i � {0, 1, 2}

(2AP )⇤g1(2AP )!r1r1r1(2AP )!

safety liveness
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SafetyInvariant Liveness

state condition something bad 
never happens

something good 
will happen 
eventually

violated at 
individual states

any infinite run 
violating the property 

has a finite prefix

violated only by infinite 
runs

verification: find the 
reachable states and check 

the invariant condition

verification: verification:

? ?



Nondeterministic finite automaton (NFA)
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A nondeterministic finite automaton A = (Q,�, �, Q0, F ) is a tuple with
- A is a set of states,
- � is an alphabet,
- � : Q� �⇤ 2Q is a transition function,
- Q0 ⇥ Q is a set of initial states, and
- F ⇥ Q is a set of accept (or: final) states.

�(q0, A) = {q0}, �(q0, B) = {q0, q1}
�(q1, A) = {q2}, �(q1, B) = {q2}
�(q2, A) = �, �(q0, B) = �

Q = {q0, q1, q2}, � = {A, B}
Q0 = {q0}, F = {q2}

Let w = A1 . . . An ⌅ �� be a finite word.
A run for w in A is a finite sequence of
states q0q1 . . . qn s.t.
- q0 ⌅ Q0

- qi
Ai+1���⇤ qi+1 for all 0 ⇥ i < n. word                           run

empty word q0
B q0q1

ABA q0q0q0q0
BBA q0q0q0q0
BA

BBA
q0q1q2

q0q0q1q2

set of finite words

A run q0q1 . . . qn is called accepting if qn � F .

accepted

The accepted language L(A) of A is the set
of finite words in �� accepted by A.

A finite word in accepted if it leads to an 
accepting run.



Regular safety properties
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NFA: A = (Q,�, �, Q0, F )

q1

q0

q2

yellow

¬yellow

red

¬red�

¬yellow ¬red�
yellow

Example:   AP = {red, green, yellow}
“Each red must be preceded immediately by a yellow” 
is a regular safety property.

Sample bad prefixes: 
• {}{}{red}
• {}{red}
• {yellow}{yellow}{green}{red}
• A0A1 . . . An s.t. n > 0, red � An, and yellow /� An�1

general form of minimal bad prefixes

A set L � �� of finite strings is called a regular language
if there is a nondeterministic finite automaton A s.t. L = L(A).

language (set of 
finite words) 
accepted by 
the NFA

A safety property Psafe over AP is called regular if its set of bad
prefixes constitutes a regular language over 2AP .

� NFA A s.t. L(A) = bad prefixes of PsafeThat is:



(2AP )�

(2AP )�\Psafe

Verifying regular safety properties
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Given a transition system TS and a regular safety property Psafe,
both over the atomic propositions AP.

Let A be an NFA s.t. L(A) = BadPref(Psafe).

TS |= Psafe i� Traces(TS) � Psafe

i� Traces(TS) ⇤ ((2AP )�\Psafe) = ⇥
i� Traces(TS) ⇤BadPref(Psafe).(2AP )� = ⇥
i� pref(Traces(TS)) ⇤BadPref(Psafe) = ⇥
i� pref(Traces(TS)) ⇤ L(A) = ⇥

finite prefixes

For words w and �, w.� denotes their concatenation.

Traces(TS) Psafe
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SafetyInvariant Liveness

state condition something bad 
never happens

something good 
will happen 
eventually

violated at 
individual states

any infinite run 
violating the property 

has a finite prefix

violated only by infinite 
runs

verification: find the 
reachable states and check 

the invariant condition

verification: based on 
nondeterministic finite 
automaton which accepts 
“finite runs”

verification:

?



A nondeterministic Buchi automaton is same as an NFA
with its runs interpreted differently.  

A = (Q,�, �, Q0, F )

Nondeterministic Buchi automaton (NBA)
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Let w = A1A2 . . . ⇤ �� be an infinite string. A run for w in A
is an infinite sequence q0q1 . . . of states s.t.
- q0 ⇤ Q0 and
- q0

A1��⇥ q1
A2��⇥ q2

A3��⇥ . . . .

A run is accepting if qj � F for infinitely many j.

A string w is accepted by A if there is an
accepting run of w in A.

L�(A): set of infinite strings accepted by A.

AP = {red, green}

input word:
{green}{}{green}{}{green}{}...

q0q1q0q1q0q1 . . .

run:

({green, red}{}{green}{red})�
input word:

run:

q0q1q0q1q0q1 . . .
A set of infinite string L� � �� is
called an �-regular language if there
is an NBA A s.t. L� = L�(A).

The NBA on the right accepts the infinite words 
satisfying the LT property: “infinitely often green.” 



  -Regular Properties
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�
NBA: A = (Q,�, �, Q0, F )

An LT property P over AP is called �-regular if P is an
�-regular language over 2AP .

Invariant, regular safety, and various liveness properties are �-regular.

Let P be an �-regular property and A be an NBA that
represents the ”bad traces” for P.

Basic idea behind model checking �-regular properties:

TS 6|= P if and only if Traces(TS) 6✓ P

if and only if Traces(TS) \
⇣
(2

AP
)

! \ P
⌘
6= ;

if and only if Traces(TS) \ P 6= ;
if and only if Traces(TS) \ L!(A) 6= ;
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SafetyInvariant Liveness

state condition something bad 
never happens

something good 
will happen 
eventually

violated at 
individual states

any infinite run 
violating the property 

has a finite prefix

violated only by infinite 
runs

verification: find the 
reachable states and check 

the invariant condition

verification: based on 
nondeterministic finite 
automaton which accepts 
“finite runs”

verification: based on 
nondeterministic Buchi 
automaton which 
accepts infinite runs


