
Lecture 2
Automata Theory

Ufuk Topcu

Nok Wongpiromsarn Richard M. Murray

Outline
• Modeling (discrete) concurrent

systems: transition systems,
concurrency and interleaving

• Linear-time properties:
invariants, safety and liveness
properties

Principles of Model Checking,
C. Baier and J.-P. Katoen,
The MIT Press, 2008

Chapters 2.1, 2.2, 3.2-3.4

EECI, 18 March 2013

This lecture
is an intro
to these.

2

requirements
(on the system

behavior)

assumptions
(on the unknowns, e.g.,
environment behavior)

complete system or
some of its components

requirements
(on the system

behavior)

satisfied
(+certificate)

violated
(+counterexample)

verification

controller that render
the system to

satisfy the spec’s

no such
controller

exists

synthesis

This short-course is on this picture applied to a particular class
of systems/problems.

formal
specifications

system
model

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states.

Finite transition system

front
pad

rear
pad

door

3

rear, both, neither front, rear, both
front

neither

q1
{door is open}

q0

{door is not open}

Finite transition system

4

Example: Traffic logic planner in Alice.

DR = drive.
STO = stop.
NP = no passing, no
reversing.
P = passing, no reversing.
PR = passing, reversing
allowed.
S = safe clearance with
obstacle.
A = aggressive clearance
with obstacle.
B = no clearance with
obstacle.

Partial nomenclature:

Finite transition system

5

Example: Traffic lights.

traffic
light 2

traffic
light 1

↵

q1

q2

↵

�

{g1}
traffic
light 1

s2

s1

� �

�

{g2}
traffic
light 2

� �

↵ ↵

�

�

�
c1

c2

c3

controller

environment

e1

e2

�1 �2

�1

�2

A proposition is a statement that can be either true or false, but not both.

Examples:
• “Traffic light is green” is a proposition.
• “The front pad is occupied” is a proposition.
• “Is the front pad occupied?” is not a proposition.

An atomic proposition is one whose truth or falsity does not depend on the
truth or falsity of any other proposition.

Examples:
• All propositions above are atomic propositions.
• “If traffic light is green, the car can drive” is not an atomic proposition.

Preliminaries

For notational brevity, use propositional variables to abbreviate propositions. For
example,

p � Tra�c light is green

q � Front pad is occupied
6

Finite transition system
A transition system TS is a tuple TS = (S, Act,⇤, I, AP,L), where

• S is a set of states,

• Act is a set of actions,

• ⇤⇥ S �Act� S is a transition relation,

• I ⇥ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S ⇤ 2AP is a labeling function, and

TS is called finite if S, Act, and AP are finite.

7

q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

S = {q0, q1}
Act = {rear, front, both, neither}
�= {(q0, front, q1), (q1, neither, q0),

(q1, rear, q1), . . .}
I = {q0}
L(q0) = {door is not open}
L(q1) = {door is open}

example

• AP depends on the
characteristics of the
system of interest.

• For state s, L(s) is the set
of atomic propositions
that are satisfied at s.

• Labels model outputs or
observables.

• Actions model inputs or
“communication.”

Propositional logic

8

Given finite set AP of atomic propositions, the set of
propositional logic formulas is inductively defined by:
- true is a formula;
- any a � AP is a formula;
- if �1, �2, and � are formulas, so are ¬� and �1 ⇥ �2; and
- nothing else is a formula.

Notation
•Connectives:

•1 for “true” and 0 for “false.”

¬ (negation), ⇥ (and)
⇤ (or), � (implies)

Example propositional logic
formulas obtained by applying the
above four rules:

�1 ⇤ �2 := ¬(¬�1 ⇥ ¬�2)
�1 � �2 := ¬�1 ⇤ �2

From “Specifying Systems” by
L. Lamport: Propositional logic
is the math of the Boolean
values, true and false, and the
operators ¬,⇥,⇤,�

The evaluation function µ : AP � {0, 1}
assigns a truth value to each a ⇥ AP.

Given: AP = {a, b, c}, µ(a) = 0 and
µ(b) = µ(c) = 1.

�1 = (a � ¬b) ⇥ c, µ(�1) = 1
�2 = (a � ¬b) � c, µ(�2) = 0

The truth value µ(�) of a formula �
is determined by substituting the
values for the atomic propositions
specified by µ.

Logical dynamical system as a finite transition system

x1[k + 1] = x2[k] ⇤ u[k], x1[0] = 0,

x2[k + 1] = x1[k] ⇥ u[k], x2[0] = 1,

y[k] = x1[k]� x2[k]

XOR (exclusive or) gives true only if
exactly one of the operands is true.

S = {0, 1]}2

Act = {0, 1}
I = {(0, 1)}

AP = {y}

L(x1, x2) =
�

{y} (indicating 1) if x1 � x2 = 0
⇥ (indicating 0) otherwise

9

�1 � �2 := (¬�1 ⇥ �2) ⇤ (�1 ⇥ ¬�2)

1

Modes of communication
between the subsystems:
• hand-shaking (leads to

synchrony)
• changing the values of

shared variables (leads to
asynchrony)

Example: multi-threaded control

• Separate code into
independent threads

• Switch between threads,
allowing each to run
simultaneously

• Potential problems:
deadlocks, race conditions

Thread Usage in Alice (DGC05)

Concurrent systems

10

Systems in which multiple tasks can be executed at the same time potentially with inter-task
communication and resource sharing.

Composition of transition systems (by handshaking)

11

q1

q2

�

�

{g1}

�

�
s1

s2

� �

{g2}
q2, s2

q1, s1

q2, s1

q1, s2

� � � �

�

�

�

�

{g2}�

{g1} {g1, g2}

traffic
light 1

traffic
light 2 “controller”

Let TS1 = (S1, Act1,!1, I1, AP1, L1) and TS2 = (S2, Act2,!2, I2, AP2, L2)

be transition systems. Their parallel composition, TS1||TS2 is the transition

system defined by

TS1||TS2 = (S1 ⇥ S2, Act1 [Act2,!, I1 ⇥ I2, AP1 [AP2, L)

where L(hs1, s2i) = L1(s1) [L2(s2) and ! is defined by the following rules:

• If ↵ 2 Act1 \Act2, s1
↵!1 s0

1, and s2
↵!2 s0

2, then hs1, s2i
↵! hs0

1, s
0
2i.

• If ↵ 2 Act1 \ Act2 and s1
↵!1 s0

1, then hs1, s2i
↵! hs0

1, s2i.

• If ↵ 2 Act2 \ Act1 and s2
↵!2 s0

2, then hs1, s2i
↵! hs1, s0

2i.

q2, s2

q1, s1

q2, s1

q1, s2

� � � �

�

�

�

�

{g2}�

{g1} {g1, g2}

�

� �

�

� �

c1

c2

c3

�

�

� �

� �

q1, s1, c1

q2, s1, c2

q1, s2, c3

{g1}

{g2}
+ Unreachable

states

� = s0s1s2 . . .
• A sequence of states, either finite
 or infinite , is a path fragment if

� = s0s1s2 . . . sn

si+1 ⇥ Post(si), ⇤i � 0.

(0, 1) 0,1��⇥ (1, 0) 1�⇥ (1, 1).

(0, 1) 0,1��⇥ (1, 0) 1�⇥ (1, 1) 1�⇥ (1, 1) 0�⇥ · · ·

(1, 0) 0�⇥ (0, 0) 0�⇥ (0, 0) 1�⇥ (1, 0) 0�⇥ · · ·

Given a transition system .
For

• Example: Post((0,0)) = {(0,0),(1,0)}.

Paths of a finite transition system
TS = (S, Act,�, I, AP,L)

q

12

• A path is a path fragment s.t.
and it is

• either finite with terminal
• or infinite.

• Denote the set of paths
in TS by .

s0 � I

sn

Path(TS)

a path:

not a path:

not a path:

s � S,

Post(s) :=
�

s� ⇤ S : ⌅a ⇤ Act s.t. s
a�⇥ s�

⇥

• A state s is terminal iff Post(s) is empty.

Traces of a finite transition system
Equivalent FSMs w/ and w/o terminal stateConsider a finite transition system

with no terminal states (wlog).
TS = (S, Act,�, I, AP,L)

The trace of an infinite path fragment is defined by

The set, , of traces of TS is defined by
 .

� = s0s1s2 . . .

trace(�) = L(s0)L(s1)L(s2) . . .

Traces(TS) = {trace(�) : � � Paths(TS)}
Traces(TS) sequence of sets of atomic

propositions that are valid in
the states along the path

13

q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

Actions: f, f, n, b, f, f, b, . . .
Path: q0q1q1q0q0q1q1q1 . . .
Trace: ¬o, o, o,¬o,¬o, o, o, o, . . .

(with some abuse of notation)

q2, s2

q1, s1

q2, s1

q1, s2

� � � �

�

�

�

�

{g2}�

{g1} {g1, g2}

�

� �

�

� �

c1

c2

c3

�

�

� �

� �

q1, s1, c1

q2, s1, c2

q1, s2, c3

{g1}

{g2}
+ Unreachable

states The transition system
satisfies P2, but it does
not satisfy P1.

Linear-time properties

Let P be an LT property over AP and TS = (S, Act,⇥, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, i� Traces(TS) � P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

P1 = “The first light is infinitely often green.”

[A0A1A2 . . . with green1 ⇥ Ai � 2AP holds
for infinitely many i]

AP = {red1, green1, red2, green2}Example:

{r1, g2}{g1, r2}{r1, g2}{g1, r2} . . .
�{g1}�{g1}�{g1}� . . .
{g1, g2}{g1, g2}{g1, g2} . . .
{r1, g2}{r1g1}�� . . .

⇥
⇥
⇥

�

P2 = “The lights are never both green simultaneously.”
[A0A1A2 . . . with green1 /⇥ Ai or green2 /⇥ Ai,
for all i � 0]

14

traces of TS
admissible, desired, undesired, etc. behavior

Notation: repeat
infinitely many times

For A � AP , let the
evaluation µA be the
characteristic function
of A.

A |= � i⇥ µA(�) = 1

Invariants

P� = {A0A1A2 . . . ⇥ (2AP)� : Aj |= � ⇤j � 0}.

Example: The LT property “the lights are never both green simultaneously” is an
invariant with respect to .� = ¬green1 � ¬green2

15

An LT property P� over AP is an invariant with
respect to a propositional logic formula � over AP if

Given TS, �, and P�, TS |= P�?

The following four statements are
equivalent.
1.
2.
3.
4.

TS |= P�

trace(�) � P�, ⇥� � Path(TS)
L(s) |= �, ⇥s � S on a path of TS

L(s) |= �, ⇥s � Reach(TS)

A state s is reachable if there exists an
execution fragment s.t. and

 : set of reachable states in TS

s0 � I

s0
a1�⇥ s1

a2�⇥ · · · an��⇥ sn = s

Reach(TS)

Invariants are state properties.
That is, for verification, find the
reachable states and check .�

Safety properties

Psafe ⇤ {�� � (2AP)� : �̂ is a finite prefix of ��} = ⇥.

An LT property Psafe is a safety property if for all words
� � (2AP)�\Psafe there exists a finite prefix �̂ of � s.t.

Bad things have happened in the bad prefix . Hence, no infinite word that
starts with satisfies .

�̂
�̂ Psafe

Example: AP = {red, green, yellow}

• “At least one of the lights is always on”
is a safety property.

{� = A0A1 . . . : Aj � AP ⌅Aj ⇥= ⇤}
Bad prefixes: finite words that contain . �

• “Two lights are never on at the same
time” is a safety property.

{� = A0A1 . . . : Aj � AP ⇤ card(Aj) ⇥ 1}

Bad prefixes: finite words that contain
{red,green}, {red,yellow}, and so on.

16

Any invariant is a safety
property. There are safety
properties that are not invariant.

Example: AP = {red, yellow}

“Each red is immediately preceded
by a yellow” is a safety property,
but not invariant (because it is not
a state property).

Sample bad prefixes:
��{r}
{y}{y}{r}{r}�{r}

Example: Two traffic lights with
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties

17

An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word � � (2AP)�

satisfying w� � P.

AP = {red1, green1, red2, green2}

Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous
execution, every process is activate infinitely often.

Example: Is the following a safety property? Liveness?

“the first light is eventually green
after it is initially red three time instances in a row”

green1 � Aj j � 0
A0A1A2

Answer: It is a combination of a safety and a liveness property.
• Liveness: any finite word can be extended by an infinite word with
 for some .
• Safety: any finite word with for any is a bad prefix.

A0A1A2 . . .

red1 /� Ai i � {0, 1, 2}

(2AP)⇤g1(2AP)!r1r1r1(2AP)!

safety liveness

18

SafetyInvariant Liveness

state condition something bad
never happens

something good
will happen
eventually

violated at
individual states

any infinite run
violating the property

has a finite prefix

violated only by infinite
runs

verification: find the
reachable states and check

the invariant condition

verification: verification:

? ?

Nondeterministic finite automaton (NFA)

19

A nondeterministic finite automaton A = (Q,�, �, Q0, F) is a tuple with
- A is a set of states,
- � is an alphabet,
- � : Q� �⇤ 2Q is a transition function,
- Q0 ⇥ Q is a set of initial states, and
- F ⇥ Q is a set of accept (or: final) states.

�(q0, A) = {q0}, �(q0, B) = {q0, q1}
�(q1, A) = {q2}, �(q1, B) = {q2}
�(q2, A) = �, �(q0, B) = �

Q = {q0, q1, q2}, � = {A, B}
Q0 = {q0}, F = {q2}

Let w = A1 . . . An ⌅ �� be a finite word.
A run for w in A is a finite sequence of
states q0q1 . . . qn s.t.
- q0 ⌅ Q0

- qi
Ai+1���⇤ qi+1 for all 0 ⇥ i < n. word run

empty word q0
B q0q1

ABA q0q0q0q0
BBA q0q0q0q0
BA

BBA
q0q1q2

q0q0q1q2

set of finite words

A run q0q1 . . . qn is called accepting if qn � F .

accepted

The accepted language L(A) of A is the set
of finite words in �� accepted by A.

A finite word in accepted if it leads to an
accepting run.

Regular safety properties

20

NFA: A = (Q,�, �, Q0, F)

q1

q0

q2

yellow

¬yellow

red

¬red�

¬yellow ¬red�
yellow

Example: AP = {red, green, yellow}
“Each red must be preceded immediately by a yellow”
is a regular safety property.

Sample bad prefixes:
• {}{}{red}
• {}{red}
• {yellow}{yellow}{green}{red}
• A0A1 . . . An s.t. n > 0, red � An, and yellow /� An�1

general form of minimal bad prefixes

A set L � �� of finite strings is called a regular language
if there is a nondeterministic finite automaton A s.t. L = L(A).

language (set of
finite words)
accepted by
the NFA

A safety property Psafe over AP is called regular if its set of bad
prefixes constitutes a regular language over 2AP .

� NFA A s.t. L(A) = bad prefixes of PsafeThat is:

(2AP)�

(2AP)�\Psafe

Verifying regular safety properties

21

Given a transition system TS and a regular safety property Psafe,
both over the atomic propositions AP.

Let A be an NFA s.t. L(A) = BadPref(Psafe).

TS |= Psafe i� Traces(TS) � Psafe

i� Traces(TS) ⇤ ((2AP)�\Psafe) = ⇥
i� Traces(TS) ⇤BadPref(Psafe).(2AP)� = ⇥
i� pref(Traces(TS)) ⇤BadPref(Psafe) = ⇥
i� pref(Traces(TS)) ⇤ L(A) = ⇥

finite prefixes

For words w and �, w.� denotes their concatenation.

Traces(TS) Psafe

22

SafetyInvariant Liveness

state condition something bad
never happens

something good
will happen
eventually

violated at
individual states

any infinite run
violating the property

has a finite prefix

violated only by infinite
runs

verification: find the
reachable states and check

the invariant condition

verification: based on
nondeterministic finite
automaton which accepts
“finite runs”

verification:

?

A nondeterministic Buchi automaton is same as an NFA
with its runs interpreted differently.

A = (Q,�, �, Q0, F)

Nondeterministic Buchi automaton (NBA)

23

Let w = A1A2 . . . ⇤ �� be an infinite string. A run for w in A
is an infinite sequence q0q1 . . . of states s.t.
- q0 ⇤ Q0 and
- q0

A1��⇥ q1
A2��⇥ q2

A3��⇥

A run is accepting if qj � F for infinitely many j.

A string w is accepted by A if there is an
accepting run of w in A.

L�(A): set of infinite strings accepted by A.

AP = {red, green}

input word:
{green}{}{green}{}{green}{}...

q0q1q0q1q0q1 . . .

run:

({green, red}{}{green}{red})�
input word:

run:

q0q1q0q1q0q1 . . .
A set of infinite string L� � �� is
called an �-regular language if there
is an NBA A s.t. L� = L�(A).

The NBA on the right accepts the infinite words
satisfying the LT property: “infinitely often green.”

 -Regular Properties

24

�
NBA: A = (Q,�, �, Q0, F)

An LT property P over AP is called �-regular if P is an
�-regular language over 2AP .

Invariant, regular safety, and various liveness properties are �-regular.

Let P be an �-regular property and A be an NBA that
represents the ”bad traces” for P.

Basic idea behind model checking �-regular properties:

TS 6|= P if and only if Traces(TS) 6✓ P

if and only if Traces(TS) \
⇣
(2

AP
)

! \ P
⌘
6= ;

if and only if Traces(TS) \ P 6= ;
if and only if Traces(TS) \ L!(A) 6= ;

25

SafetyInvariant Liveness

state condition something bad
never happens

something good
will happen
eventually

violated at
individual states

any infinite run
violating the property

has a finite prefix

violated only by infinite
runs

verification: find the
reachable states and check

the invariant condition

verification: based on
nondeterministic finite
automaton which accepts
“finite runs”

verification: based on
nondeterministic Buchi
automaton which
accepts infinite runs

