

Specification, Design & Verification of Distributed Embedded Systems

Richard M. MurrayUfuk TopcuTichakorn WongpiromsarnCaltechU. PennOAP (Thailand)HYCON-EECI Graduate School on Control 201318-22 March 2013

Goals for the course:

- Review recent applications in "protocol-based" control systems
- Provide an overview of basic tools from computer science and control theory that can be used as a basis for further studies
- Review recent results in formal methods, logic synthesis, hybrid systems and receding horizon, temporal logic planning (RHTLP)
- Discuss open research problems and emerging control applications

Richard M. Murray Caltech

Education

- BS, Caltech, EE
- PhD UC Berkeley, EECS
- Professor, Caltech

Research interests

- Networked control
- Verification of distributed control systems
- Biological circuit design

Course Instructors

Ufuk Topcu U. Penn

Education

- MS, UC Irvine, MAE
- PhD UC Berkeley, ME
- Postdoc, Caltech

Research interests

- Distributed embedded systems
- Uncertainty quantification and management
- Optimization/control of multiscale networked systems

Tichakorn (Nok) Wongpiromsarn

OAP (Thailand)

Education

- BS, Cornell, ME
- PhD, Caltech, ME
- Postdoc, MIT/Singapore

Research interests

 Verification and synthesis of hybrid control systems

Comments on Style and Approach

Protocol-based control is an emerging research area

- Many results are new (in the last 5 years) and haven't yet been standardized
- Integration between different aspects of the research are a work in progress

Course uses new language and concepts

- Basic ideas will be familiar to control researchers: stability, reachability, simulations vs proofs, etc
- Much of the terminology will be strange ("TS ⊨ □(¬b → □(a ∧ ¬ b)") => ask questions if you get lost

Lots of additional material online

- Additional references, web pages, etc are posted on the wiki pages
- Copies of slides/lecture notes available

page discussion edit history move watch

EECI2011: Synthesis of Reactive Control Protoco

Return to EECI 2011 Main Page

This lecture discusses planner synthesis from LTL specification. In particular, we focus or their environment. For the system to be correct, the planner needs to ensure that the spec environment. This "reactive" system synthesis problem originates from Church's problem (person game between the system and the environment. In general, the complexity of reac However, for certain special cases, the problem can be solved in polynomial time. We disc case where the problem can be formulated as a Generalized Reactivity(1) game.

Lecture Materials

■ Lecture slides: Synthesis of Reactive Control Protocols

Further Reading

- On the development of reactive systems P, D. Harel and A. Pnueli, Logics and models Inc., 1985, pp. 477–498. For discussion about closed and open systems
- Logic, arithmetics, and automata , A. Church, Proceedings of the international congre solvability problem
- On the synthesis of a reactive module Ø, A. Pnueli and R. Rosner, Proceedings of the Principles of programming languages, 1989. A good reference on reactive module syntl
- Synthesis of reactive(1) designs
 [■], N. Piterman, A. Pnueli and Y. Sa'ar, Verification, N 2006.

Additional Information

■ JTLV project P A Framework where GR(1) synthesis is implemented

http://www.cds.caltech.edu/~murray/ wiki/eeci-sp13

Lecture Schedule

	Mon	Tue	Wed	Thu	Fri
9:00	L1: Intro to Protocol-Based Control Systems	Computer	L5: Deductive Verification of Control Protocols	Computer	L9: Distributed and Switching Control Protocols
	, 	Lab 1		Lab 2	
11:00	L2: Automata Theory	Spin	L6: Algorithmic Verification of Control Protocols	TuLiP	L10: Extensions, Applications and Open Problems
12:30	Lunch	Lunch	Lunch	Lunch	Lunch
14:00	L3: Linear Temporal Logic		L7: Synthesis of Reactive Control Protocols		
16:00	L4: Model Checking and Logic Synthesis		L8: Receding Horizon Temporal Logic Planning		

Introductions and Administration

Introductions: Please tell everyone

- Name
- Affiliation (university, company)
- Stage of research (2nd year graduate student, principal engineer, etc)
- Rough area of interest

Administration

- Sign-in sheet: make sure to sign every day for course credit
- Course validation: see Richard and Ufuk during one of the breaks
 - Pick one of the "exercises" during the lectures to work on after the course
 - Also OK to make up a different problem (eg, from your research)
 - Send e-mail to Richard next week with a proposal for what you will work on
 - Work out the problem and write up a 3-5 page report on approach + results

Coffee breaks and lunch

- Coffee breaks: OK to leave things here; we can lock the door
- Lunch: someone will come tell us what to do at 12:30 pm

http://www.cds.caltech.edu/~murray/wiki/eeci-sp13

Lecture 1: Introduction to Protocol-Based Control Systems

Richard M. Murray Caltech Control and Dynamical Systems 18 Mar 2013

Goals:

- Describe current and emerging applications of networked control systems
- Discuss the role that control "protocols" play in NCS
- Provide an overview into what we will learn in the course

Reading:

- Control in an Information Rich World, Sections 1, 3.2 and 3.3
- Sensing, Navigation and Reasoning Technologies for the DARPA Urban Challenge, 2007

Available on course wiki page

http://www.cds.caltech.edu/~murray/wiki/eeci-sp13

Networked Control Systems

(following P. R. Kumar)

Some Important Trends in Control in the Last Decade

(Online) Optimization-based control

- Increased use of online optimization (MPC/RHC)
- Use knowledge of (current) constraints & environment to allow performance and adaptability

Layering and architectures

- Command & control at multiple levels of abstraction
- Modularity in product families via layers

Formal methods for analysis, design and synthesis

- Combinations of continuous and discrete systems
- Formal methods from computer science, adapted for hybrid systems (mixed continuous & discrete states)

$\textbf{Components} \rightarrow \textbf{Systems} \rightarrow \textbf{Enterprise}$

- Movement of control techniques from "inner loop" to "outer loop" to entire enterprise (eg, supply chains)
- Use of *systematic* modeling, analysis and synthesis techniques at all levels
- Integration of "software" with "controls" (Internet of things, cyber-physical systems, etc)

Motivating Example: Alice (DGC07)

Alice

- 300+ miles of fully autonomous driving
- 8 cameras, 8 LADAR, 2 RADAR
- 12 Core 2 Duo CPUs + Quad Core
- ~75 person team over 18 months

Software

- 25 programs with ~200 exec threads
- 237,467 lines of executable code

Planner Stack

Mission Planner performs high level decision-making

• Graph search for best routes; replan if routes are blocked

Traffic Planner handles rules of the road

- Control execution of path following & planning (multi-point turns)
- Encode traffic rules when can we change lanes, proceed thru intersection, etc

Path Planner/Path Follower generate trajectories and track them

- Optimized trajectory generation + PID control (w/ anti-windup)
- Substantial control logic to handle failures, command interface, etc

Burdick et al, 2007

Traffic Planner Logic

Goal: move from verification of human-designed FSA (hard!) to synthesis

- Given specification + model of the environment, can we produce the FSA?
- Key enabler: new tools in logic synthesis (eg, Kress-Gazit & Pappas, Sa'ar)

Hayes et al ACC 2003

RoboFlag Demonstration

Integration of computer science, communications, and control

- Time scales don't allow standard abstractions to isolate disciplines
- Example: how do we maintain a consistent, shared view of the field?

Higher levels of decision making and mixed initiative systems

- Where do we put the humans in the loop? what do we present to them?
- Example: predict "plays" by the other team, predict next step, and react

RoboFlag Subproblems

1.Formation control

Maintain positions to guard defense zone

2.Distributed estimation

 Fuse sensor data to determine opponent location

3.Distributed consensus

 Assign individuals to tag incoming vehicles

Goal: develop systematic techniques for solving subproblems

- Cooperative control and graph Laplacians
- Distributed estimation and sensor fusion
- Distributed receding horizon control
- Packet-based estimation and control
- Verifiable protocols for consensus and control

Implement and test as part of annual RoboFlag competition

Summary: Protocol-Based Control Systems

Control Challenges

- How should we distribute computing load burden between computers?
- How should we handle communication limits and dropped packets?
- How do multiple computers cooperate in a shared task (with common view)?
- What types of protocols should we use for making correct (safe) decisions?

Specification

• How do we describe correct behavior?

Design

• What tools can we use to design protocols to implement that behavior?

Verification

• How do we know if it is actually correct?

Synthesis

• Can we generate protocols from specs?

Lecture Schedule

	Mon	Tue	Wed	Thu	Fri
9:00	L1: Intro to Protocol-Based Control Systems	Computer	L5: Deductive Verification of Control Protocols	Computer	L9: Distributed and Switching Control Protocols
		Lab 1		Lab 2	
11:00	L2: Automata Theory	Spin	L6: Algorithmic Verification of Control Protocols	TuLiP	L10: Extensions, Applications and Open Problems
12:30	Lunch	Lunch	Lunch	Lunch	Lunch
14:00	L3: Linear Temporal Logic		L7: Synthesis of Reactive Control Protocols		
16:00	L4: Model Checking and Logic Synthesis		L8: Receding Horizon Temporal Logic Planning		