TuLiP: A Software Toolbox for Receding Horizon Temporal Logic Planning & Computer Lab 2

Nok Wongpiromsarn

Richard M. Murray

Ufuk Topcu

EECI, 21 March 2013

Outline

- Key Features of TuLiP
 - Embedded control software synthesis
 - Receding horizon temporal logic planning
- Computer Lab

Problem Description

Problem: Given a plant model and an LTL specification φ , design a controller to ensure that any execution of the system satisfies φ

- The evolution of the system is described by differential/difference equations

$$s(t+1) = As(t) + Bu(t) + Ed(t)$$

$$u(t) \in U$$

$$d(t) \in D$$

where
$$s \in \mathbb{R}^n, U \subseteq \mathbb{R}^m, D \subseteq \mathbb{R}^p$$

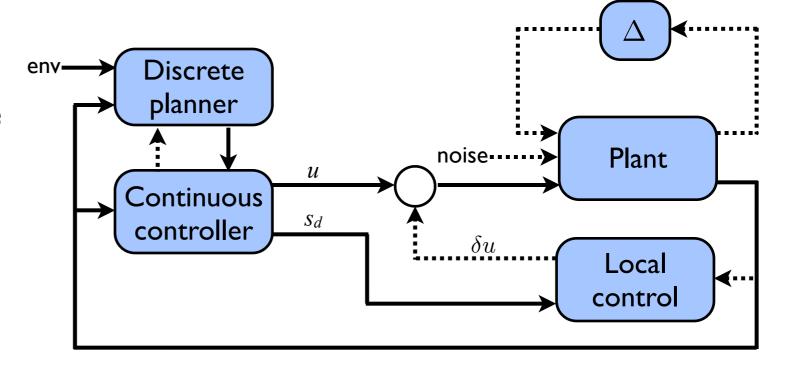
- φ must be satisfied regardless of the environment in which the system operates
- Assume that φ is of the form

$$\varphi = \left(\begin{array}{ccc} \underline{\psi_{init}^e} & \wedge & \square \psi_s^e \wedge \bigwedge_{i \in I_f} \square \lozenge \psi_{f,i}^e \right) & \Longrightarrow & \left(\underline{\psi_{init}^s \wedge \square \psi_s^s \wedge \bigwedge_{i \in I_g} \square \lozenge \psi_{g,i}^s} \right) \\ \text{assumptions on} & \text{assumptions on} & \text{desired} \\ & \text{environment} & \text{behavior} \end{array}$$

Embedded Control Software Synthesis

Key elements to specify the problem

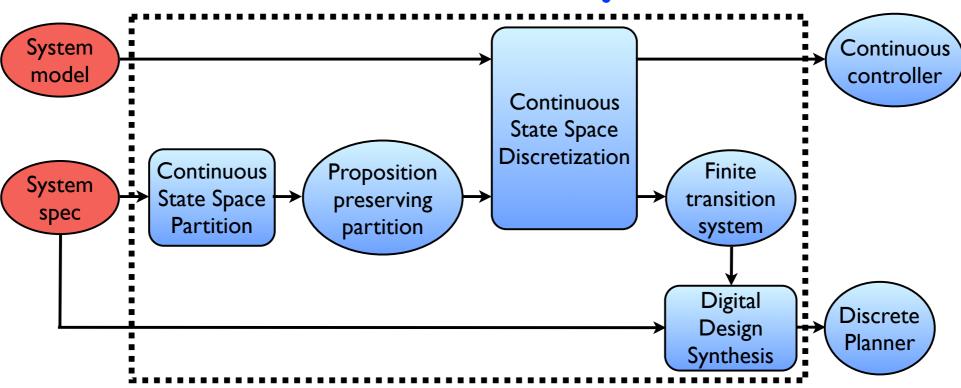
- discrete system state
- continuous system state
- (discrete) environment state
- specification



Hierarchical Approach

- ullet Discrete planner computes the next cell to go to in order to satisfy arphi
 - The synthesis algorithm considers all the possible behaviors of the environment
 - **Issue**: state explosion
- Continuous controller simulates the plan
 - Constrained optimal control problem
 - Continuous execution preserves the correctness of the plan

Main Steps



- Generate a proposition preserving partition of the continuous state space
 - cont_partition = **prop2part2**(state_space, cont_props)
- Discretize the continuous state space based on the evolution of the continuous state
 - disc_dynamics = **discretizeM**(cont_partition, ssys, N=10)
- Digital design synthesis
 - prob = generateJTLVInput(env_vars, sys_disc_vars, spec, disc_props, disc_dynamics, smv_file, spc_file)
 - realizability = **checkRealizability**(smv_file, spc_file, aut_file, heap_size)
 - realizability = computeStrategy(smv_file, spc_file, aut_file, heap_size)
 - aut = **Automaton**(aut_file)

Example: robot_simple.py

Dynamics $\dot{x} = u_x, \dot{y} = u_y$ where $u_x, u_y \in [-1, 1]$

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK signal is received

C₃	C ₄	C₅
Co	ū	C ₂

Assumption

Infinitely often, PARK signal is not received

$$\varphi = \Box \Diamond (\neg park) \implies (\Box \Diamond (s \in C_5) \land \Box (park \implies \Diamond (s \in C_0)))$$

This spec is not a GR[I] formula

- Introduce an auxiliary variable X0reach that starts with True
- $\Box(\bigcirc X0reach = ((s \in C_0 \lor X0reach) \land \neg park))$
- $\Box \Diamond X0reach$

Manually Constructing disc_dynamics: robot_discrete_simple.py

System Model: Robot can move to the cells that share a face with the current cell

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK signal is received

C₃	C ₄	C₅
Co	ū	C2

Assumption

Infinitely often, PARK signal is not received

$$\varphi = \Box \diamondsuit (\neg park) \implies (\Box \diamondsuit (s \in C_5) \land \Box (park \implies \diamondsuit (s \in C_0)))$$

This spec is not a GR[I] formula

- Introduce an auxiliary variable X0reach that starts with True
- $\Box(\bigcirc X0reach = (s \in C_0 \lor (X0reach \land \neg park)))$
- $\Box \Diamond X0reach$

Defining a synthesis problem: SynthesisProb class

Combine the three steps of digital design synthesis:

generateJTLVInput

synthesize

SynthesisProb

computeStrategy

Automaton

Fields of SynthesisProb:

- env vars
- · sys vars
- spec
- disc _cont_var
- disc dynamics

Useful methods:

- checkRealizability(heap_size='-Xmx128m', pick_sys_init=True, verbose=0): checks whether the problem is realizable
- getCounterExamples(recompute=False, heap size='-Xmx128m', pick sys init=True, verbose=0) returns the set of initial states from which the system cannot satisfy the spec
- synthesizePlannerAut(heap size='-Xmx128m', priority kind=3, init option=1, verbose=0) synthesizes the planner that ensures system correctness

Example: robot_simple2.py

Dynamics $\dot{x} = u_x, \dot{y} = u_y$ where $u_x, u_y \in [-1, 1]$

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK signal is received

C₃	C ₄	C₅
Co	c	C ₂

Assumption

- Infinitely often, PARK signal is not received

$$\varphi = \Box \Diamond (\neg park) \implies (\Box \Diamond (s \in C_5) \land \Box (park \implies \Diamond (s \in C_0)))$$

This spec is not a GR[I] formula

- Introduce an auxiliary variable X0reach that starts with True
- $\Box(\bigcirc X0reach = ((s \in C_0 \lor X0reach) \land \neg park))$
- $\Box \Diamond X0reach$

Computer exercise 1

Synthesize a reactive planner with the following specifications

System variables: X0,...,X8 -- Xi = 1 if robot in Ci, Xi = 0 otherwise. Environment variables: obs \in {1,4,7}, park \in {0,1}

C ₆	C ₇	C ₈
C_3	C ₄	C ₅
Co	Ō	C_2

Desired Properties

- Visit the blue cell (C₈) infinitely often
- Eventually go to the green cell (C₀)
 after a PARK signal is received
- Avoid an obstacle (red cell) which can be one of the C₁, C₄, C₇ cells and can move arbitrarily

Assumption

- Infinitely often, PARK signal is not received
- The obstacle always moves to an adjacent cell

Constraints (or discrete dynamics)

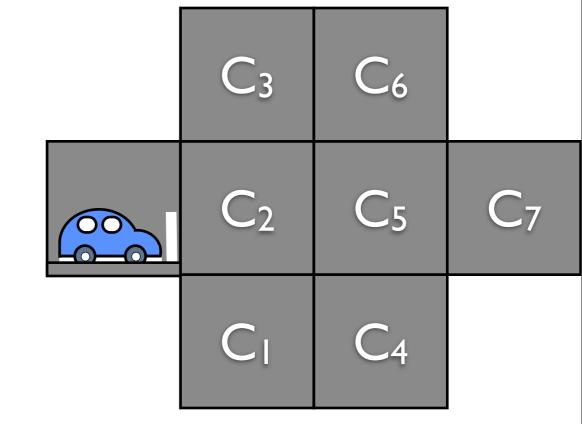
 The robot can only move to an adjacent cell, i.e., a cell that shares an edge with the current cell

Computer exercise 2

Synthesize intersection logic for the car with the following specification

Desired Properties

- Eventually go to C₆
- If there is a car at one of the C₃, C₄, C₇ cells at initial state, need to wait until it disappears before going through the intersection



- Go through the intersection only when C₂ and C₅ are clear
- No collision with other cars

Assumption

- ?? (find a set of "non-trivial" assumptions that render the problem realizable)

Constraint

 The robot can only move forward to an adjacent cell, i.e., a cell that shares an edge with the current cell

Receding Horizon Framework for LTL Specifications

Idea: Reduce the synthesis problem to a set of smaller problems of short horizon

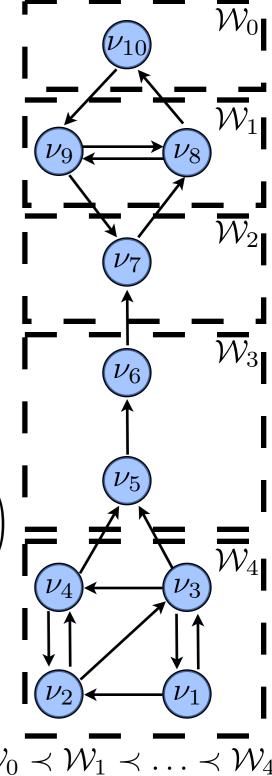
Consider a specification of the form

$$\varphi = \left(\psi_{init} \wedge \Box \psi_e^e \wedge \bigwedge_{i \in I_f} \Box \diamond \psi_{f,i}^e \right) \Longrightarrow \left(\bigwedge_{i \in I_s} \Box \psi_{s,i} \wedge \Box \diamond \psi_g \right)$$
 always Infinitely often

- Organize cells into a partially ordered set $\mathcal{P}=(\{\mathcal{W}_j\}, \preceq_{\psi_g})$ where \mathcal{W}_0 is the set of "goal states," i.e., all cells in \mathcal{W}_0 satisfy ψ_q
- Assume that for each j, there exist a proposition Φ and a mapping $\mathcal F$ such that the following short-horizon specification is realizable

$$\Psi_{j} = \left((\varsigma \in \mathcal{W}_{j}) \wedge \Phi \wedge \Box \psi_{e}^{e} \wedge \bigwedge_{k \in I_{f}} \Box \diamond \psi_{f,k}^{e} \right) \implies \left(\bigwedge_{k \in I_{s}} \Box \psi_{s,k} \wedge \Box \diamond (\varsigma \in \mathcal{F}(\mathcal{W}_{j})) \wedge \Box \Phi \right)$$

- Φ describes receding horizon invariants
- $\mathcal{F}(\mathcal{W}_j) \prec \mathcal{W}_j, \forall j \neq 0$ defines intermediate goal for starting in \mathcal{W}_j
- Partial order condition guarantees that we move closer to goal



$$\mathcal{F}(\mathcal{W}_4) = \mathcal{W}_2, \mathcal{F}(\mathcal{W}_3) = \mathcal{W}_1, \mathcal{F}(\mathcal{W}_2) = \mathcal{W}_0, \mathcal{F}(\mathcal{W}_1) = \mathcal{W}_0, \mathcal{F}(\mathcal{W}_0) = \mathcal{W}_0$$

Key Elements

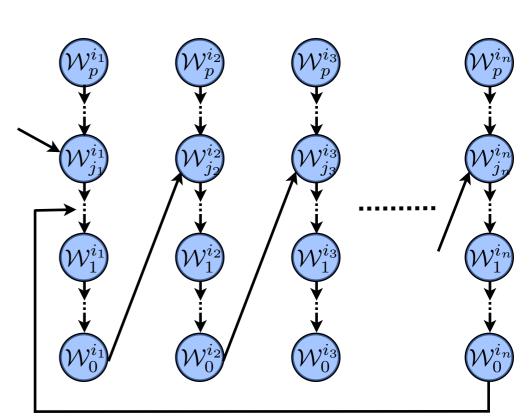
Original specification:

$$\varphi = \left(\psi_{init} \wedge \Box \psi_e^e \wedge \bigwedge_{i \in I_f} \Box \diamond \psi_{f,i}^e \right) \implies \left(\bigwedge_{i \in I_s} \Box \psi_{s,i} \wedge \bigwedge_{i \in I_g} \Box \diamond \psi_{g,i} \right)$$

Short horizon specification:

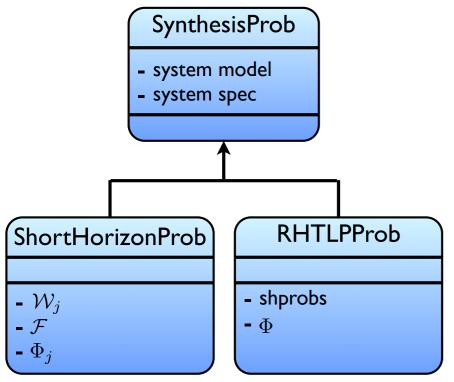
$$\Psi_j^i = \left(\left(\varsigma \in \mathcal{W}_j^i \right) \land \Phi \land \Box \psi_e^e \land \bigwedge_{k \in I_f} \Box \diamond \psi_{f,k}^e \right) \implies \left(\bigwedge_{k \in I_s} \Box \psi_{s,k} \land \Box \diamond \left(\varsigma \in \mathcal{F}^i(\mathcal{W}_j^i) \right) \land \Box \Phi \right)$$

- ullet Partially ordered set $\mathcal{P}^i = (\{\mathcal{W}^i_0, \dots, \mathcal{W}^i_p\}, \preceq_{\psi_{g,i}})$
 - $\mathcal{W}_0^i \cup \mathcal{W}_1^i \cup \ldots \cup \mathcal{W}_p^i = \mathcal{V}$
 - \mathcal{W}_0^i is the set of "goal states," i.e., all cells in \mathcal{W}_0^i satisfy $\psi_{g,i}$
 - $\mathcal{W}_0^i \prec_{\psi_{g,i}} \mathcal{W}_j^i, \forall j \neq 0$
- Receding horizon invariant Φ
 - $\psi_{init} \implies \Phi$ is a tautology
- Mapping $\mathcal{F}^i: \{\mathcal{W}^i_0, \dots, \mathcal{W}^i_p\} o \{\mathcal{W}^i_0, \dots, \mathcal{W}^i_p\}$
 - $\mathcal{F}^i(\mathcal{W}^i_j) \prec_{\psi_{g,i}} \mathcal{W}^i_j, \forall j \neq 0$



Receding Horizon Temporal Logic Planning

Problem



ShortHorizonProb

- A class for defining a short horizon problem
- Useful methods
 - computeLocalPhi(): automatically compute Φ that makes this short horizon problem realizable.

RHTLPProb

- A class for defining a receding horizon temporal logic planning problem
- Contains a collection of short-horizon problems
- Useful methods
 - computePhi(): automatically compute Φ for this receding horizon temporal logic planning problem if one exists.
 - validate(): check whether all the sufficient conditions for doing receding horizon temporal logic planning are satisfied

Example: autonomous_car_road.py

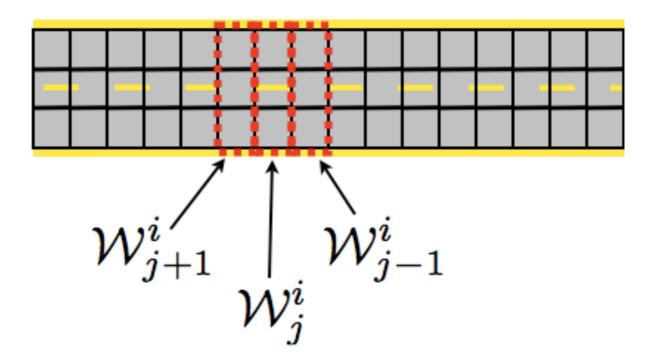
Autonomous vehicle navigating an urban environment

Traffic rules

- No collision
- Stay in the travel lane unless there is an obstacle blocking the lane

Progress requirement

Reach the end of the road



Assumptions

- Obstacle may not block a road
- Obstacle is detected before the vehicle gets too close to it
- Limited sensing range
- Obstacle does not disappear when the vehicle is in its vicinity