
Lecture 9
Extensions and Open Problems

Richard M. Murray
Nok Wongpiromsarn Ufuk Topcu
California Institute of Technology

EECI, 18 May 2012

Outline:
• Review key concepts from the course
• Discussion open issues, technical challenges and risks
• Hand out certificates!

“TS ⊨ ☐(¬b → ☐(a ∧ ￢b)”

Richard M. Murray, Caltech CDSEECI, May 2012

Some Important Trends in Control in the Last Decade
(Online) Optimization-based control
• Increased use of online optimization (MPC/RHC)
• Use knowledge of (current) constraints &

environment to allow performance and adaptability

Layering and architectures
• Command & control at multiple levels of abstraction
• Modularity in product families via layers

Formal methods for analysis, design and synthesis
• Combinations of continuous and discrete systems
• Formal methods from computer science, adapted for

hybrid systems (mixed continuous & discrete states)

Components → Systems → Enterprise
• Movement of control techniques from “inner loop” to

“outer loop” to entire enterprise (eg, supply chains)
• Use of systematic modeling, analysis and synthesis

techniques at all levels
• Integration of “software” with “controls” (Internet of

things, cyber-physical systems, etc)

2

Richard M. Murray, Caltech CDSEECI, May 2012

Formal Methods for System Verification & Synthesis
Specification using LTL
• Linear temporal logic (LTL)

is a math’l language for
describing linear-time prop’s
• Provides a particularly useful

set of operators for construc-
ting LT properties without
specifying sets

Methods for verifying an LTL
specification
• Theorem proving: use formal

logical manipulations to show
that a property is satisfied for a
given system model
• Model checking: explicitly check all possible executions of a system model and verify

that each of them satisfies the formal specification

Methods for synthesis of correct-by-construction control protocols
• Build on results in logic synthesis and (recent) results in GR(1) synthesis
• Key challenges: dynamics, uncertainty, complexity

3

Richard M. Murray, Caltech CDSEECI, May 2012

Subsystem/agent dynamics - continuous

Agent mode (or “role”) - discrete
• encodes internal state +

relationship to current task

• Transition

Communications graph
• Encodes the system information flow

• Neighbor set

Communications channel
• Communicated information can be lost,

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode task as finite horizon optimal

control + temporal logic (assume coupled)

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

Hybrid, Multi-Agent System Description

4

N i(x,�)

J =
� T

0
L(x,�, u) dt + V (x(T),�(T)),

ui = ⇥(x,�) {gi
j(x,�) : ri

j(x,�)}

�i � =

�
ri
j(x,�) g(x,�) = true

unchanged otherwise.

� � A

�� = r(x,�)

G

yi
j [k] = �yi(tk � ⇥j) tk+1 � tk > Tr

ui(x,�) = ui(xi,�i, y�i,��i)

y�i = {yj1 , . . . , yjmi}
jk � N i mi = |N i|

(�init ⇥ ��e) =� (��s ⇥ ⇥�g)

ẋ

i = f

i(xi
,↵

i
, y

⇠i
, u

i) x

i 2 Rn
, u

i 2 Rm

y

i = h

i(xi
,↵

i) y

i 2 Rq

Richard M. Murray, Caltech CDSEECI, May 2012

Multi-layer approach
• Use optimal trajectory generation to create a discrete abstraction

that captures the dynamics at a simplified level
• Reactive planner based on GR(1) synthesis (possibly RHC)
• High level planner sends specifications to reactive planer
• Online versus offline decisions at each level

5

ImplementationDifferent views

“short-horizon
specification”

“long-horizon
specification”

continuous
dynamics&
constraints

W0 � . . . �WL�1 �WL

W0WL WL�1

min

Z T

t0

L(x, u)dt

s.t. ẋ = f(x, u)

g(x, u)  0

Multi-scale modelsPlanning stack

Mission
Planner

Tactical
Planner

Trajectory
Generation

Inner Loop

Hierarchical, Networked Control Systems

• High level “mission”
abstraction (iterative
graph search)

• Reactive planner:
decision-making
based on events in
environment
• Continuous control

action based on
“mode” and cost

Vehicle

Actuation

Richard M. Murray, Caltech CDSEECI, May 2012

Temporal Logic Planning (TuLiP) toolbox
http://tulip-control.sourceforge.net

Python Toolbox
• GR(1), LTL specs
• Nonlin dynamics
• Supports discret-

ization via MPT
• Control protocol

designed using JTLV
• Receding horizon

compatible

Applications of TuLiP in the last few years
• Autonomous vehicles - traffic planner (intersections and roads, with other vehicles)
• Distributed camera networks - cooperating cameras to track people in region
• Electric power transfer - fault-tolerant control of generator + switches + loads

6

Project 5: add new functionality to TuLiP (with example + documentation)

Richard M. Murray, Caltech CDSEECI, May 2012

Project Possibilities
Possibilities mentioned during the course

1. Verify correctness of actuation mode logic for Alice
using SPIN model checker and message channels

2. Create a model of the RoboFlag drill (simplified) in
Promela and verify correctness using SPIN

3. Create a specification for the RoboFlag drill and
synthesize a (decentralized) protocol to solve it

4. Synthesize intersection logic for a car at an intersection
5. Add new functionality to TuLiP (with document’n + examples)

Project from your own research area
• Pick something where you can do verification and/or synthesis

of a control protocol
• Could be theoretical or computational

Process
• Send e-mail to Richard & Ufuk in the coming week with a

specific proposal
• Work through the project and write up a 4-8 page report
• No specific due date, but June or July would be good

7

Computer Lab
Gcdrive Verification

Gcdrive is the overall driving software for Alice. It takes independent commands from Path Follower and DARPA and
sends appropriate commands to the actuators.

• Commands from Path Follower include control signals to throttle, brake and transmission.

• Commands from DARPA include estop pause, estop run and estop disable.

- An estop pause command should cause the vehicle to be brought quickly and safely to a rolling stop.
- An estop run command resumes the operation of the vehicle.
- An estop disable command is used to stop the vehicle and put it in the disable mode. A vehicle that is in

the disable mode may not restart in response to an estop run command.
 Disabled (D)

- depress brakes

- send trans disable

- reject all directives

 Paused (P)

- depress brakes

- reject all directives

 except steering

 Resuming (Re)

- start timer on entry

- transition after 5

 sec

 Shifting (S)

- reject all directives

- transition when shift

 is completed

Estop Disable

Estop

Run

Estop Paused

 Running (Ru)

- normal operating

 state

- process all directives

Timeout

Estop Disable

Shift cmd

Shift done

 Unknown (U)

- initial state on start
The finite state machine to handle these concurrent
commands is shown below. Use Spin to verify that
the following properties hold.

• If DARPA sends an estop disable command,
Gcdrive state will eventually stay at
DISABLED and Acceleration Module will
eventually command full brake forever.

• If DARPA sends an estop pause command while the vehicle is not disabled, eventually Gcdrive state will be
PAUSED.

• If DARPA sends an estop run command while the vehicle is not disabled, eventually Gcdrive state will be
RUNNING or RESUMING or DARPA will send an estop disable or estop pause command.

• If the current state is RESUMING, eventually the state will be RUNNING or DARPA will send an estop disable
or pause command.

• The vehicle is disabled only after it receives an estop disable command.

• Actuation Interface sends a full brake command to the Acceleration Module if the current state is DISABLED,
PAUSED, RESUMING or SHIFTING. In addition, if the vehicle is disabled, then the gear is shifted to 0.

• After receiving an estop pause command, the vehicle may resume the operation 5 seconds after an estop run
command is received.

Richard M. Murray, Caltech CDSEECI, May 2012

J =
� T

0
L(x,�, u) dt + V (x(T),�(T)),

Open (Research) Issues
Optimality: “language-constrained, optimal trajectory generation”

Partial order computation and hierarchical structure
• How do we determine the partial order for RHTLP and link to “supervisory” levels?

Verification and synthesis with (hard) real-time constraints
• How do we incorporate time in our specifications, verification and synthesis tools?
• Note: time automata and timed temporal logic formulas available...

Contract-based design: automate search interfaces for distributed synthesis
• How do we decompose a larger problem into smaller pieces?
• Especially important for large scale projects with multiple teams/companies

Uncertainty and robustness
• How to specify uncertainty for transition systems, robustness for controllers, specs
• New methods for describing robustness by Tabuada et al: look at how much the

specifications must be enlarged to capture new behaviors based on uncertainty

Many other directions: incremental, probabilistic, performance metrics, ...
• Identify problems where knowledge of dynamics, uncertainty and feedback matter

8

(�init ⇥ ��e) =� (��s ⇥ ⇥�g)

Richard M. Murray, Caltech CDSEECI, May 2012

Problem Setting
• Deterministic weighted transition

system TS
• LTL specification ϕ

•

• Problem: Compute run σ that
minimizes J over all σ and satisfies ϕ.

Main Results
• Reduce problem to finding optimal

cycle in product automaton P.
• Dynamic programming recurrence

computes optimal cost cycle on P =
(V,E). Fk(v) is minimum cost walk of
length k between vertices s, v in V.

• Complexity: O(na(mn +n2 log(n)) for
0-1 weights, where na is the number of
accepting states.

Example
• Costs lower near boundary

• ϕ = ☐◊a ∧ ☐◊b ∧ ☐¬x

• Optimal (black) and feasible using
DFS (green)

Questions
• Nondeterministic transition system?
• Reactive environments?
• Multi-objective?
• Discounted cost function?

Optimal Synthesis with Weighted Average Costs

J(�) := lim sup
n!1

Pn
i=0 c(�i,�i+1)

Wolff, Topcu, Murray
RSS 2012 (s)

(shading represents cost)

Richard M. Murray, Caltech CDSEECI, May 2012

Problem Setting
• Markov decision process (MDP)

system model, with uncertainty in
transitions (disturbances, failures)
• LTL specification ϕ (probably GR(1))
• Problem: Maximize probability of

MDP satisfying ϕ over uncertainty set:

Main Results
• Transform P = MDP x LTL to

stochastic shortest path (SSP) form
• Compute satisfaction probabilities on

SSP with robust dynamic program’g

• Project policy π back to MDP
• Complexity: O(n2m log(1/ε)2) for ε-

suboptimal policy

Example
• Differential drive robot (x,y,theta)
• Transition probabilities estimated (MC)

• ϕ = ◊(R1 ∧ ◊R2) ∧ ☐¬unsafe ∧
 ◊☐ home

Questions
• Simpler fragments of temporal logic?
• Tradeoffs between costs and

probability of success?
• Principled abstraction of MDPs from

continuous systems?

Markov Decision Processes with LTL Specifications
Wolff, Topcu, Murray

CDC 2012 (s)

Richard M. Murray, Caltech CDSEECI, May 2012

Technical Challenges and Risks
1. Writing LTL (or other temporal logic) specifications is not a job for mortals
• Easy to make mistakes when writing LTL and hard to interpret complex formulas
• Possible approach: domain specific tools that provide engineer-friendly interface

2. Model checking and logic synthesis tools won’t work on large problems
• Combinatorial explosion in discrete states for modest engineering systems will

make it impossible to apply model checking/synthesis to “raw” problem
• Approaches: abstraction layers and modularity via interfaces
- Vertical layering: apply tools to different layers and enforce bisimulation
- Horizontal contracts: define formal subsystem interfaces & reason about them

3. Expertise in modeling and specification not yet developed
• Engineers in domains in which these tools are needed don’t yet have experience

developing models that ignore the right sets of things
- Compare to reduced order models for aircraft (aerodynamic, aeroelastic) and

agreed on specifications (bandwidth, response time, stability margins, etc)
- Particularly worried about dynamics, uncertainty, interconnection
- How do we convince FAA to allow use of these tools?
• Approach (?): explore application domains, moving from modest to complex

problems, and develop expertise, tools, tool chains, processes, ...

11

Richard M. Murray, Caltech CDSMuSyC workshop, Apr 2011

Electrical
Power System

Environmental
Control System

Thermal, Electrical,
Lubrication Systems

Propulsion
and Power

Aircraft Vehicle Management Systems

12

Landing
Gear

Fuel
System

Power
Transmission

Hydraulic
System

Servo
System

Richard M. Murray, Caltech CDSEECI, May 2012 13

Specification, Design and Verification of NCS

Specification
• How do we describe correct behavior?

Design
• What tools can we use to design

protocols to implement that behavior?

Verification
• How do we know if it is actually

correct?

(�init ⇥ ��e) =� (��s ⇥ ⇥�g)

J =
� T

0
L(x,�, u) dt + V (x(T),�(T)),

