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Outline:
* Review key concepts from the course
* Discussion open issues, technical challenges and risks
* Hand out certificates!
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Some Important Trends in Control in the Last Decade

(Online) Optimization-based control
® Increased use of online optimization (MPC/RHC)

e Use knowledge of (current) constraints &
environment to allow performance and adaptability

Layering and architectures
e Command & control at multiple levels of abstraction
e Modularity in product families via layers

149

Formal methods for analysis, design and synthesis :
e Combinations of continuous and discrete systems ¢ I
e Formal methods from computer science, adapted for 02/ 3

hybrid systems (mixed continuous & discrete states) |

Components — Systems — Enterprise

® Movement of control techniques from “inner loop” to
“outer loop” to entire enterprise (eg, supply chains)

e Use of systematic modeling, analysis and synthesis
techniques at all levels

e Integration of “software” with “controls” (Internet of
things, cyber-physical systems, etc)
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Formal Methods for System Verification & Synthesis

Specification using LTL requirements assumptions
- : on the system | |(on the unknowns, e.g.,
* Linear temporal logic (LTL) ( behavi)cl)r) (environment behavior) system

is a math’l language for
describing linear-time prop’s
® Provides a particularly useful {

formal sys'tem
set of operators for construc- T e e el
ting LT properties without

specifying sets )<
Methods for verifying an LTL
specification

® Theorem proving: use formal
Ioglcal manlpulat|ons to show tisfied iolated controller that render  no such
I 1cfi satisrie vioiate
that a property is satisfied for a (+certificate)  (+counterexample) s:::t:f;);s';c:r: to controller
) pecs exists
given system model

® Model checking: explicitly check all possible executions of a system model and verify
that each of them satisfies the formal specification

Methods for synthesis of correct-by-construction control protocols
e Build on results in logic synthesis and (recent) results in GR(1) synthesis
e Key challenges: dynamics, uncertainty, complexity
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Hybrid, Multi- Agent System Description

Subsystem/agent dynamics - continuous Task
P f’i(a:i, ai, yNZ-7 ui) L e R™ W e R™ e Encode task as finite horlzon optimal
. T ' control + temporal logic (assume coupled)
yz — hZ(ZCZ,OéZ) yz c RY T

J = / L(z,a,u)dt + V(x(T),a(T)),
Agent mode (or “role”) - discrete °
e o € A encodes internal state + (Pinie A Dpe) = (Hos A Opy)
relationship to current task

Strategy
e Transition o’ = r(z,«)

e Control action for individual agents

Communications graph § Ut = v(z, o) {9;'(377 Q) : 7”}(% )}
e Encodes the sxl/s.tem information flow Ny r;- (2, @) g(z,a) = true
: () o =
* Neighbor set V*(z, o) unchanged otherwise.

Communications channel Decentralized strategy

e Communicated information can be lost,

. u'(z, o) = u'(2', 0’y ™" a)
delayed, reordered; rate constraints

o s = )
yj[k]:'yy (tk—Tj) o1 — e > 15 ]kENZ m'l,:|NZ|

o y= binary random process (packet |oss) e Similar structure for role update

EECI, May 2012 Richard M. Murray, Caltech CDS 4




Hierarchical, Networked Control Systems

Planning stack

Mission
Planner

v o1

Tactical
Planner

v

Trajectory
Generation

V-1

Inner Loop

Actuation

Vehicle
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Different views

Multi-scale models

long-horizon RV Ry —

specification” E_KS%_ - = =i = —gi'-":— -

“short-horizon
specification”

T
continuous min / Lz, u)dt
dynamics& y
constraints

Multi-layer approach

Implementation

e High level “mission”
abstraction (iterative
graph search)

e Reactive planner:
decision-making
based on events in
environment

e Continuous control
action based on
“mode” and cost

e Use optimal trajectory generation to create a discrete abstraction
that captures the dynamics at a simplified level

e Reactive planner based on GR(1) synthesis (possibly RHC)
e High level planner sends specifications to reactive planer

® Online versus offline decisions at each level
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Temporal Logic Planning (TulLiP) toolbox

http://tulip-control.sourceforge.net

L STATES

. N\ -
Python Toolbox Prersssessssesssssssssenssssnsnsatantatantarensananaananey '
® GR(1), LTL specs . > =®

® Nonlin dynamics Continuous

State Space
® Supports discret- Discretization
ization via MPT

e Control protocol
designed using JTLV

e Receding horizon
compatible

Finite
transition

Continuous
State Space
Partition

Proposition
preserving
partition
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Discrete
Applications of TuLiP in the last few years

e Autonomous vehicles - traffic planner (intersections and roads, with other vehicles)
e Distributed camera networks - cooperating cameras to track people in region
e Electric power transfer - fault-tolerant control of generator + switches + loads

R 0, kb SRS S
@ Project 5: add new functionality to TuLiP (with example + documentation)
R R P o | "iu
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Project Possibilities

Possibilities mentioned during the course

1. Verify correctness of actuation mode logic for Alice
using SPIN model checker and message channels

Paused (P)

- depress brakes Estop Disable

- reject all directives
except steering )

Estop

‘}Es Pausi

Run

y

y

Disabled (D)
- depress brakes

- send trans disable
- reject all directives

A
Estop

2. Create a model of the RoboFlag drill (simplified) in
Promela and verify correctness using SPIN

R

[- start timer on entry

esuming (Re)

- transition after 5
sec

R
Timeout -

unning (Ru) Shif
normal operating

state

process all directives) Shif

3. Create a specification for the RoboFlag drill and

synthesize a (decentralized) protocol to solve it
4. Synthesize intersection logic for a car at an intersection
5. Add new functionality to TuLiP (with document’'n + examples)

14

iz

'

Project from your own research area
e Pick something where you can do verification and/or synthesis
of a control protocol

L)

L

e Could be theoretical or computational

Process
e Send e-mail to Richard & Ufuk in the coming week with a
specific proposal
e Work through the project and write up a 4-8 page report
e No specific due date, but June or July would be good
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Open (Research) Issues

Optimality: “language-constrained, optimal trajectory generation”
T
(Pinit A Ope) = (Ops A Owy) J:/ L(z,a,u)dt + V(z(T),a(T)),
0

Partial order computation and hierarchical structure
¢ How do we determine the partial order for RHTLP and link to “supervisory” levels?

Verification and synthesis with (hard) real-time constraints
¢ How do we incorporate time in our specifications, verification and synthesis tools?
e Note: time automata and timed temporal logic formulas available...

Contract-based design: automate search interfaces for distributed synthesis
¢ How do we decompose a larger problem into smaller pieces?
e Especially important for large scale projects with multiple teams/companies

Uncertainty and robustness
e How to specify uncertainty for transition systems, robustness for controllers, specs

¢ New methods for describing robustness by Tabuada et al: look at how much the
specifications must be enlarged to capture new behaviors based on uncertainty

Many other directions: incremental, probabilistic, performance metrics, ...
e |dentify problems where knowledge of dynamics, uncertainty and feedback matter
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Wolff, Topcu, Murray
RSS 2012 (s)

Optimal Synthesis with Weighted Average Costs

Problem Setting Example
e Deterministic weighted transition e Costs lower near boundary
system TS e ¢ =D00a A O0b A OX
* LTL specification ¢ e Optimal (black) and feasible using
® J(o) :=limsup .., ,c(0i,0i+1) DFS (green)
n—oo

® Problem: Compute run o that
minimizes J over all o and satisfies ¢.

=)

T 1

~H
M B |

Main Results

e Reduce problem to finding optimal )
cycle in product automaton P. s

e Dynamic programming recurrence
computes optimal cost cycle on P =
(V,E). Fk(v) is minimum cost walk of
length k between vertices s, vin V.

(shading represents cost)

Questions
. e Nondeterministic transition system?
Fie(v) = (u%EE [Fie—1(u) + c(u, v)] e Reactive environments?
e Complexity: O(na(mn +n2log(n)) for ® Multi-objective?
[

0-1 weights, where ns is the number of Discounted cost function?
accepting states.
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Wolff, Topcu, Murray
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Markov Decision Processes with LTL Specifications

Problem Setting Example
e Markov decision process (MDP) e Differential drive robot (x,y,theta)
system model, with uncertainty in e Transition probabilities estimated (MC)
transitions (disturbances, failures) o & = O(R1 A OR2) A O-unsafe A
e LTL specification ¢ (probably GR(1)) o0 home
® Problem: Maximize probability of 6 ' ' 5 : : :
MDP satisfying ¢ over uncertainty set: | It RS SR 5

: ]P)Tl',T _ al
TR (0 )

Main Results

® Transform P = MDP x LTL to
stochastic shortest path (SSP) form

; : : : : Rl
home: Eunsafe Eunsafe :unsafe : !
e Compute satisfaction probabilities on % 1 2 3 4 5 6 7
SSP with robust dynamic program’g Questions
(TJ)(s) = min [¢(s,a) +max p"J] e Simpler fragments of temporal logic?
_ o o o e Tradeoffs between costs and
® Project policy 1 back to MDP probability of success?
 Complexity: O(n2m log(1/€)2) for &- e Principled abstraction of MDPs from
suboptimal policy continuous systems?
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Technical Challenges and Risks

1. Writing LTL (or other temporal logic) specifications is not a job for mortals
e Easy to make mistakes when writing LTL and hard to interpret complex formulas
e Possible approach: domain specific tools that provide engineer-friendly interface

2. Model checking and logic synthesis tools won’t work on large problems

e Combinatorial explosion in discrete states for modest engineering systems will
make it impossible to apply model checking/synthesis to “raw” problem

e Approaches: abstraction layers and modularity via interfaces
- Vertical layering: apply tools to different layers and enforce bisimulation
- Horizontal contracts: define formal subsystem interfaces & reason about them

3. Expertise in modeling and specification not yet developed

e Engineers in domains in which these tools are needed don'’t yet have experience
developing models that ignore the right sets of things

- Compare to reduced order models for aircraft (aerodynamic, aeroelastic) and
agreed on specifications (bandwidth, response time, stability margins, etc)

- Particularly worried about dynamics, uncertainty, interconnection
- How do we convince FAA to allow use of these tools?

e Approach (?): explore application domains, moving from modest to complex
problems, and develop expertise, tools, tool chains, processes, ...
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Aircraft Vehicle Management Systems
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Specification, Design and Verification of NCS

_______________________________________

Mode and Traj:Causal

Management

Goal Mgmt Attention & Memory and
(MDS) Awareness Learning ]

Process

45}
Online =

Optimization
(RHC, MILP)

Specification
e How do we describe correct behavior?

Design

e \What tools can we use to design
protocols to implement that behavior?

Verification

e How do we know if it is actually
correct?

_ / L(z, o, u) dt + V(2(T), o(T)),

0
(Soinit A DSOG) (DQOS A O@g)

formal
specifications

isfed | vohed - Conioler atrnder nouen
(+certificate)  (+counterexample) satisfy the spec’s exists
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