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Outline: 
• Receding horizon temporal logic planning (RHTLP)

• Basic idea & main result
• Discussion of the key details of implementation
• Hierarchical control architecture
• Autonomous driving examples

• Compositional control protocol synthesis and its application to smart 
camera networks and resource allocation
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Handle mixture of 
discrete and continuous 
dynamics

Account for both 
high-level specs and 
low-level constraints

Reactively respond to 
changes in environment,
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Problem: Design control protocols, that...

ẋ = f(x, u, δ)
Path

Planner

Traffic
Planner

... with “correctness certificates.”
           [                                     ](ϕinit ∧ ϕenv)→ (ϕsafety ∧ ϕgoal)

g(x, u) ≥ 0
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Hierarchical control 
architecture

Preview

Different views

“short-horizon
specification”

“long-horizon
specification”

continuous
dynamics&
constraints

W0 ≺ . . . ≺WL−1 ≺WL

W0WL WL−1

min

� T

t0

L(x, u)dt

s.t. ẋ = f(x, u)

g(x, u) ≤ 0

Multi-scale modelsAlice’s navigation
stack

Mission
Planner

Traffic
Planner

Path
Planner

Vehicle
Actuation

Multi-layer approach
• Use optimal trajectory generation to create a discrete abstraction 

that captures the dynamics at a simplified level
• Reactive planner based on GR(1) synthesis (possibly RHC)
• High level planner sends specifications to reactive planer
• Online versus offline decisions at each level



Computational Complexity

Supélec

Eiffel Tower

L

• Each of these cells may be occupied by 
an obstacle.

• The vehicle can be in any of these cells.

(2L)(22L) possible states!
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ẋ = f(x, u), x(t) given
x(t + T ) = xf , g(x, u) ≤ 0

Receding Horizon Control

5

min
u[t,t+T ]

� t+T

t
C(x(τ), u)τ))dτ + V (x(t + T ))

subject to:

•Reduces the computational 
cost by solving smaller 
problems.

•Real-time (re)computation 
improves robustness. 



• If the terminal cost is chosen as a control Lyapunov 
function, i.e., V is (locally) positive definite and satisfy (for 
some r>0) 

then stability is guaranteed. 

min
u

(V̇ + C)(x, u) < 0, ∀x ∈ {x : V (x) ≤ r2}
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Receding Horizon Control

• If not implemented properly, global 
properties, e.g., stability, are not 
guaranteed. 

• Increasing T helps for stability at 
the expense of increased 
computational cost. ẋ = f(x, u), x(t) given

x(t + T ) = xf , g(x, u) ≤ 0

min
u[t,t+T ]

� t+T

t
C(x(τ), u)τ))dτ + V (x(t + T ))

subject to:

finite-horizon 
optimization terminal cost

• Alternative (related) approach, imposed contractiveness 
constraints in short-horizon problems.



7

• Partition the state space into a partially ordered set
• Goal-induced partial order

({Wj},�ϕg )
Basic idea:

Receding Horizon for LTL Synthesis

ν1ν2

ν3ν4

ν5

ν6

ν7

ν8ν9

ν10
W0

W1

W2

W3

W4

Global (long-horizon) specification: 

Theorem: Receding horizon implementation of the short-horizon 
strategies ensures the correctness of the global specification.

[TAC’11(submitted),
HSCC’10]

(ϕinit ∧ ϕenv) → (ϕsafety ∧ ϕgoal)
{

Plan from 
the current 
cell on

{ {
Receding horizon invariant: 
rules out “corner” cases

Short-horizon specification: For each i,

((ν ∈ Wi) ∧ Φ ∧ ϕenv) → (�Φ ∧ ϕsafety ∧ ♦(ν ∈ Fi(Wi)))

F

Get closer to goal 
rather than reaching.
   : “horizon” length”

{

state satisfying ϕgoal

Trade-offs:
computational

cost
horizon
lengthvs.

strength of
invariantvs. conservatismvs.



How to come up with a partial order,    and   ? ΦF
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W0WL WL−1

W0 ≺ . . . ≺WL−1 ≺WL

F(Wj) =Wj−2, j ≥ 2
F(Wj) =W0, j < 2

• The invariant     (in this example) rules out the states that render the 
short horizon problems unrealizable.

• In the example above, it is the conjunction of the following propositional 
formulas on the initial states for each subproblem:

• no collision in the initial state
• vehicle cannot be in the left lane unless there is an obstacle in the 

right lane in the initial state
• vehicle is able to progress from the initial state

Φ

F

• In general, problem-dependent 
and requires user guidance. 

• Partial automation is possible 
(discussed later). 

• Partial order: “measure of 
closeness” to the goal, i.e, to the 
states satisfying.  

• The map    determines the 
“horizon length. 
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ẍ + ẋ = qx(t)
ÿ + ẏ = qy(t)

θ̈ +
2mL2

J
θ̇ = qθ

|qx(t)|, |qy(t)| ≤
√

0.5

|qθ(t)| ≤ 1
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Navigation of point-mass omnidirectional vehicle
nondimensionalized

dynamics:
conservative bounds on 

control authority to 
decouple the dynamics:

Reasons for the non-intuitive trajectories:
• Synthesis: feasibility rather than “optimality.”
• Specifications are not rich enough.

Partition (in two consecutive cells):

4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and ) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and ) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×( discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and )! ≺*! )" for any ! < ).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and ) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

# ∈ '#,!+1 and for the case

where it can only transition to 0 ′
# ∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
# ∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

vz

W0WL WL−1



Example: Navigation In Urban-Like Environment

Goals: Visit the cells with *’s 
infinitely often. 

ẋ(t) = ux(t) + dx(t), ẏ(t) = uy(t) + dy(t)
ux(t), uy(t) ∈ [−1, 1], ∀t ≥ 0

dx(t), dy(t) ∈ [−.1, .1], ∀t ≥ 0

Dynamics:
Actuation limits:
Disturbances:

Traffic rules: 
• No collision
• Stay in right lane unless blocked by obstacle
• Proceed through intersection only when clear

10

Environment assumptions: 
• Obstacle may not block a road 
• Obstacle is detected before it gets too close 
• Limited sensing range (2 cells ahead)
• Obstacle does not disappear when 
 the vehicle is in its vicinity
• Obstacles don’t span more than certain # of 
consecutive cells in the middle of the road

• Each intersection is clear infinitely often
• Cells marked by star and adjacent cells are not 
occupied by obstacle infinitely often
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Navigation In Urban-Like Environment
Setup:

• Dynamics: Fully actuated with actuation limits 
and bounded disturbances

• Specifications:
• Traffic rules
• Assumptions on obstacles, sensing range, 

intersections,...
• Goals: Visit the two stars infinitely often

[TAC’11(submit),
HSCC’10]

Results:
• Without receding horizon: 1e87 states (hence, not solvable)

• Partial order: From the top layer of the 
control hierarchy

• Receding horizon:

F(Wi
j) =Wi

j−2.• Horizon length = 2    (                         )
• Invariant: Not surrounded by obstacles. If 

started in left lane, obstacle in right lane.
• 1e4 states in the automaton. 
• ~1.5 sec for each short-horizon problem
• Milliseconds for partial order generation

G

Goal
Generator

Trajectory
Planner

response

Continuous
Controller
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What is    ?Φ
• A propositional formula (that we call receding horizon invariant).
• Used to exclude the initial states that render synthesis infeasible, e.g., states from 
which collision is unavoidable

• Check realizability
• If realizable, done. 
• If not, collect violating initiation conditions. Negate them and put in    .
• Repeat until all subproblems or all possible states are excluded (in the 
latter case, either the global problem is infeasible or RHTLP with given 
partial order and      is inconclusive.)

Φ

F

Given partial order and    , computation of the invariant can be automated:F

((ν ∈ Wi) ∧ Φ ∧ ϕenv) → (�Φ ∧ ϕsafety ∧ ♦(ν ∈ Fi(Wi)))

Short-horizon specification:





ψinit ∧�ψe ∧




�

i∈If

� � ψf,i







 →




�

�

i∈Is

�ψs,i

�
∧




�

i∈Ig

� � ψg,i








{
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Generalization to multiple “goals”
General form of LTL specifications considered in reactive 
control protocol synthesis:

multiple “goals”

18

specification Ψi
j associated with W i

j for each i ∈ Ig and j ∈ {0, . . . , p} as

Ψi
j � �(ν ∈W i

j) ∧ Φ ∧ �ψe
e ∧ �k∈If

��ψe
f,k�

�⇒ ��k∈Is �ψs,k ∧ ���ν ∈ F i(W i
j)� ∧ �Φ� , (8)

where ν is the state of the system and ψe
e , ψe

f,k and ψs,k are defined as in (6). An automaton

Ai
j satisfying Ψi

j defines a strategy for going from a state ν1 ∈W i
j to a state ν2 ∈ F i(W i

j) while

satisfying the safety requirements �i∈Is �ψs,i and maintaining the invariant Φ. The roles of P i,

F i and Φ are discussed later in Section VI-A.

Receding Horizon Strategy: For each i ∈ Ig and j ∈ {0, . . . , p}, construct an automaton Ai
j

satisfying Ψi
j . Let Ig = {i1, . . . , in} and define a corresponding ordered set (i1, . . . , in). Note that

this order only affects the sequence of progress properties ψg,i1 , . . . ,ψg,in that the system tries

to satisfy. Hence, it can be picked arbitrarily without affecting the correctness of the receding

horizon strategy.

(1) Determine the index j1 such that the current state ν0 ∈W i1
j1

. If j1 �= 0, then execute automaton

Ai1
j1

until the system reaches a state ν1 ∈W i1
k whereW i1

k �ψg,i1
W i1

j1
. Note that since the union

ofW i1
1 , . . . ,W i1

p is the set V of all the states, given any ν0,ν1 ∈ V , there exist j1, k ∈ {0, . . . , p}
such that ν0 ∈W i1

j1
and ν1 ∈W i1

k .

(2) If the current state ν1 �∈W i1
0 , switch to automaton Ai1

k where the index k is chosen such that

the current state ν1 ∈W i1
k . Execute Ai1

k until the system reaches a state that is smaller in the

partial order P i1 . Repeat this process until a state ν2 ∈W i1
0 is reached.

(3) Switch to automaton Ai2
j2

where the index j2 is chosen such that the current state ν2 ∈W i2
j2

.

Repeat step (2) with i1 replaced by i2 for the partial order P i2 until a state ν3 ∈W i2
0 is reached.

Repeat this process with i2 replaced by i3, i4, . . . , in until a state νn ∈W in
0 is reached.

(4) Repeat steps (1)–(3).

A graphical description of this strategy is depicted in Figure 3. Starting from a state ν0, the

system executes the automaton Ai1
j1

where the index j1 is chosen such that ν0 ∈ Ai1
j1

. Step (2)

ensures that a state ν2 ∈ W i1
0 (i.e., a state satisfying ψg,i1) is eventually reached. This state ν2

belongs to some set, say,W i2
j2

in the partial order P i2 . The system then works through this partial

order until a state ν3 ∈ W i2
0 (i.e., a state satisfying ψg,i2) is reached. This process is repeated

until a state νn satisfying ψg,in is reached. At this point, for each i ∈ Ig, a state satisfying ψg,i

has been visited at least once in the execution. In addition, the state νn belongs to some set in

January 2, 2011 DRAFT

partial 
order 1

partial 
order 2

partial 
order n...

Each partial order covers the discrete 
(system) state space. For each            , 
one can find a cell in the “proceeding” 
partial order that     belongs to.   

ν ∈Wij

0

ν

Strategy:  While in       implement (in 
a receding horizon fashion) the 
controller that realizes 

Wi
j



O(mn|Σ|3)
For Generalized Reactivity [1] formulas, the computation time of synthesis 
is                 , where      is the number of discrete states.   |Σ|
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Computational complexity & completeness

m�

i=1

� � pe
i →

n�

j=1

� � qs
j

Receding horizon implementation...
• reduces the computational complexity by restricting the state space 

considered in each subproblem; and 
• is not complete, i.e., the global problem may be solvable but the choice 

of         , the partial order, the maps     , and    may not lead to a solution. {Wj} Fi Φ

(ϕinit ∧ ϕenv)→ (ϕsafety ∧ ϕgoal)

((v ∈Wi) ∧ Φ ∧ ϕend) → (ϕsafety ∧ �(v ∈ Fi(Wi) ∧�Φ)

Global synthesis problem

Subproblems in RHTLP

W0WL WL−1

Choose       to give “longer horizon”: 
• Subproblems in RHTLP are more 
likely to be realizable.

• Computational cost is higher. 
E.g., for urban-like driving example is 
infeasible with horizon length of one.

Fi



SynthesisProb

- system model

- system spec

ShortHorizonProb

-  

-   

-

Wj

Φj

RHTLPProb

- shprobs

-  ΦF

ShortHorizonProb: a class for defining a short horizon problem
•computeLocalPhi(): compute ϕ that makes this short horizon problem realizable.

RHTLPProb: a class for defining a receding horizon temporal logic planning problem
•Contains a collection of short-horizon problems
•Useful methods

- computePhi(): compute ϕ for this RHTLP problem if one exists.
- validate(): validate that the sufficient conditions for applying RHTLP hold

RHTLP in TuLiP
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4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and ) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and ) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×( discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and )! ≺*! )" for any ! < ).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and ) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

# ∈ '#,!+1 and for the case

where it can only transition to 0 ′
# ∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
# ∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

vz

ẍ + ẋ = qx(t)
ÿ + ẏ = qy(t)

θ̈ +
2mL2

J
θ̇ = qθ

|qx(t)|, |qy(t)| ≤
√

0.5

|qθ(t)| ≤ 1

models of varying fidelity

Hierarchical control structure

Abstraction procedure and 
bisimulations relate models of 
different fidelity level. 

16
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Decompositions in the state space

17

Decompositions 
induced by ...

receding horizon goal

distributed synthesis underlying network

http://www.cds.caltech.edu
http://www.cds.caltech.edu
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Goal: synthesize control protocols for PTZ to ensure 
that one high resolution image of each target is 

captured at least once

- static cameras for tracking targets
- pan-tilt-zoom (PTZ) for active recognition

Smart camera
networks {

http://www.cds.caltech.edu
http://www.cds.caltech.edu
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Synthesis of protocols for active surveillance 

System:
- region of view of PTZs
- governed by finite 
state automata

Environment specifications:
-At most N targets at a time.
- Every target remains at least T time 
steps and eventually leaves.

-Can only enter/exit through doors.
-Can only move to neighbors.

Additional requirement: 
- Zoom-in the corner 
cells infinitely often.

19
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Centralized vs. decentralized control architecture

tracking 
subsystem

controller 

PTZ-1

PTZ-2

tracking 
subsystem

controller-1 
& PTZ-1

controller-2 
& PTZ-2

How to design control 
protocols that can be

• synthesized
• implemented 

in a decentralized way?

What information exchange
& interface models are 
needed?

20
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Goal: Find control 
protocols for PTZ-1 & 
PTZ-2 so that          
                holds.ϕe → ϕs

Simple & not very useful composition:

21

Compositional Synthesis

 There exist control protocols that realize                 & ϕe1 → ϕs1 ϕe2 → ϕs2

Any execution of the env’t, satisfying     , also satisfiesϕe ϕe1 ∧ ϕe2

ϕs1 ∧ ϕs2
ϕs Any execution of the system, satisfying               , also satisfies

No common controlled variables in       and        ϕs1 ϕs2

               is realized.         ϕe → ϕs

http://www.cds.caltech.edu
http://www.cds.caltech.edu


φ1

φ�
1 φ2

φ�
2

e, ϕe s, ϕs

c1

c2

e1, ϕe1

e2, ϕe2 s2, ϕs2

s1, ϕs1

∧
(⇒)

Sys1

Sys2

Sys

www.cds.caltech.edu/~UTopcu Synthesis of Embedded Control Software22

Compositional

c

e, ϕe

P1

P2

(⇒)
s, ϕs

Central

http://www.cds.caltech.edu
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Any execution of the env’t, satisfying     , also satisfiesϕe ϕe1 ∧ ϕe2

ϕs1 ∧ ϕs2
ϕs Any execution of the system, satisfying               , also satisfies

No common controlled variables in       and        ϕs1 ϕs2

(Refined) Compositional Synthesis

As before:

Refined interfaces:
 There exist control protocols that realize

&(φ�
2 ∧ ϕe1)→ (ϕs1 ∧ φ1) (φ�

1 ∧ ϕe2)→ (ϕs2 ∧ φ2)

               is realized.         ϕe → ϕs

For soundness and to avoid circularity: 
� (φi → ◦φ�

i) for i = 1, 2

OTWM@ICCPS11(s)

http://www.cds.caltech.edu
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Application to a (very simple) smart 
camera network

24

IsZoomed & StepsInZone

and
limit the number of unzoomed targets 

entering zone 2 from zone 1

φ1 φ�
1

http://www.cds.caltech.edu
http://www.cds.caltech.edu


www.cds.caltech.edu/~UTopcu/eeci2011.html

Case Study: Synthesis of Protocols for 
Electric Power Management

25

Source: http://www.e-envi2009.org/presentations/S3/Derouineau.pdf

Multiple criticality levels:
• flight controllers
• active de-icing
• environmental control 

increasing
criticality

Environment variables: 
• wind gust (w)
• outside temperature (T)
Controlled variables: 
• altitude
• power supply to different 
components

For environment & control variables, 
use crude discretization over their 
respective ranges. For example, 

representing the range of 
T ∈ {low, low-medium,medium-high,high}

[−22oF, 32oF ]

Dependent (state) variables:
• level of ice accumulation
• state-of-charge of the batteries 
• cabin pressure level

http://www.cds.caltech.edu
http://www.cds.caltech.edu
http://www.e-envi2009.org/presentations/S3/Derouineau.pdf
http://www.e-envi2009.org/presentations/S3/Derouineau.pdf
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Modeling & The Dependent Variables

26

Use models based on finite 
transitions systems from a 
combination of empirical 
data and first principles. 

level airspeed reduction power increase
to regain airspeed

climb-rate reduction reduction in
control authority

trace < 10 knots < 10% < 10% no effect
light 10− 19 knots 10− 19% 10− 19% no effect

moderate 20− 39 knots 20− 39% ≥ 20% slow or overly
sensitive response

severe ≥ 40 knots unable unable limited or no response

Table 1. Effects of icing on airspeed, power increase to regain airspeed, climb-rate reduction, and control
authority.

Figure 4. Concentration of freezing nuclei versus temperature.32,33 Different curves represent results from
various researchers.

pressurization. Based on the above discussion, we model the power requests from these three subsystems to
capture the following trends.

• The power request from the flight controller increases with increasing levels of wind gusts, pressure
altitude, and icing.

• The power request from the deicing subsystems increases with decreasing outside temperature and
pressure altitude.

• The power request from the environmental control subsystem (for the regulation of cabin pressurization)
increases with increasing pressure altitute and decreasing outside temperature.

B. Problem setup

Let H denote the set of admissible pressure altitudes of the aircraft and let Pf , Pd, and Pe denote sets of
admissible amount of power supplied to the flight actuators, deicing and environmental control operations,
respectively. We also consider an energy storage unit (a battery) on board with capacity B. Let 0 ≤ b ≤ B

be the amount of energy stored in the battery. Consider that the power generation is limited by P̄ .

At each time instance, the control protocol determines the pressure altitude h ∈ H and assigns (allocates)
power pf ∈ Pf , pd ∈ Pd and pe ∈ Pe to the three operations based on the availability of power and the
prioritization determined by the flight-criticality of the operations to ensure system correctness. We assume
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Figure 5. Finite state automata representing (left) the evolution of the amount of ice accumulation as a
function of pd and rd (which is dependent on T and h), and (right) the evolution of the cabin pressure as a
function of pe and re (which is also dependent on T and h). For each i ∈ {0, . . . , 3}, label li (and gi, respectively)
in the left figure represents the condition that rd is i levels smaller (greater) than pd, e.g., label l1 indicates that
if pd is high, then rd is medium-high. Label Li (and Gi, respectively) represents the condition that rd is i or
more levels smaller (greater) than pd, e.g., label L1 indicates that if pd is high, then rd is either medium-high,
medium-low or low. In the right figure, the interpretation of the transition labels li, Li, gi and Gi where
i ∈ {0, 1, 2} for the pairs of re and pe is similar to their interpretation for the pairs of rd and pd in the left figure.

• The wind gust w cannot be severe for more than Nw consecutive time steps. Let nw be the number
of consecutive time steps for which the wind gust is severe. Then, this assumption can be written as
�(nw ≥ Nw =⇒ �(w �= severe)).

• No abrupt change in temperature, i.e., the temperature can only change one level between any two
consecutive time instances. For example, if the current temperature is medium-low, then in the next
time instance, the temperature cannot be high: �(T = medium-low =⇒ �T �= high).

More sophisticated assumptions and requirements, such as conditions on the speed that imply certain
timing constraints, can be imposed using LTL. These extensions along with an investigation of the suitability
of other formal specification languages for the analysis and design of control protocols for VMS are subject
to future work.

V. Synthesis of Correct-by-Construction Vehicle Management Systems

A. Problem statement

Given the assumptions on the environment variables and the system, we are interested in specifications of
the form

ϕe =⇒ ϕs, (3)
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model of icing level model of cabin pressure level

Transitions model the 
gap between requested 
and supplied power for 
each functionality.

b[t + 1] = min{B, b[t] + P̄ − pf [t]− pd[t]− pe[t]}

State-of-charge evolves with:

storage
capacity

generation
capacity

power supply to each 
functionality

http://www.cds.caltech.edu
http://www.cds.caltech.edu


�(pf ≥ rf )
�(pf + pd + pe ≤ P̄ + b)

�(pf = high ∧ pd = high⇒ pe = low)

rf ≡ rf (h, a, w)
rd ≡ rd(T, h)
re ≡ re(T, h)

www.cds.caltech.edu/~UTopcu/eeci2011.html

Sample Specifications

27

Resource constraint:

Prioritization: 

Safety:

Performance:

Assumptions:

Ice accumulation cannot be severe:

� (h = low ⇒ (◦h �= medium-high ∧ ◦h �= high))

�(a = severe ⇒ ◦h = h)
�(a �= severe)

Altitude cannot change too much between to consecutive instants, e.g.,

Ice accumulation limits allowable altitude change, e.g.,

� � (h = high)
Cabin pressure does not exceed the level at 8000 ft.

Always go back to the desirable altitude: 

�(nw ≥ Nw ⇒ ◦(w �= severe)

�(T = medium-low ⇒ ◦T �= high)

Wind gusts cannot be severe too many consecutive steps. 

No abrupt change in outside temperature, e.g., 

power requests from flight controller (f), 
deicing (d), and pressure control (e):

Notation may not be fully explained. Ask, if confused!!!

http://www.cds.caltech.edu
http://www.cds.caltech.edu


Nw = 2, B = 3
P̄ = 5
rf , rd ∈ {0, 1, 2, 3}
re ∈ {0, 1, 2}

www.cds.caltech.edu/~UTopcu/eeci2011.html 28

Dynamic power allocation allows reductions in peak power 
(i.e., generator weight) requirements.

environment variables & energy storage

power requests & supplies 

dependent variables

(ϕenvironment

∧ϕinitial

∧ϕcriticality)

(ϕperformance

∧ϕsafety)

↓

Formulate as a temporal 
logic, reactive planning 

problem

http://www.cds.caltech.edu
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Conventional vs. Boeing 787 Electric Power Network Structure
pre-787 787: distributed

http://www.cds.caltech.edu
http://www.cds.caltech.edu
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Distributed resource allocation

centralized

4

3

6

5

6

43

feedback
refinement

serial
refinement

no refinement

no 
dynamic 
allocation

Controlled variables:
•Power supplies to each function
•Altitude

Environment variables:
•Wind gusts
•Outside temperature
•Generator health status

Dependent variables:
•Level of ice accumulation
•State-of-charge of the battery
•Cabin pressure & temperature

generator 2 
peak power

generator 1 peak power

p21

peak power p1

peak power p2

ψ12 = � � (h = 1)

ψ21 = �[(¬H1 → (p21 = 1)) ∧ (H1 → (p21 = 0))]

G1 G2

Interface refinements
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Compositional Synthesis of Distributed Protocols

∧iϕei → ϕe → ϕs → ∧iϕsi}
“weaker” 

environment
assumptions

}
“stronger” 

system
requirements

Extra (mild) technical conditions: No common controlled variables & loops are well-posed.

Theorem:                  is realizable if every                      is realizable.ϕe → ϕs ϕei → ϕsi

S1

S2

S3
K1

K2

K3

ϕe1 → ϕs1 ϕe3 → ϕs3

ϕe2 → ϕs2

Contracts formalize the coupling and information exchange between subsystems.

controlled subsys
local controller
physical coupling
information flow
exogenous signal

Trade-offs:

conservatism expressiveness 
of contractsvs. need for coordination

& computational costvs.




