Lecture 9 Synthesis of Reactive Control Protocols

Nok Wongpiromsarn

Singapore-MIT Alliance for Research and Technology

Richard M. Murray and Ufuk Topcu

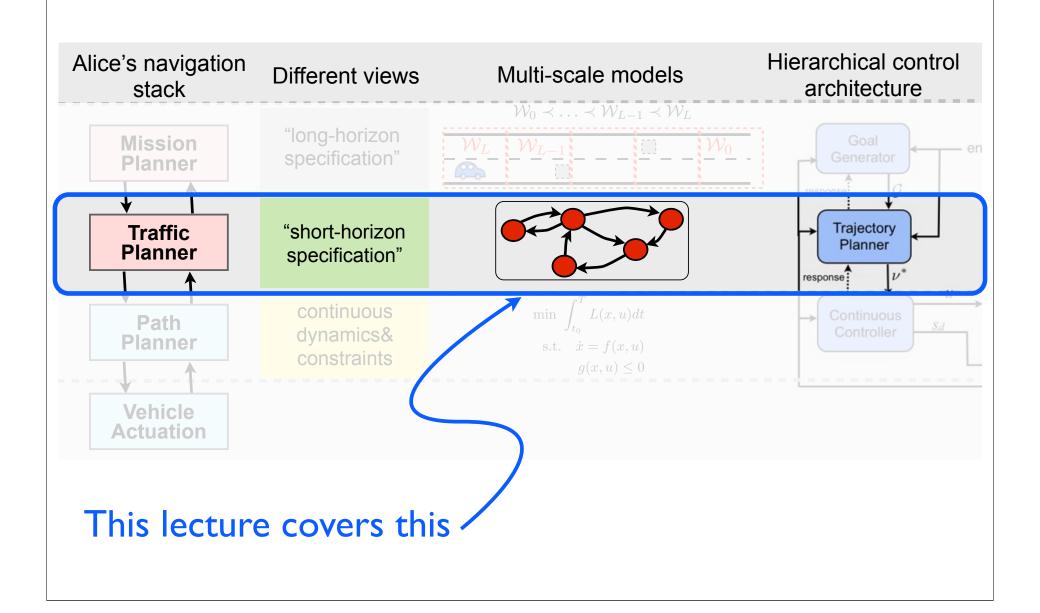
California Institute of Technology

EECI, 16 May 2012

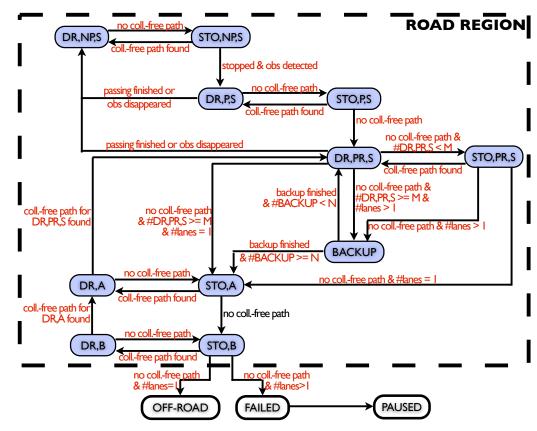
Outline

- Open System Synthesis: definition of open systems and open system synthesis problem
- Reactive System Synthesis: problem statement, realizability, games, solving games, complexity
- General Reactivity(I) Games

Hierarchical Structure



Alice's Logic Planner

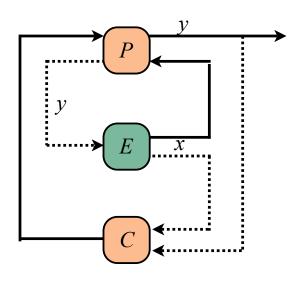


Given a specification Φ , whether the planner is correct with respect to Φ depends on the environment's actions (e.g., how obstacles move)

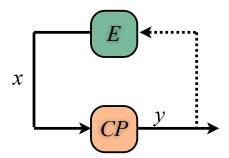
ullet a "correct" planner needs to ensure that Φ is satisfied for all the possible valid behaviors of the environment

How to design such a correct planner?

Open System Synthesis



An *open system* is a system whose behaviors can be affected by external influence



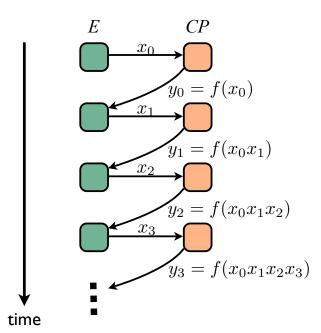
Open (synchronous) synthesis:

Given

- a system which describes all the possible actions
 - plant actions y are controllable
 - environment actions x are uncontrollable
- a specification $\Phi(x,y)$

find a strategy f(x) for the controllable actions which will maintain the specification against all possible adversary moves, i.e.,

$$\forall x \cdot \Phi(x, f(x))$$

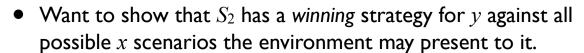


Reactive System Synthesis

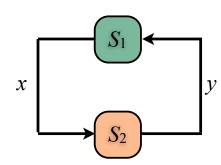
Reactive systems are open systems that maintain an ongoing interaction with their environment rather than producing an output on termination.

Consider the synthesis of a reactive system with input x and output y, specified by the linear temporal formula $\Phi(x,y)$.

- The system contains 2 components S_1 (i.e., "environment") and S_2 (i.e., "reactive module")
 - Only S_1 can modify x
 - Only S_2 can modify y

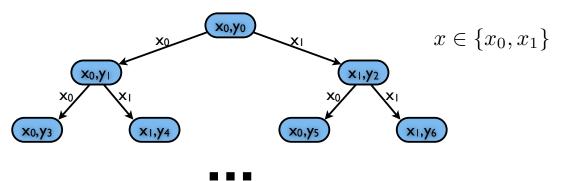


- Two-person game: treat environment as adversary
 - S_2 does its best, by manipulating y, to maintain $\Phi(x,y)$
 - S_1 does its best, by manipulating x, to falsify $\Phi(x,y)$
- If a winning strategy for S_2 exists, we say that $\Phi(x,y)$ is realizable



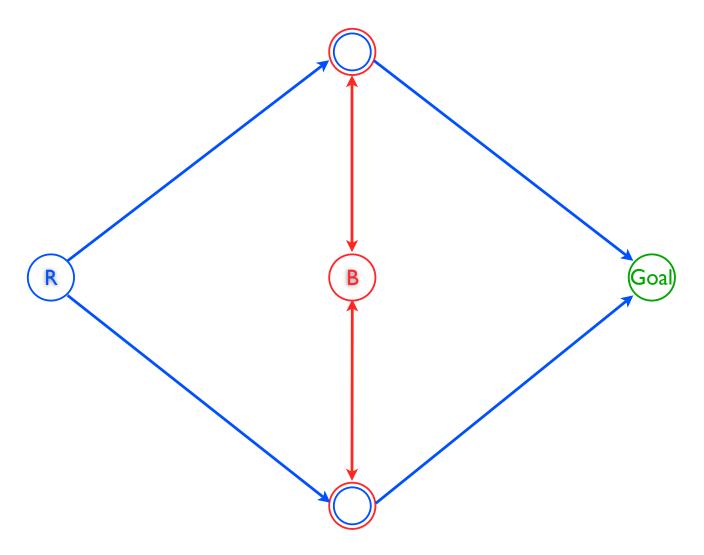
Satisfiability # Realizability

- Realizability should guarantee the specification against all possible (including adversarial) environment (Rosner 98)
 - To solve the problem one must find a satisfying tree where the branching represents all possible inputs



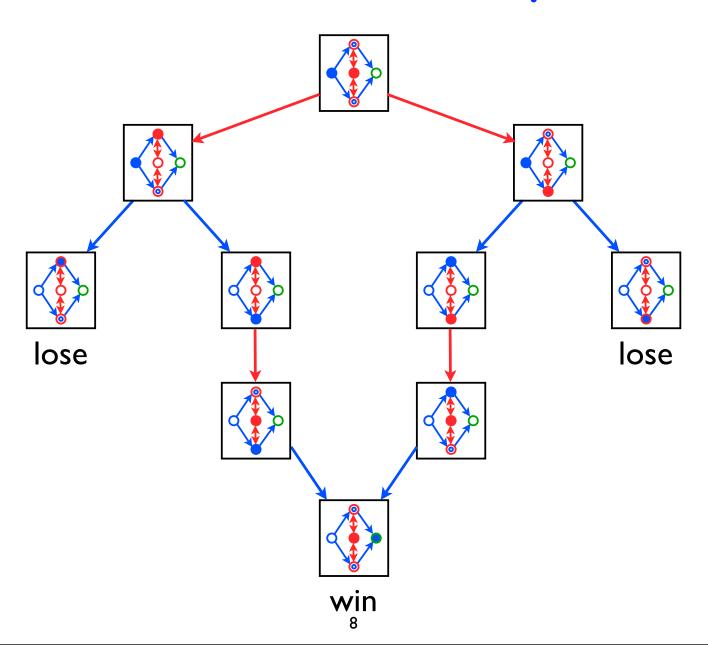
- Satisfiability of $\Phi(x,y)$ only ensures that there exists at least one behavior, listing the running values of x and y that satisfies $\Phi(x,y)$
 - There is a way for the plant and the environment to cooperate to achieve $\Phi(x,y)$
- Existence of a winning strategy for C_2 can be expressed by the AE-formula $\forall x\exists y\cdot\Phi(x,y)$

The Runner Blocker System



Runner R tries to reach Goal. Blocker B tries to intercept and stop R.

The Runner Blocker System



Solving Reactive System Synthesis

- Solution is typically given as the winning set
 - The winning set is the set of states starting from which there exists a strategy for C_2 to satisfy the specification for all the possible behaviors of C_1
 - A winning strategy can then be constructed by saving intermediate values in the winning set computation
- Worst case complexity is double exponential
 - Construct a nondeterministic Buchi automaton from $\Phi(x,y)$ \Rightarrow first exponent
 - Determinize Buchi automaton into a deterministic Rabin automaton ⇒ second exponent
 - Follow a similar procedure as in closed system synthesis and construct the product of the system and the deterministic Rabin automaton
 - Find the set of states starting from which all the possible runs in the product automaton are accepting \Rightarrow This set can be obtained by computing the *recurrent* and the *attractor* sets

Special Cases of Lower Complexity

- For a specification of the form $\Box p, \Diamond p, \Box \Diamond p$ or $\Diamond \Box p$, the controller can be synthesized in $O(N^2)$ time where N is the size of the state space
- Avoid translation of the formula to an automaton and determinization of the automaton

Special Case: Reachability

- Transition system $TS = (S, Act, \rightarrow, I, AP, L)$
- Specification $\Phi = \Diamond p$
- Define the set $WIN \triangleq \{s \in S : s \models p\}$
- ullet Define the predecessor operator $Pre_\exists:2^S o 2^S$ by

$$Pre_{\exists}(R) = \{ s \in S : \exists r \in R \text{ s.t. } s \to r \}$$

• The set of all the states starting from which WIN is reachable (if the plant and the environment to cooperate) can be computed efficiently by the iteration sequence

$$R_0 = WIN$$

 $R_i = R_{i-1} \cup Pre_{\exists}(R_{i-1}), \forall i > 0$

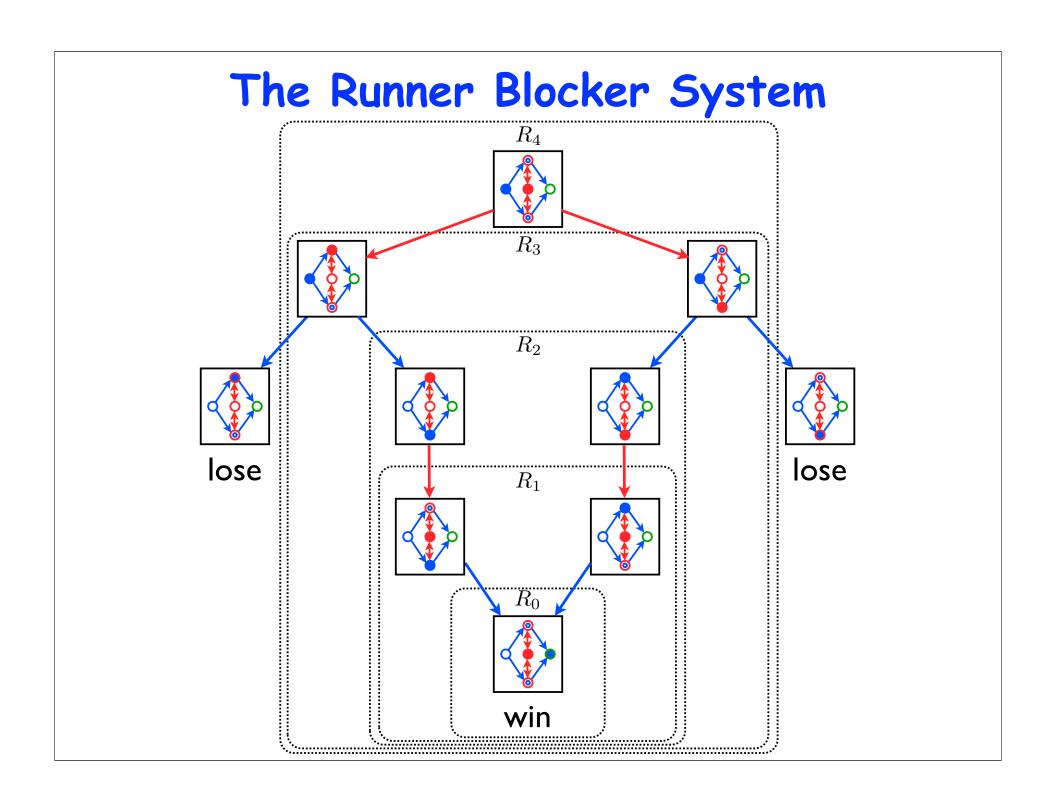
From Tarski-Knaster Theorem:

- There exists a natural number n such that $R_n = R_{n-1}$
- Such an R_n is the minimal solution of the fix-point equation

$$R = WIN \cup Pre_{\exists}(R)$$

The minimal solution of the above fix-point equation is denoted by

$$\mu R.(WIN \cup Pre_{\exists}(R))$$



Reachability in Adversarial Setting

- Transition system $TS = (S, Act, \rightarrow, I, AP, L)$
- Specification $\Phi = \Diamond p$
- Define the set $WIN \triangleq \{s \in S : s \models p\}$
- ullet Define the operator $Pre_{orall}: 2^S o 2^S$ and $Pre_{\exists orall}: 2^S o 2^S$ by

$$Pre_{\forall}(R) = \{s \in S : \forall r \in S \text{ if } s \to r, \text{then } r \in R\}$$

$$= \text{the set of states whose all successors are in } R$$
 $Pre_{\forall \exists}(R) = Pre_{\forall}(Pre_{\exists}(R))$

$$= \text{the set of states whose all successors}$$
have at least one successor in R

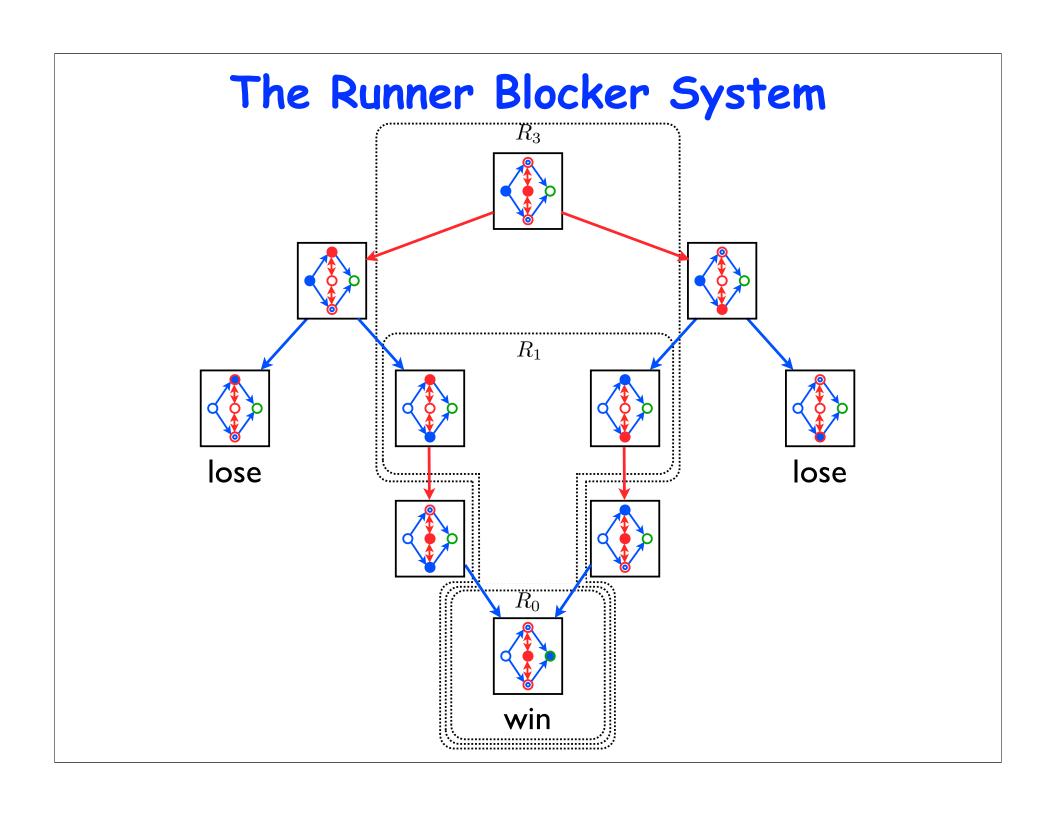
ullet The set of all the states starting from which the controller can force the system into WIN can be computed efficiently by the iteration sequence

$$R_0 = WIN$$

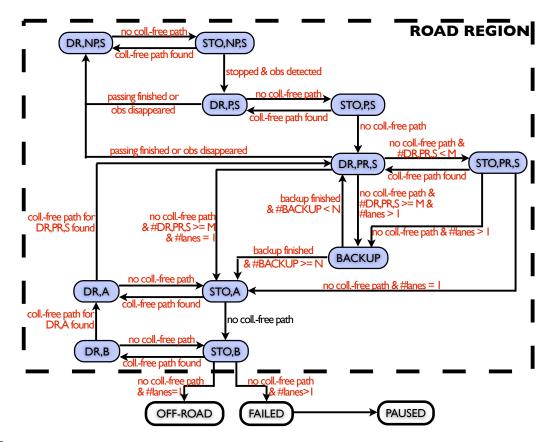
 $R_i = R_{i-1} \cup Pre_{\forall \exists}(R_{i-1}), \forall i > 0$

- There exists a natural number n such that $R_n = R_{n-1}$
- Such R_n is the minimal solution of the fix-point equation $R=\mathit{WIN} \cup \mathit{Pre}_{\forall\exists}(R)$
- The minimal solution of the above fix-point equation is denoted by

$$\mu R.(WIN \cup Pre_{\forall \exists}(R))$$



More Complicated Case



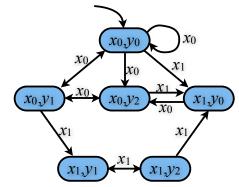
Game Automata Approach

- Consider the specification as the winning condition in an infinite two-person game between input player (C_1) and output player (C_2) .
- Decide whether player C_2 has a winning strategy, and if this is the case construct a finite state winning strategy.

Game Structures

A game structure is a tuple $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$

- $\mathcal{V} = \{v_1, \dots, v_n\}$ is a finite set of state variables. $\Sigma_{\mathcal{V}}$ is the set of all the possible assignments to variables in \mathcal{V}
- $\mathcal{X} \subseteq \mathcal{V}$ is a set of input variables
- $\mathcal{Y} = \mathcal{V} \setminus \mathcal{X}$ is a set of output variables
- $\theta_e(\mathcal{X})$ is a proposition characterizing the initial states of the environment
- $\theta_s(\mathcal{V})$ is a proposition characterizing the initial states of the system primed copy of \mathcal{X} represents the set of next input variables
- $\rho_e(\mathcal{V}, \mathcal{X}')$ is a proposition characterizing the transition relation of the environment
- $\rho_s(\mathcal{V}, \mathcal{X}', \mathcal{Y}')$ is a proposition characterizing the transition relation of the system
- AP is a set of atomic propositions
- $L: \Sigma_{\mathcal{V}} \to 2^{\mathcal{AP}}$ is a labeling function
- φ is an LTL formula characterizing the winning condition



$$\mathcal{V} = \{x, y\},
\mathcal{X} = \{x\}, \Sigma_{\mathcal{X}} = \{x_0, x_1\},
\mathcal{Y} = \{y\}, \Sigma_{\mathcal{Y}} = \{y_0, y_1, y_2\},
x_0 \models \theta_e, x_1 \not\models \theta_e,
(x_0, y_0) \models \theta_s,
(x_i, y_j) \not\models \theta_s, \forall i, j \neq 0,
((x_0, y_i), x_j) \models \rho_e, \forall i, j,
((x_1, y_0), x_0) \models \rho_e,
((x_1, y_0), x_1) \not\models \rho_e,
((x_1, y_i), x_0) \not\models \rho_e, \forall i \in \{1, 2\},
((x_1, y_i), x_1) \models \rho_e, \forall i \in \{1, 2\},
((x_0, y_0), x_0, y_i) \models \rho_s, \forall i,
((x_0, y_0), x_1, y_0) \models \rho_s,
((x_0, y_0), x_1, y_i) \not\models \rho_s, \forall i \neq 0,$$

15

Autonomous Car Example

Game Structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$

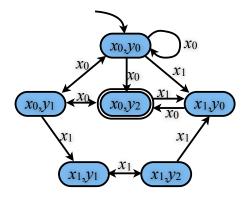
- ullet \mathcal{X} (environment): obstacles, other cars, pedestrians
- \mathcal{Y} (plant): vehicle state (drive VS stop, passing?, reversing?, etc)
- θ_e describes the valid initial states of the environment, e.g., where obstacles can be
- θ_s describes the valid initial states of the vehicle, e.g., the stop state
- ρ_e describes how obstacles may move
- ρ_s describes the valid transitions of the vehicle state
- φ describes the winning condition, e.g., vehicle does not get stuck

Plays

Game structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$

- infinite or the last state in the sequence has no valid successor
- A play of G is a maximal sequence of states $\sigma = s_0 s_1 \dots$ satisfying $s_0 \models \theta_e \wedge \theta_s$ and $(s_j, s_{j+1}) \models \rho_e \wedge \rho_s, \forall j \geq 0$.
 - Initially, the environment chooses an assignment $s_{\mathcal{X}} \in \Sigma_{\mathcal{X}}$ such that $s_{\mathcal{X}} \models \theta_e$ and the system chooses an assignment $s_{\mathcal{Y}} \in \Sigma_{\mathcal{Y}}$ such that $(s_{\mathcal{X}}, s_{\mathcal{Y}}) \models \theta_e \land \theta_s$.
 - From a state s_j , the environment chooses an input $s_{\mathcal{X}} \in \Sigma_{\mathcal{X}}$ such that $(s_j, s_{\mathcal{X}}) \models \rho_e$ and the system chooses an output $s_{\mathcal{Y}} \in \Sigma_{\mathcal{Y}}$ such that $(s, s_{\mathcal{X}}, s_{\mathcal{Y}}) \models \rho_s$.
- A play σ is winning for the system if either
 - $-\sigma = s_0 s_1 \dots s_n$ is finite and $(s_n, s_{\mathcal{X}}) \not\models \rho_e, \forall s_{\mathcal{X}} \in \Sigma_{\mathcal{X}}, \text{ or }$
 - $-\sigma$ is infinite and $\sigma \models \varphi$.

Otherwise σ is winning for the environment.



$$\varphi = \Box \Diamond (x = x_0 \land y = y_2)$$

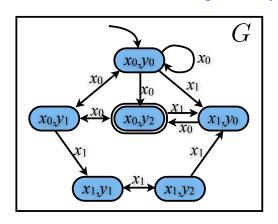
- $\sigma = ((x_0, y_0), (x_0, y_2), (x_0, y_1))^{\omega}$ is winning for the system
- $\sigma = ((x_0, y_0))^{\omega}$ is winning for the environment

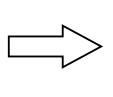
Strategies

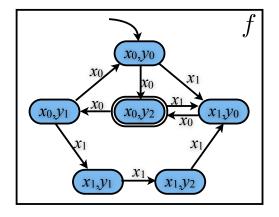
Game structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$

memory domain

- A strategy for the system is a function $f: M \times \Sigma_{\mathcal{V}} \times \Sigma_{\mathcal{X}} \to M \times \Sigma_{\mathcal{Y}}$ such that for all $s \in \Sigma_{\mathcal{V}}, s_{\mathcal{X}} \in \Sigma_{\mathcal{X}}, m \in M$, if $f(m, s, s_{\mathcal{X}}) = (m', s_{\mathcal{V}})$ and $(s, s_{\mathcal{X}}) \models \rho_e$, then $(s, s_{\mathcal{X}}, s_{\mathcal{Y}}) \models \rho_s.$
- A play $\sigma = s_0 s_1 \dots$ is *compliant* with strategy f if $f(m_i, s_i, s_{i+1}|_{\mathcal{X}}) = (m_{i+1}, s_{i+1}|_{\mathcal{Y}}), \forall i$.
- A strategy f is winning for the system from state $s \in \Sigma_{\mathcal{V}}$ if all plays that start from s and are compliant with f are winning for the system. If such a winning strategy exists, we call s a winning state for the system.







Is f winning for the system?

$$f(m,(x_0,y_0),x_0) = (m,y_2)$$

$$f(m,(x_0,y_0),x_1) = (m,y_0)$$

$$f(m,(x_0,y_1),x_0) = (m,y_0)$$

$$f(m,(x_0,y_1),x_1) = (m,y_1)$$

$$f(m,(x_0,y_2),x_0) = (m,y_1)$$

$$f(m,(x_0,y_2),x_1) = (m,y_0)$$
 $f(m,(x_1,y_1),x_1) = (m,y_2)$

$$f(m,(x_1,y_0),x_0) = (m,y_2)$$
 $f(m,(x_1,y_2),x_0) = (m,y_2)$

$$f(m,(x_0,y_1),x_1) = (m,y_1)$$
 $f(m,(x_1,y_0),x_1) = (m,y_2)$ $f(m,(x_1,y_2),x_1) = (m,y_0)$

$$f(m,(x_1,y_1),x_0) = (m,y_2)$$

$$f(m, (x_1, y_1), x_0) - (m, y_2)$$

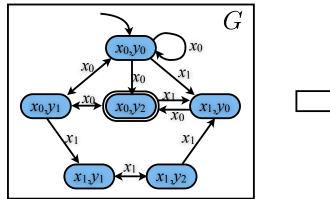
$$f(m,(x_1,y_1),x_1) = (m,y_2)$$

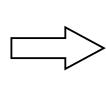
$$f(m,(x_1,y_2),x_0) = (m,y_2)$$

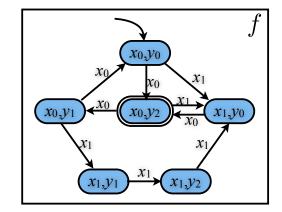
$$f(m,(x_1,y_2),x_1) = (m,y_0)$$

Winning Games

A game structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$ is winning for the system if for each $s_{\mathcal{X}} \in \Sigma_{\mathcal{X}}$ such that $s_{\mathcal{X}} \models \theta_e$, there exists $s_{\mathcal{Y}} \in \Sigma_{\mathcal{Y}}$ such that $(s_{\mathcal{X}}, s_{\mathcal{Y}}) \models \theta_s$ and $(s_{\mathcal{X}}, s_{\mathcal{Y}})$ is a winning state for the system







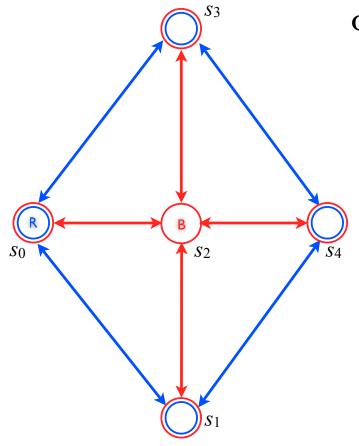
 (x_0, y_0) is a winning state for the system

$$x_0 \models \theta_e \text{ but } x_1 \not\models \theta_e$$

$$(x_0,y_0) \models \theta_s$$

G is winning for the system

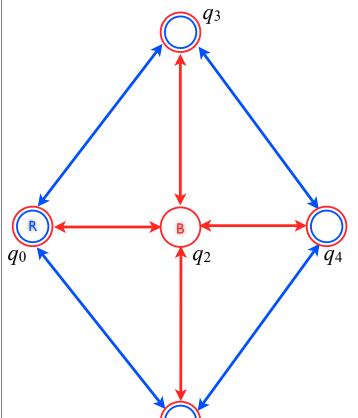
Runner Blocker Example



Game Structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$

- $\mathcal{X} := \{x\}, \ \Sigma_{\mathcal{X}} = \{s_0, s_1, s_2, s_3, s_4\}$
- $\mathcal{Y} := \{y\}, \ \Sigma_{\mathcal{Y}} = \{s_0, s_1, s_3, s_4\}$
- $\theta_e := (x = s_2)$
- $\theta_s := (y = s_0)$
- $\rho_e := ((x = s_2) \implies (x' \neq s_2)) \land ((x \neq s_2) \implies (x' = s_2))$
- $\rho_s := ((y = s_0 \lor y = s_4) \implies (y' = s_1 \lor y' = s_3)) \land ((y = s_1 \lor y = s_3) \implies (y' = s_0 \lor y' = s_4)) \land (y' \neq x')$
- φ describes the winning condition, e.g., $\diamond(y=s_4)$

Runner Blocker Example



Play: An infinite sequence $\sigma = s_0 s_1 \dots$ of system (blocker + runner) states such that s_0 is a valid initial state and (s_j, s_{j+1}) satisfies the transition relation of the blocker and the runner

Strategy: A function that gives the next runner state, given a finite number of previous system states of the current play, the current system state and the next blocker state

Winning state: A state starting from which there exists a strategy for the runner to satisfy the winning condition for all the possible behaviors of the blocker

Winning game: For any valid initial blocker state s_x , there exists a valid initial runner state s_y such that (s_x, s_y) is a winning state

Solving game: Identify the set of winning states

Solving Reachability Games

- Game structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$
- For a proposition p, let

$$[[p]] = \{ s \in \Sigma_{\mathcal{V}} \mid s \models p \}$$

• For a set R, let

$$[[\otimes R]] = \left\{ s \in \Sigma_{\mathcal{V}} \mid \forall s'_{\mathcal{X}} \in \Sigma_{\mathcal{X}}, (s, s'_{\mathcal{X}}) \vDash \rho_e \Rightarrow \exists s'_{\mathcal{Y}} \in \Sigma_{\mathcal{Y}} \text{ s.t. } (s, s'_{\mathcal{X}}, s'_{\mathcal{Y}}) \vDash \rho_s \text{ and } (s'_{\mathcal{X}}, s'_{\mathcal{Y}}) \in R \right\}$$
similar to the $Pre_{\forall \exists}$ operator we saw earlier

- Reachability game: $\varphi = \diamond p$
- The set of winning states can be computed efficiently by the iteration sequence

$$R_0 = \varnothing$$
 $R_{i+1} = [[p]] \cup [[\otimes R_i]], \forall i \ge 0$

- R_{i+1} is the set of states starting from which the system can force the play to reach a state satisfying p within i steps
- There exists a natural number n such that $R_n = R_{n-1}$
- Such R_n is the minimal solution of the fix-point equation $R = [[p]] \cup [[\otimes R]]$
- In μ -calculus, the minimal solution of the above fix-point equation is denoted by $\mu R(p \vee \otimes R)$ least fixpoint

Runner Blocker Example: R_1 $R_{i+1} = [[p]] \cup [[\otimes R_i]], \forall i \ge 0$ 23

Runner Blocker Example: R₂ $R_{i+1} = [[p]] \cup [[\otimes R_i]], \forall i \ge 0$ 24

Runner Blocker Example: $R_3 = R_4 = ...$ $R_{i+1} = [[p]] \cup [[\otimes R_i]], \forall i \ge 0$ 25

Solving Safety Games

- Game structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$
- For a proposition p, let

$$[[p]] = \{ s \in \Sigma_{\mathcal{V}} \mid s \vDash p \}$$

• For a set R, let

$$[[\otimes R]] = \left\{ s \in \Sigma_{\mathcal{V}} \mid \forall s_{\mathcal{X}}' \in \Sigma_{\mathcal{X}}, (s, s_{\mathcal{X}}') \vDash \rho_e \Rightarrow \exists s_{\mathcal{Y}}' \in \Sigma_{\mathcal{Y}} \text{ s.t. } (s, s_{\mathcal{X}}', s_{\mathcal{Y}}') \vDash \rho_s \text{ and } (s_{\mathcal{X}}', s_{\mathcal{Y}}') \in R \right\}$$

- Safety game: $\varphi = \Box p$
- The set of winning states can be computed efficiently by the iteration sequence

$$\begin{array}{rcl} R_0 &=& \Sigma_{\mathcal{V}} \\ R_{i+1} &=& \big[\big[p \big] \big] \cap \big[\big[\otimes R_i \big] \big], \, \forall i \geq 0 \end{array}$$

- $-R_{i+1}$ is the set of states starting from which the system can force the play to stay in states satisfying p for i steps
- There exists a natural number n such that $R_n = R_{n-1}$
- Such R_n is the maximal solution of the fix-point equation $R = [[p]] \cap [[\otimes R]]$
- In μ -calculus, the minimal solution of the above fix-point equation is denoted by $\nu R(p \wedge \otimes R)$ greatest fixpoint

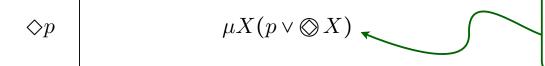
26

Runner Blocker Example: $R_1 = R_2 = ...$ $R_{i+1} = [[p]] \cap [[\otimes R_i]], \forall i \ge 0$ 27

Solving Games

Game structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$

arphi	The set of winning states for the system



 $\mu R.(WIN \cup Pre_{\forall \exists}(R))$ $R_0 = WIN$ $R_i = R_{i-1} \cup Pre_{\forall \exists}(R_{i-1}), \forall i > 0$

$$\Box p \qquad \qquad \nu X(p \wedge \bigotimes X)$$

$$\diamondsuit \,\square\, p$$

$$\Box \diamondsuit p$$

$$p \mathcal{U} q$$

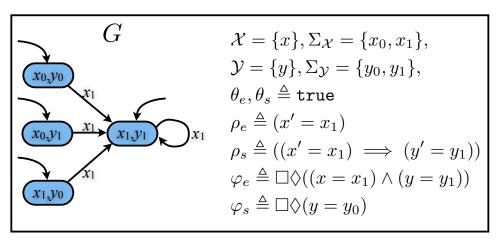
Games and Realizability

Game structure $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$

Consider a specification

$$\psi' = (\theta_e \wedge \Box \rho_e \wedge \varphi_e) \implies (\theta_s \wedge \Box \rho_s \wedge \varphi_s)$$

- Fulfillment of the system safety depends on the liveness of the environment
 - The system may violate its safety if it ensures that the environment cannot fulfill its liveness
- If the system wins in G, then ψ is realizable (but not vice versa)
 - A winning strategy for G is also a winning strategy for ψ (but not vice versa)
- By adding extra output variables that represent the memory of whether the system or the environment violate their initial requirements or their safety requirements, we can construct a game G' such that G' is won by the system iff ψ is realizable



- ψ' is realizable
 - The system always picks $y = y_0$
- ψ is not realizable
- The system does not win in G

General Reactivity(1) Games

GR(I) game is a game $G = (\mathcal{V}, \mathcal{X}, \mathcal{Y}, \theta_e, \theta_s, \rho_e, \rho_s, AP, L, \varphi)$ with the winning condition

$$\varphi = \underbrace{(\Box \Diamond p_1 \land \ldots \land \Box \Diamond p_m)}_{\varphi_e} \implies \underbrace{(\Box \Diamond q_1 \land \ldots \land \Box \Diamond q_n)}_{\varphi_s}$$

The winning states in a GR(I) game can be computed using the fixpoint expression

$$\nu \begin{bmatrix}
Z_1 \\
Z_2 \\
\vdots \\
Z_n
\end{bmatrix}
\begin{bmatrix}
\mu Y \left(\bigvee_{i=1}^m \nu X ((q_1 \land \bigotimes Z_2) \lor \bigotimes Y \lor (\neg p_i \land \bigotimes X))\right) \\
\mu Y \left(\bigvee_{i=1}^m \nu X ((q_2 \land \bigotimes Z_3) \lor \bigotimes Y \lor (\neg p_i \land \bigotimes X))\right) \\
\vdots \\
\mu Y \left(\bigvee_{i=1}^m \nu X ((q_n \land \bigotimes Z_1) \lor \bigotimes Y \lor (\neg p_i \land \bigotimes X))\right)
\end{bmatrix}$$

- $\mu Y \nu X (\otimes Y \vee (\neg p_i \wedge \otimes X))$ characterizes the set of states from which the system can force the play to stay indefinitely in $\neg p_i$ states
- The two outer fixpoints make sure that the system wins from the set $q_j \wedge \bigotimes Z_{j\oplus 1} \vee \bigotimes Y$
 - The disjunction and μY operators ensure that the system is in a state where it can force the play to reach a $q_j \wedge \bigotimes Z_{j\oplus 1}$ state in a finite number of steps
 - The conjunction and νZ_j operators ensure that after visiting q_j , we can loop and visit $q_{j\oplus 1}$

Extracting GR(1) Strategies

The intermediate values in the computation of the fixpoint can be used to compute a strategy, represented by a finite transition system, for a GR(I) game.

This strategy does one of the followings

- Iterates over strategies $f_1, ..., f_n$ where f_j ensures that the play reaches a q_j state
- Eventually uses a fixed strategy ensuring that the play does not satisfy one of the liveness assumptions p_j

Complexity: A game structure G with a GR(I) winning condition can be solved by a symbolic algorithm in time proportional to $nm|\Sigma_{\mathcal{V}}|^3$

Extensions

The algorithm for solving GR(I) game can be applied to any game with the winning condition of the form

$$\varphi = \left(\varphi_e \implies \varphi_s\right)$$

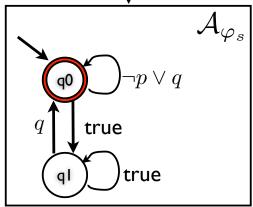
where φ_e and φ_s can be represented by a deterministic Buchi automaton.

- Add to the game additional variables and a transition relation which encodes the deterministic Buchi automaton
- Examples: $\Box(p \Longrightarrow \Diamond q)$
 - Introduce a Boolean variable *x*
 - Initial condition: x = 1
 - Transition relation for the environment: $\rho_e \wedge (x' = (q \vee x \wedge \neg p))$
 - Winning condition: $\Box \diamondsuit x$

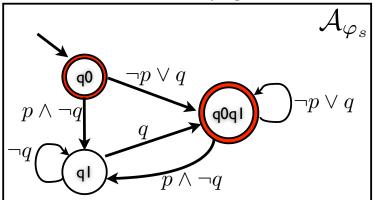
Converting LTL to GR(1)

LTL spec

$$\Box(p \Longrightarrow \Diamond q)$$

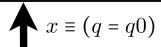


Determinize NBA (e.g., use LTL2DSTAR)



Initially: x = 1; Specification: $\Box \diamondsuit x$;

Transition relation: $\bigcirc x = (q \lor (x \land \neg p))$



Initially: q = q0; Specification: $\Box \diamondsuit (q = q0)$;

Transition relation:

$$((q = q0) \land (\neg p \lor q)) \Longrightarrow \bigcirc (q = q0)$$

$$((q = q0) \land (p \land \neg q)) \implies \bigcirc (q = q1)$$

$$((q = q1) \land q) \Longrightarrow \bigcirc (q = q0)$$

$$((q = q1) \land \neg q) \implies \bigcirc (q = q1)$$

Fquivalent TS

