
Lecture 6
Abstractions for the Analysis and Synthesis of

Control Protocols for Hybrid Systems

Ufuk Topcu

Nok Wongpiromsarn Richard M. Murray
EECI, 16 May 2012

Outline:
• Finite-state approximations of hybrid systems
• Use of model checking for the verification of hybrid systems
• Construction of finite-state abstractions for synthesis
• Approximate bisimulation functions

2

Hybrid system: H = (X , L,X0, I, F, T) with

• X , continuous state space;

• L, finite set of locations (modes);

• Overall state space X = X × L;

• X0 ⊆ X, set of initial states;

• I : L→ 2X , invariant that maps
l ∈ L to the set of possible
continuous states while in location l;

• F : X → 2Rn
, set of vector fields,

i.e., ẋ ∈ F (l, x);

• T ⊆ X ×X, relation capturing
discrete transitions between locations.

I(α1)

X

L = {α1, α2, α3}

I(α2)

I(α3)

(l, x)
(l�, x�)

A (simple) hybrid system model

Sample temporal properties:
• Stability: Given equilibrium , for all ,

 and

xe ∈ X x0 ∈ X0 ⊆ X

φ(t;x0) ∈ X , ∀t φ(t;x0) → xe, t → ∞

X0

3

Specifications
H = (X , L,X0, I, F, T)Given:

Solution at time t with the initial condition :
• With the simple model H, specifying the initial state also specifies the initial mode.

φ(t;x0)

• Eventuality: reachable from every initial condition

• Combinations of the above, e.g., starting in , reach both and , but
will not be reached before is reached while staying safe.

XA XB

XC

XB XC

x0 ∈ X0

• Safety: Given , safety property holds if there
exists no and trajectory with initial condition , tunsafe

φ(t;x0) ∈ X , ∀t ∈ [0, tunsafe]

Xunsafe ⊆ X
x0 ∈ X0

φ(tunsafe;x0) ∈ Xunsafe

• Reachability: Given , reachability property holds if there
exists finite and a trajectory with initial condition , treach ≥ 0

φ(t;x0) ∈ X , ∀t ∈ [0, treach]φ(treach;x0) ∈ Xreach

Xreach ⊆ X
x0 ∈ X0

and

Xreach

4

Analysis of hybrid systems
Why not directly use model checking?
• Model checking applied to finite transitions systems
• Exhaustively search for counterexamples....

• if found, property does not hold.
• if there is no counterexample in all possible executions, the property is verified.

Exhaustive search is not possible over continuous state spaces.

Approaches for hybrid system verification:
1. Construct finite-state approximations and
apply model checking

•Preserve the meaning of the properties,
i.e., proposition preserving partitions

•Use “over”- or “under”-approximations

X

2. Deductive verification
•Construct Lyapunov-type certificates
•Account for the discrete jumps in the
construction of the certificate

3. Explicitly construct the set of reachable states
•Limited classes of temporal properties (e.g., reachability and safety)
•Not covered in this course

5

Finite-state, under- and over-approximations

X

Under-approximation: TS is an under-approximation of
H if the following two statements hold.

•Given with , if , then for all
 , there exists finite such that

• If , then is positively-invariant.

q, q� ∈ Q q �= q� q → q�

x0 ∈ T−1(q) τ > 0

φ(τ ;x0) ∈ T−1(q�), φ(t;x0) ∈ T−1(q) ∪ T−1(q�), ∀t ∈ [0, τ]

q → q T−1(q)

In other words:
•Every discrete trajectory in an under-approximation TS
can be implemented by H.

•TS “simulates” H.

Hybrid system:
Finite-transition system: TS = (Q,→, Q0)

T : Q → 2XDefine the map

Over-approximation: TS is an over-approximation of H, if for each
discrete transition in TS, there is a “possibility” to be implemented by H.

•Possibility induced by the coarseness of the partition.

For discrete state , is
the corresponding cell in . X

q T−1(q)

H = (X , L,X0, I, F,→H)

6

Use of under-approximations

Let the following be given.
• A hybrid system H,
• a finite-state, under-approximation TS1 for H,

Trace(H)

Trace(TS1)

Words()¬ϕ

Words(¬ϕ) ∩ Trace(TS1) is nonempty
⇓

Words(¬ϕ) ∩ Trace(H) is nonempty

⇓H cannot satisfy
the specification.

Words(¬ϕ) ∩ Trace(TS1) is empty Inconclusive

Logic synthesis:
• If is nonempty, there exists a trajectory of TS1 which

 satisfies and can be implemented by H.
• Otherwise, inconclusive.

ϕ
Words(ϕ) ∩ Trace(TS1)

• Let an LTL specification be given.
• Question:
• Model check

ϕ
H |= ϕ?
“TS1 |= ϕ?”

Verification

TS1 �|= ϕ

H �|= ϕ

7

Use of over-approximations

Hybrid system H and a finite-state, over-approximation TS2 for H.

Trace(TS2)

Trace(H)

Words()¬ϕWords(ϕ) ∩ Trace(TS2) is nonempty Inconclusive

H satisfies
the specification.

Words(¬ϕ) ∩ Trace(H) is empty

Words(¬ϕ) ∩ Trace(TS2) is empty
⇓

TS2 |= ϕ

H |= ϕ
⇓

Verification

Remarks:
•Under- and over-approximations give partial results.
•Potential remedies:

•Finer approximations
•Bisimulations

Logic synthesis:
• If is empty, no valid trajectories for TS2 or H.
•Otherwise, inconclusive.

Words(ϕ) ∩ Trace(TS2)

8

Example: verification

Example from “Temporal logic analysis of gene networks under parametric uncertainty,” Batt, Belta,
Weiss, Joint special issue of IEEE TAC & Trans on Circuits, 2008.

Continuous vector field: Discrete over-approximation:
(small dots: self transitions)

System models:

Specifications:
Both hold for the over-
approximation; hence, they hold
for the actual system.

�
�

♦

9

Example: synthesis
A four-mode thermostat:
x: room temperature, y: heater temp

Find a switching sequence such that:

Construct an over-approximation using the
partition in the figure below.

States in the finite-state abstraction:
(qi,mode)

mode ∈ {off, heating, on, cooling}

x

y

10

Figures from “Assignment of Heterogeneous Tasks to
a Set of Heterogeneous Unmanned Aerial Vehicles,”
Rasmussen & Kingston (AFRL).

A task-level abstraction of the system
using a library of primitives (low-level
controllers) for

•executing tasks and
• transitioning between tasks

Abstractions using primitives

•The level of abstraction dictates the
level at which it can be specified.

•Task-level abstraction allows task-
level specifications, e.g.

•never enter no-fly-area
•every reconnaissance is eventually
followed by a search

•pop-up tasks have priority

{

How to construct a finite-state abstraction?

Discrete planner
ensures that

the spec is satisfied

Continuous controller
implements

the discrete plan
(handles low-level

dynamics & constraints)

Trajectory
Planner

Continuous
Controller

Plant

∆

noise

Local
Control

u

sd
δu

“Receding Horizon Control”

env

11

{
+

Focus on synthesis: Construct a finite-state under-approximation (of the
underlying continuous/hybrid dynamics) such that

• the finite-state model is used in discrete planning, and
•all provably correct discrete plans can be implemented at the continuous level.

ξ̇ = f(ξ, w, u)

ξ ∈ X , u ∈ U , w ∈ W

12

Incorporating continuous dynamics -- overview

ν∗

Trajectory
Planner

Continuous
Controller

response

Main idea:

X

ν6 ν7 ν8 ν9 ν10

ν1 ν2 ν3 ν4 ν5

ν1 ν2 ν3 ν4 ν5

ν6 ν7 ν8 ν9 ν10

Theorem: For any discrete run satisfying the specification, there exists an admissible
control signal leading to a continuous trajectory satisfying the specification.

Proof: Constructive → Finite-state model + Continuous control signals.

Abstraction refinement for reducing potential conservatism.

Given:
•A system with controlled variables in domain and environment
variables in domain .
•Define , and .

•Controlled variables evolve with (for t = 0,1,2,...):

•System specification

V = S ∪ E

s ∈ S dom(S)
dom(E)e ∈ E

dom(V) = dom(S)× dom(E)v = (s, e)

s[t + 1] = As[t] + Buu[t] + Bdd[t]
u[t] ∈ U
d[t] ∈ D

s[0] ∈ dom(S)
s[t + 1] ∈ dom(S) }

state evolution
admissible control inputs
exogenous disturbances

set that states take values in

ϕ

13

Finite state abstraction

v5

v0

v1

v3

v4

v2

ν0

ν1

ν2ν3

ν4

ν5

Find: A finite transition system with discrete states
such that for any sequence satisfying , (very
roughly speaking) there exists a sequence of admissible
control signals leading to an infinite sequence
that satisfies .

ν
ν0ν1 . . .

ϕ
v0v1v2 . . .

ϕ

(stated more precisely later...)

14

Proposition preserving partition

ν6

ν7

ν8

ν9

ν0

ν1

ν2

ν3

ν4

ν5

v v�

Given and atomic propositions in .
A partition of is said to be proposition
preserving if, for any atomic proposition
and any states and that belong to the same cell
of the partition, satisfies if and only if
satisfies .

dom(V) Π

π ∈ Π

π
v v�

dom(V)

π
v�v

Π = {x ≤ 1, y ≥ 0, x + y ≥ 0, . . .}

x

y
Example:

1

-1
-2 21

0

v � π ⇔ v� � π

ν5 �d π ⇔ ∃v ∈ ν5 s.t. v � π

ν5 �d π ⇔ ∀v ∈ ν5 s.t. v � π

⇓

proposition preserving:
+

ν

π
v

πA discrete state is said to satisfy if and
only if there exists a continuous state , in
the cell labeled, that satisfies .

A discrete state νj is finite-time reachable from a discrete
state νi, only if starting from any s[0] ∈ T−1

s (νi), there exists
- a finite horizon length N ∈ {0, 1, . . .}
- for any allowable disturbance, there exists
. u[0], u[1], . . . , u[N − 1] ∈ U such that

s[N] ∈ T−1
s (νj)

s[t] ∈ T−1
s (νi) ∪ T−1

s (νj), ∀t ∈ {0, . . . , N}

15

Finite-time reachability

ν6

ν7

ν8

ν9

ν0

ν1

ν2

ν3

ν4

ν5

S0

Verifying the reachability relation:
• Compute the set of from which
can be reached under the system dynamics in a
pre-specified time N.

• Check whether .

S0 s[0] Ts(νj)

T−1
s (νi) ⊆ S0

{ s[t + 1] = As[t] + Buu[t] + Bdd[t]
u[t] ∈ U
d[t] ∈ D

s[0] ∈ dom(S)
s[t + 1] ∈ dom(S)

system
dynamics

Given N and polyhedral sets
T−1

s (νi) = {s ∈ Rn : L1s ≤ M1}
U = {u ∈ Rm : L2u ≤ M2}
T−1

s (νj) = {s ∈ Rn : L3s ≤ M3}.

L1s[t] ≤M1 for t = 0, . . . , N − 1
L3s[N] ≤M3,

where

s[t] = Ats0 +
�t−1

k=0

�
AkBuu[t− 1− k] + AkBdd[t− 1− k]

�
,

S0 is computed as the set of s0 such that there
exist u[0], . . . , u[N − 1] satisfying L2u[t] ≤ M2,
for t ∈ {0, . . . , N − 1}, leading to

for all d[0], . . . , d[N − 1] ∈ D (D polyhedral).

T−1
s (ν0)

T−1
s (ν1)

16

S0Computing

affine in s0 and u

S0 =
�

s0 ∈ Rn : ∃û ∈ RmN s.t. L

�
s0

û

�
≤ M −Gd̂, ∀d̂ ∈ D̄N

�
Put together: S0 is computed as a polytope projection:

stacking of u and d
DN = D × · · ·×Dset of vertices of

ν6

ν7

ν8

ν0

ν1

ν2

ν3

ν5

ν6

ν7

ν0

ν1

ν2

ν5

While checking the reachability from T−1
s (νi) to

T−1
s (νj), if T−1

s (νi) � S0, then
- Split T−1

s (νi) ∩ S0 and T−1
s (νi) ∩ Sc

0

- Remove νi from the set of discrete states
- Add two new discrete states corresponding to
. T−1

s (νi) ∩ S0 and T−1
s (νi) ∩ Sc

0

4) To make sure that the stay-in-lane requirement (see

below) is achievable, we assume that an obstacle on

the right lane does not disappear while the vehicle is in

its vicinity. That is, for any ! ∈ {1, . . . , $},

□

⎛

⎝

⎛

⎝% ∈
!+1∪

"=!−1

&#," ∧ '!,1

⎞

⎠ =⇒ □('!,1)

⎞

⎠

(14)

These assumptions can be relaxed so that they have the form

(5) by replacing the inner □ in (11) and (14) with !.
Next, we define the desired safety property, □(%, as the

conjunction of the following properties:

1) No collision, i.e., for any ! ∈ {1, . . . , $} and) ∈ {1, 2},
□('!," =⇒ ¬(% ∈ &#,! ∧ * ∈ &&,")) (15)

2) The vehicle stays in the right lane unless there is

an obstacle blocking the lane. That is, for any ! ∈
{1, . . . , $},

□((¬'!,1 ∧ % ∈ &#,!) =⇒ (* ∈ &&,1)) (16)

Finally, we define (' = (% ∈ &#,(), i.e., we want to
ensure that eventually the vehicle gets to the end of the road.

B. State Space Discretization

Since the dynamics and the constraints on the control

efforts for the % and * components of the vehicle state are
decoupled, we apply the discretization algorithm presented

in Section IV for the % and * components separately for
the sake of computational efficiency.4 Since the vehicle

dynamics (7) are translationally invariant, we can use similar

partitions for all &),!. The discretization algorithm with

horizon length + = 10 and Volmin = 0.1 yields a partition
with 11 cells {&1

),!, &
2
),!, . . . , &

11
),!} for each &),! as shown

in Fig. 3. For each ! ∈ {,-!. + 1, . . . , ,-/%} and) ∈
{1, . . . , 11}, we let '"

),! be the state label of cell &
"
),! and

let '),! = {'1
),!, . . . , '11

),!}. A discrete state is therefore a

tuple (0#, 0&, '1,1, . . . , '(,2) where (0#, 0&) ∈ '#,!×'&,! is
the discrete controlled state. Using MPT [4], the reachability

between discrete controlled states can be determined and a

controller associated with each reachable pair of them can be

generated such that the resulting continuous execution imple-

ments the discrete transition between them. The specification

of the resulting finite transition system can then be derived

as discussed in Section IV-C.

i!1 i
!1

0

1

z

v z

Fig. 3. The partition of each cell !!,# in the original partition of
the domain !!

4Before performing the discretization, we partition each !!,# into(
!+

!,# ∪ !−
!,#

)
where !+

!,# = [" − 1, "] × [0, 1] and !−
!,# = [" − 1, "] ×

[−1, 0] to allow the possibility of enforcing other traffic laws such as
disallowing reverse motion of the vehicle.

C. Receding Horizon Formulation

Based on the new partition of the vehicle state space,

there are the total of 242 × $ discrete vehicle states and

22×(discrete environment states. Thus, in the worst case,

the resulting automaton may have as many as 242×$×22×(

nodes. To avoid state explosion, we apply the receding

horizon strategy proposed in Section V. The partial order

structure is defined as)! = {(0#, 0&, '1,1, . . . , '(,2) ∣ 0# ∈
'#,(−!} and)! ≺*!)" for any ! <).
Next, we follow the scheme in Remark 4 to find an

invariant Φ. Starting with Φ = True, we iteratively add, until
Ψ! as defined in (6) is realizable, a propositional formula to

exclude the initial states starting from which there exists a

set of moves of the environment such that the system cannot

satisfy Ψ!. A close examination of the resulting Φ reveals

that Φ is essentially the conjunction of the following logics:

1) To ensure the progress property "(', we need to

assume that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+% where

/notrans is defined as: for any 0) ∈ /notrans , ! ∈
{,-!.+1, . . . , ,-/%} and) ∈ {1, . . . , 11}, 0) ∕⇝ '"

),!
and / represent either - or . .

2) To ensure no collision, the vehicle cannot collide with

an obstacle at the initial state.

3) Suppose 0# ∈ '#,!. To ensure no collision, if 0& can
only transition to 0 ′

& ∈ '&,1, then either '!,1 or '!+1,1 is

False. Similarly, if 0& can only transition to 0 ′
& ∈ '&,2,

then either '!,2 or '!+1,2 is False. Similar reasoning
can be derived for the case where 0# ∈ '#,! such that
it can only transition to 0 ′

∈ '#,!+1 and for the case

where it can only transition to 0 ′
∈ '#,!.

4) To ensure the stay-in-lane property, the vehicle cannot

be in the left lane unless there is an obstacle blocking

the right lane at the initial state. In addition, the vehicle

is never in the state (0#, 0&) ∈ '#,! × '&,1 which can
only transition to (0 ′

#, 0
′
&) ∈ '#,! × '&,2.

5) Suppose 0# ∈ '#,! and '!+1,1 is False. To ensure that
the vehicle does not go to the left lane when the right

lane is not blocked, it is not the case that 0& ∈ '&,1
which can only transition to 0 ′

& ∈ &&,2. In addition, it

is not the case that 0# can only transition to 0 ′
∈ &#,!+1

and 0& ∈ '&,2 which can only transition to 0 ′
& ∈ '&,2.

With 20,010 = 1 and the horizon length 2 (i.e. 3 ! = !+2),
the specification (6) is realizable. In addition, if we let 2,2%

be greater than 1 and restrict the initial state of the system

such that 0# ∕∈ -+,-./+% and 0& ∕∈ .+,-./+%, we get that

(!+!- =⇒ Φ is a tautology.

D. Results
The synthesis was performed on a Pentium 4, 3.4 GHz

computer with 4 Gb of memory. The computation time was

1230 seconds. The resulting automaton contains 2845 nodes.

During the synthesis process, 96796 nodes were generated.

Based on the authors experience, this particular computer

crashes when approximately 97500 nodes are generated.

Thus, this problem with horizon length 2 is as large as

what the computer can handle. This means that without the

receding horizon strategy, problems with the road of length

greater than 3 cannot be solved.

Define the finite transition system D,
an abstraction of S as:
- V := S × E , set of discrete states
. (both controller and environment)
- νi = (ςi, �i)→ vj = (ςj , �j) only if ςj
. is reachable from ςi.

17

Refining the partition

ν10

ν11

T−1
s (ν0) ∩ S0

T−1
s (ν0) ∩ Sc

0

• Repeat until no cell can be sub-partitioned s.t. the
volumes of the two resulting new cells both greater
than .

• Smaller leads to more cells in the partition
and more allowable transitions.

• If the initial partition is proposition preserving, so is
the resulting.

V olmin

V olmin

ν6

ν7

ν0

ν1

ν2

ν5

Using
• Proposition preserving property of the partition
• only includes the transitions that are implemented by the
control signal within some finite time (by construction
through the reachability formulation)
• Stutter invariance of the specification , ...

D
u

ϕ

Let σd = ν0ν1 . . . be a sequence in D with νk → νk+1, νk = (ςk, �k), ςk ∈ S
and �k ∈ E . If σd |=d ϕ, then by applying a sequence of control signals from
the Reachability Problem with initial set T−1

s (ςk) and final set T−1
s (ςk+1), the

sequence of continuous states σ = v0v1v2 . . . satisfies ϕ.
18

v0
v1v2

v3

v4

v5
v6

v7
v8

Two words σ1 and σ2 over 2AP are stutter equivalent, if
there exists an infinite sequence A0A1A2 . . . of sets of
atomic propositions and natural numbers n0, n1, n2, . . .
and m0, m1, m2, . . . such that σ1 and σ2 are of the form

σ1 = An0
0 An1

1 An2
2 . . . σ2 = Am0

0 Am1
1 Am2

2 . . .

An LT property P is stutter-invariant if for any word σ ∈ P
all stutter-equivalent words are also contained in P.

v0

v0v1 . . . v8 . . . ν0ν1 . . .Example: and are stutter-equivalent.

...we can prove:

Correctness of the hierarchical implementation

Finite
Transition

System

System
Model

abstraction

Specifications
Discrete
Planner

ϕinit ∧ ϕenv → ϕsafety ∧ ϕgoal

Discrete
Synthesis Tool

19

Existence of a continuous control action that implements
the discrete transition (projection)

Control action itself (finite-time optimal control problem) {

• Finite-time reachability to determine discrete
transitions

Control-oriented tools to account for ...

• Refine the partition to increase the number of
valid discrete transitions

Starting with a
proposition preserving partition:

How to use abstractions for synthesis?

Hierarchical control architecture

20

When put together,
guaranteed to work “correctly.”
[](ϕinit ∧ ϕenv)→ (ϕsafety ∧ ϕgoal)

{Discrete planner
ensures that

the spec is satisfied

Continuous controller
implements

the discrete plan
(handles low-level

dynamics & constraints)

Trajectory
Planner

Continuous
Controller

Plant

∆

noise

Local
Control

u

sd
δu

“Receding Horizon Control”

env

{
+

21

Approximate bisimulation relations & bisimulation functions

Φ1 :
�

ẋ1(t) = f1(x1(t), u1(t))
y1(t) = g1(x1(t))

Φ2 :
�

ẋ2(t) = f2(x2(t), u2(t))
y2(t) = g2(x2(t))

Two systems with xi ∈ Rni , xi(0) ∈ Ii ⊆ Rni , ui(t) ∈ Ui ⊆ Rmi , yi ∈ Rp

A function V : Rn1 ×Rn2 → R+ ∪ {+∞} is a bisimulation function between Φ1

and Φ2 if for all δ ≥ 0:

Rδ = {(x1, x2) ∈ Rn1 × Rn2 : V (x1, x2) ≤ δ}

is a closed set and a δ-approximate bisimulation relation between Φ1 and Φ2.

sublevel sets of V
induce a relation

A relation Rδ ∈ Rm1 × Rn2 is a δ-approximate bisimulation relation
between Φ1 and Φ2 if for all (x1, x2) ∈ Rδ:
· �g1(x1)− g2(x2)� ≤ δ;
· ∀T > 0 and ∀u1(·), ∃ u2(·) s.t. (φ1(t;x1)− φ2(t;x2)) ∈ Rδ ∀t ∈ [0, T];
· ∀T > 0 and ∀u2(·), ∃ u1(·) s.t. (φ1(t;x1)− φ2(t;x2)) ∈ Rδ ∀t ∈ [0, T].

If start in relation, stay in relation. Observations are “close.”

22

Approximate bisimulation relations & bisimulation functions

Φ1 :
�

ẋ1(t) = f1(x1(t), u1(t))
y1(t) = g1(x1(t))

Φ2 :
�

ẋ2(t) = f2(x2(t), u2(t))
y2(t) = g2(x2(t))

Two systems with xi ∈ Rni , xi(0) ∈ Ii ⊆ Rni , ui(t) ∈ Ui ⊆ Rmi , yi ∈ Rp

Let W : Rn1 × Rn2 → R+ be a continuously differentiable function. If for all
(x1, x2) ∈ Rn1 × Rn2 ,

W (x1, x2) ≥ �g1(x1)− g2(x2)�2

∂W

∂x1
f1(x1, u1)−

∂W

∂x2
f(x2, u2) ≤ 0, ∀(x1, x2) ∈ Rn1 × Rn2 , u1 ∈ Rm1 , u2 ∈ Rm2

guarantees that no matter
what u1 and u2 do, the time
derivative of W stays non-positive

then V := |
√

W | is a bisimulation function between Φ1 and Φ2.

23

Approximate bisimulations + safety1314 A. Girard, G.J. Pappas / Automatica 43 (2007) 1307–1317

2 4 6 8 10 12 14 16 18 20 22

−15

−10

−5

0

2 4 6 8 10 12 14 16 18 20 22

−15

−10

−5

0

2 4 6 8 10 12 14 16 18 20 22

−15

−10

−5

0

Fig. 1. Reachable sets of the original 10-dimensional system (top left) and of its four-dimensional and six-dimensional approximations (top right and
bottom). The disk on the left figure and the inner disks on the right and bottom figure represent the set Unsafe. The outer disks on the right and bottom
figures consist of the set of points whose distance to Unsafe is smaller than the precision of the approximate bisimulation relation between !1 and its
approximation.

!1 has a four-dimensional unstable subsystem !u,1.
From Corollary 2, !1 and !u,1 are approximately bisimi-
lar. Following the method described in the previous section
we evaluate the precision of the approximate bisimulation
relation between these two systems. The computations give
" = 1.9027. We computed the reachable sets (for T = 2)
of both systems using zonotope techniques for reachabil-
ity analysis of constrained linear systems (Girard, 2005)
implemented in MATISSE. In Fig. 1, we represented the
reachable sets of the 10-dimensional system and of its four-
dimensional approximation. We can see that the approxima-
tion does not allow us to conclude though !1 is actually
safe.

Therefore, we need to refine the approximation. We consider
a six-dimensional approximation !2 which is a combination
of the unstable subsystem !u,1 with a stable subsystem. Then,
from Corollary 2, we know that !1 and !2 are approximately
bisimilar. The better the stable subsystem of !2 approximates

the stable subsystem of !1, the better the system !2 approxi-
mates system !1. For our example, we chose the stable sub-
system of !2 as the projection of the stable subsystem of !1
on the two-dimensional space spanned by the eigenvectors as-
sociated to the two largest eigenvalues of the matrix As,1. The
precision of the approximate bisimulation relation between !1
and !2 evaluated by the method presented in the previous sec-
tion is "=0.76329. We can see on Fig. 1 that the approximation
of !1 by the six-dimensional system !2 allows us to check the
safety of !1.

This example also illustrates the important point that ro-
bustness simplifies verification. Indeed, if the distance between
Reach[0,T](!1) and Unsafe would have been larger then the ap-
proximation of !1 by its unstable subsystem might have been
sufficient to check the safety of !1. Generally, the more ro-
bustly safe a system is, the larger the distance from the reach-
able set to the unsafe set, resulting in larger model compression
and easier safety verification.

1314 A. Girard, G.J. Pappas / Automatica 43 (2007) 1307–1317

2 4 6 8 10 12 14 16 18 20 22

−15

−10

−5

0

2 4 6 8 10 12 14 16 18 20 22

−15

−10

−5

0

2 4 6 8 10 12 14 16 18 20 22

−15

−10

−5

0

Fig. 1. Reachable sets of the original 10-dimensional system (top left) and of its four-dimensional and six-dimensional approximations (top right and
bottom). The disk on the left figure and the inner disks on the right and bottom figure represent the set Unsafe. The outer disks on the right and bottom
figures consist of the set of points whose distance to Unsafe is smaller than the precision of the approximate bisimulation relation between !1 and its
approximation.

!1 has a four-dimensional unstable subsystem !u,1.
From Corollary 2, !1 and !u,1 are approximately bisimi-
lar. Following the method described in the previous section
we evaluate the precision of the approximate bisimulation
relation between these two systems. The computations give
" = 1.9027. We computed the reachable sets (for T = 2)
of both systems using zonotope techniques for reachabil-
ity analysis of constrained linear systems (Girard, 2005)
implemented in MATISSE. In Fig. 1, we represented the
reachable sets of the 10-dimensional system and of its four-
dimensional approximation. We can see that the approxima-
tion does not allow us to conclude though !1 is actually
safe.

Therefore, we need to refine the approximation. We consider
a six-dimensional approximation !2 which is a combination
of the unstable subsystem !u,1 with a stable subsystem. Then,
from Corollary 2, we know that !1 and !2 are approximately
bisimilar. The better the stable subsystem of !2 approximates

the stable subsystem of !1, the better the system !2 approxi-
mates system !1. For our example, we chose the stable sub-
system of !2 as the projection of the stable subsystem of !1
on the two-dimensional space spanned by the eigenvectors as-
sociated to the two largest eigenvalues of the matrix As,1. The
precision of the approximate bisimulation relation between !1
and !2 evaluated by the method presented in the previous sec-
tion is "=0.76329. We can see on Fig. 1 that the approximation
of !1 by the six-dimensional system !2 allows us to check the
safety of !1.

This example also illustrates the important point that ro-
bustness simplifies verification. Indeed, if the distance between
Reach[0,T](!1) and Unsafe would have been larger then the ap-
proximation of !1 by its unstable subsystem might have been
sufficient to check the safety of !1. Generally, the more ro-
bustly safe a system is, the larger the distance from the reach-
able set to the unsafe set, resulting in larger model compression
and easier safety verification.

Unsafe Unsafe

Unsafe

Φ1 s.t. x1 ∈ R10

Φ2 s.t. x2 ∈ R4

Φ3 s.t. x3 ∈ R6

Φ1 is 1.90-approximate bisimilar to Φ2

Φ1 is 0.76-approximate bisimilar to Φ3

Reach[0,T](Φ1)
Reach[0,T](Φ2)

Reach[0,T](Φ3)

Figures from Girard & Pappas, Automatica,
2007.

