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Outline:
- Finite-state approximations of hybrid systems

- Use of model checking for the verification of hybrid systems
- Construction of finite-state abstractions for synthesis
- Approximate bisimulation functions



A (simple) hybrid system model

Hybrid system: H = (X, L, Xy, I, F,T) with
e X', continuous state space;

e [, finite set of locations (modes);

e Overall state space X = X x L;

o Xy C X, set of initial states;

o [:L — 2% invariant that maps
[ € L to the set of possible
continuous states while in location [;

o F:X — 28" get of vector fields,
i.e., ¢ € F(l,x);

o I'C X x X, relation capturing
discrete transitions between locations.
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Specifications
Given: H = (X, L, Xy,1,F,T)
Solution at time t with the initial condition o € Xo: ¢(t; x0)
- With the simple model H, specifying the initial state also specifies the initial mode.

Sample temporal properties:
- Stability: Given equilibrium z. € X, for all o € &y C X,
o(t;xo) € X, Vt and ¢(t;x0) = Te, t — 0

- Safety: Given X, C X, safety property holds if there

exists No tunsafe and trajectory with initial condition x¢ € Xp,
¢(tunsafe; $O) - Xunsafe \Xreach»

¢(t;x0) < Xa Vt € [Oatunsafe] o

- Reachability: Given X.,...., € X, reachability property holds if there
exists finite t,cqcn > 0 and a trajectory with initial condition Zo € Ao,

¢(treach; xO) S Xreach and ¢(t; CCO) S Xa Vit € [07 treach]

- Eventuality: reachable from every initial condition

- Combinations of the above, e.g., starting in X 4, reach both X5 and X¢, but X5
will not be reached before X¢ is reached while staying safe.



Analysis of hybrid systems

Why not directly use model checking?

* Model checking applied to finite transitions systems
« Exhaustively search for counterexamples....
- if found, property does not hold.
- if there is no counterexample in all possible executions, the property is verified.

Exhaustive search is not possible over continuous state spaces.
X

Approaches for hybrid system verification:
1. Construct finite-state approximations and

apply model checking
Preserve the meaning of the properties,
l.e., proposition preserving partitions q

-Use “over’- or “under’-approximations | A
2. Deductive verification

- Construct Lyapunov-type certificates w
- Account for the discrete jumps in the

construction of the certificate

3. Explicitly construct the set of reachable states
-Limited classes of temporal properties (e.g., reachability and safety)
*Not covered in this course



Finite-state, under- and over-approximations
Hybrid system: H = (X, L, Xo,I,F,—g)
Finite-transition system: 7S = (Q, —, Qo)

Definethe map 17" : ) — 2% For discrete state g, T (q) is
the corresponding cell in X .

Under-approximation: 7S is an under-approximation of
H if the following two statements hold.
-Given ¢,¢ € Q with ¢ # ¢, if ¢ — ¢, then for all
ro € T~ (q), there exists finite 7 > 0 such that

d(t;20) € T7Hq'), ¢(t;xo) €T H(QUT H(q), Vtel0,7]
If ¢ — ¢, then T '(q) is positively-invariant.

In other words:

Every discrete trajectory in an under-approximation 7S
can be implemented by H.
- TS “simulates” H.

Over-approximation: 7S is an over-approximation of H, if for each

discrete transition in TS, there is a “possibility” to be implemented by H.
- Possibility induced by the coarseness of the partition.



Use of under-approximations

Let the following be given.
* A hybrid system H,
- a finite-state, under-approximation 7S7 for H,

<Trace@
‘ Trace(H)

Verification
Let an LTL specification ¥ be given.
«Question: H = ¢7?
*Model check “T'S1 = ¢?”

ds(—p) N Trace(TS1) i 6 TS1 = ¢
Words(—p) N Trace(7T'S1) is nonempty H cannot satisfy .
v , the specification.
Words(—) N Trace(H) is nonempty £ @

Words(—¢) N Trace(T'S1) is empty Inconclusive

Logic synthesis:
* If Words(y) N Trace(T'S1) is nonempty, there exists a trajectory of TS7 which
satisfies ¥ and can be implemented by H.
 Otherwise, inconclusive.



Use of over-approximations

Hybrid system H and a finite-state, over-approximation 7S2 for H.

S <Trace@
Verification

Words(i) N Trace(T'S2) is nonempty Inconclusive

Words(—p) N'T TS2) i t TS52 =
ords(=) ralfe( ) is empty H satisfies S 14
the specification.
Words(—¢) N Trace(H) is empty 5 HEop

Logic synthesis:
*If Words(y) N Trace(T'S2) is empty, no valid trajectories for TS2 or H.
* Otherwise, inconclusive.

Remarks:
*Under- and over-approximations give partial results.
*Potential remedies: simulation simulation
-Finer approximations — T~
-Bisimulations S H LT

approximation approximation




Example:

System models:
Continuous vector field:
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Example from “Temporal logic analysis of gene networks under parametric uncertainty,” Batt, Belta,
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verification

Discrete over-approximation:
(small dots: self transitions)
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Both hold for the over-
approximation; hence, they hold

for the actual system.

Weiss, Joint special issue of IEEE TAC & Trans on Circuits, 2008.



A four-mode thermostat:

x: room temperature, y: heater temp

OFF

Example: synthesis

Heating

x =-0.002 (x-16)

x=-0.002(x-y)
y=0 y=0.1

|

|

x=-0.002(x-y)

x=-0.002(x-y)

y=-0.1 5
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Find a switching sequence such that:

(I8<x<20AN20<y<22)—>
H(18 <x <20K20'< 1y < 22))

Construct an over-approximation using the
partition in the figure below.

*)
4, 4 | 45 | %
x=20 f
: q, q, 9s
x=18 ,
: qn q4 q6 q12
T R ST PV DA i ) ESTC PR o R Ry L e .y

States in the finite-state abstraction:
(gimode)
mode € {off, heating, on, cooling}



Abstractions using primitives
O UAVSs n parallel search

A task-level abstraction of the system * T .
using a library of primitives (low-level O — ‘ 2
controllers) for

-executing tasks and

expanding square search

--------

:
- _________E i ""\
Figures from “Assignment of Heterogeneous Tasksto ™, ~ : w
|
[ - L - -

-transitioning between tasks ' operatingarea
a Set of Heterogeneous Unmanned Aerial Vehicles,” Y ; i
Rasmussen & Kingston (AFRL). ; | ! i ﬁ
- : ; - r ; inoflyarea - ! :
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w54 N //
e St L - The level of abstraction dictates the
= = /w30 me level at which it can be specified.
51 L 3 | 1 - Task-level abstraction allows task-
| level specifications, e.g.
e MENE foi- —— ‘never enter no-fly-area
| A T -every reconnaissance is eventually
w 7 O followed by a search
“ ? *pop-up tasks have priority




How to construct a finite-state abstraction?

Focus on synthesis: Construct a finite-state under-approximation (of the
underlying continuous/hybrid dynamics) such that

*the finite-state model is used in discrete planning, and

-all provably correct discrete plans can be implemented at the continuous level.

Discrete planner
ensures that
the spec is satisfied

+

Continuous controller
Implements

the discrete plan

(handles low-level
dynamics & constraints)

env:(

Trajectory
Planner

J

t
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Continuous
Controller

feranssserrsannnnnu Local
Control




Incorporating continuous dynamics -- overview

Main idea:

4 p
Trajectory

Planner

\§ J
A *
response:: 14

- v
- \ :
Continuous § = f(fa w, U)

. Controller ’ fE X, . EZ/I,w c W

Theorem: For any discrete run satisfying the specification, there exists an admissible
control signal leading to a continuous trajectory satisfying the specification.

Proof: Constructive — Finite-state model + Continuous control signals.

Abstraction refinement for reducing potential conservatism.



Finite state abstraction

Given:
*A system with controlled variables s € S in domain dom(S) and environment

variables ¢ € E' in domain dom(F).
‘Define v = (s,e), V=SULE and dom(V) = dom(S) x dom(E).

‘Controlled variables evolve with (for t = 0,1,2,...):

s|t + 1] = Asl[t] + Byult] + Bad|[t] < state evolution
ult] € U < admissible control inputs
djt] € D < exogenous disturbances

set that states take values in

s|0] € dom(S) } )
slt + 1] € dom(S) J

System specification ¢

Find: A finite transition system with discrete states
such that for any sequence yyv, ... satisfying ¥, (very
roughly speaking) there exists a sequence of admissible
control signals leading to an infinite sequence vyv1vs . ..

that satisfies ¥.
(stated more precisely later...)
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Proposition preserving partition

Given dom(V') and atomic propositions in II.

Vg V4
A partition of dom(V) is said to be proposition :
preserving if, for any atomic proposition 7 € 11 e
and any states v and v'that belong to the same cell i
of the partition, v satisfies 7 if and only if v’ K
satisfieso0. | .
¥ Vq
Example: I={z <1,y >0,z+y >0,...} 5
7 7
/
1 Joeu
0
¥ s lbg m e Jv € vs st vl

2 ; 1 2 +

proposition preserving:
viFr e v IET

A discrete state v is said to satisfy 7 if and
only if there exists a continuous state v, in ()

the cell labeled, that satisfies 7. vs lFgme Yo evs st vibEn
14



Finite-time reachability

A discrete state v; 1s finite-time reachable from a discrete
state v;, only if starting from any s[0] € T (v;), there exists

- a finite horizon length N € {0,1,...}
- for _any allowable disturbance, there exists

u|0], u[1], ...

,u|N — 1] € U such that

s[N] € T (v5)

S[t] = Ts_l(Vi) U Ts_l(Vj), Vt € {O, . ,N}

Verifying the reachability relation:

» Compute the set Sy of /0] from which T,(v;)
can be reached under the system dynamics in a
pre-specified time N.

* Check whether 771(1;) C 5, .

system
dynamics

<

( st + 1] = As[t] + Byul[t] + Bad|t]
ult] € U
dit| € D
s|0] € dom(S5)
\ slt + 1] € dom(S)
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Computing
Given N and polyhedral sets
T_l(VZ') — {S c R" : [1s< Ml}

S

U={uecR™ : Lyu< My}
T_l(Vj) — {S e R"™ : L3gs < Mg}

S

So 1s computed as the set of sg
exist u|0], ..., u[N — 1]

such-that—there
Satisfyin
for t € {0,..., N — 1}, leading to

s[t] < My for t =0,...,N —D

S g T V3|
""""""" %R
' —1
Ts (Vl)
!!!!!!!!!!!!! U 51/0|
| 1
Ts (VO)

—\

where

35| N| < M3, > affine in sO and u
/
s[t] :[Atso + 3 (A*Byuft — 1 — k] + A*Byd[t — 1 — k]))
for all d[0],...,d|[N — 1] € D (D polyhedral).

Put together: S, is computed as a polytope projection:

So = {SO c R" :du e RN S.T.

S0
U

]

< M — Gd, Vd € DV

|

a6 }

stacking of # and d

set of verticesof DY =D x ---x D

16



Define the finite transition system D,

an abstraction of S as:

-V =8 x &, set of discrete states
(both controller and environment)

-V = (Cz',Gz') — UV = (§j7€j) only if Sj

is reachable from ;.

Refining the partition

While checking the reachability from T !(v;) to
T (v)), if T (v;) € So, then

S
- Split T 1 (v;) NSy and T, (v;) N S§
- Remove v; from the set of discrete states
- Add two new discrete states corresponding to

T Y(v;) NSy and T *(v;) N S§

S

* Repeat until no cell can be sub-partitioned s.t. the
volumes of the two resulting new cells both greater
than vol, .. .

 Smaller Vol,,;, leads to more cells in the partition
and more allowable transitions.

* If the initial partition is proposition preserving, so is
the resulting.




Correctness of the hierarchical implementation

Using

. * Proposition preserving property of the partition

"""""""""""""""""""""" * D only includes the transitions that are implemented by the
Ve V1 control signal u within some finite time (by construction

' through the reachability formulation)

» Stutter invariance of the specification ¥, ...

Two words oy and o5 over 24% are stutter equivalent, if

there exists an infinite sequence AgA1As ... of sets of
atomic propositions and natural numbers ng, ni,no, ...
and mg, my,msa, ... such that oy and o9 are of the form

— AN ANM1 AMN2 — AMo AM1 AMN2
O-l—AO Al A2 o o o 0-2—140 Al A2 o o o

An LT property P is stutter-invariant if for any word ¢ € P
all stutter-equivalent words are also contained in P.

Example: vgvy ... vg ... and vy ... are stutter-equivalent.

..We can prove:
Let o4 = vy ... be a sequence in D with vy — vga1, vk = (Sk,€x), Sk € S
and ¢, € £. It 04 =4 ¢, then by applying a sequence of control signals from

the Reachability Problem with initial set T, !(¢x) and final set T, !(¢x1), the
sequence of continuous states o = vgv1vs ... satisfies .




How to use abstractions for synthesis?

Existence of a continuous control action that implements
the discrete transition (projection)

Control action itself (finite-time optimal control problem)

- Finite
Syst abstraction
lelideen? —> Transition >

System

Speciﬁcations — Synthesis Tool

Pinit N\ Penv = Psafety A Pgoal

Discrete '

Starting with a
proposition preserving partition:

-
Control-oriented tools to account for ...

- Finite-time reachability to determine discrete
transitions

- Refine the partition to increase the number of
valid discrete transitions

J

Discrete
Planner




Hierarchical control architecture

Discrete planner B @ .......... :

ensures that env Trajectory
the spec is satisfied Planner
+ A l | TEYS 2 ..
» NOISE@ sssnnnns ) Plant
Continuous controller Cont >Q
, ontinuous
implements Controller > :
the discrete plan g e
(hand|es low-level errrsnnnnn s nnnnn Local
dynamics & constraints) Control

When put together,
guaranteed to work “correctly.”

[(sznzt A Qpenv) — (Spsafety A Spgoal)]



Approximate bisimulation relations & bisimulation functions

Two systems with z; € R" | x;(0) € I, CR™, w;(t) e U; C R™, y; € RP

D, - { 21(t) = fi(z1(t), ui(t)) B, - { To(t) = fa(xa(t),usa(t))

y1(t) = g1(z1(t)) y2(t) = g2(z2(t))

A relation Rs € R™* x R™2 is a d-approximate bisimulation relation
between ®; and P, if for all (z1,x2) € Ry:

lg1(z1) — g2(2z2)| < 6;

- V1T >0 and Vul(-), = UQ() S.T. (¢1(t;£l?1) — ¢2(t; 5172)) c Rs Vt € [O,T],
- V1T > 0 and \V/’UQ(‘), = ul() S.t. (qbl(t;iljl) — qbg(t; 5132)) c Rs Vt € [O,T]

If start in relation, stay in relation. Observations are “close.”

A function V' : R™ x R™2 — R* U{+o0} is a bisimulation function between ®;
and &, if for all 0 > 0:

sublevel sets of V

Rs = {(x1,22) € R" X R" : V(x1,22) < (5}4/ induce a relation

is a closed set and a J-approximate bisimulation relation between ®; and ®-.
21



Approximate bisimulation relations & bisimulation functions

Two systems with z; € R", x,(0) € I; CR"™, w;(t) e U; C R™, y;, € RP

o, - { T1(t) = fi(z1(t), u1(?)) B, - { to(t) = fo(aa(t)

u1(t) = g1(21 (1))

Let W : R™ x R" — R* be a continuously differentiable function. If for all
(x1,22) € R™ x R"2,

W(z1,22) > [lg1(z1) — ga(22)]|?

oW oW
—fl(azl,ul) — — (SEQ,UQ) < O, \V/(wl,xg) e R™ x RnQ, Uy € le, Uo € [R"2
011 0z

A
then V := |« W/ is a bisimulation function between ®; and ®.

guarantees that no matter
what ©; and us do, the time
derivative of W stays non-positive

22



Approximate bisimulations + safety

R@&Cifl;o)czﬁ ((I) 1 )

xxxxxx
xxxxx
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achio 71 (P2)

-10

(I)l S.T. Tr1 € Rlo
b, s.t. o € R?
ds5 s.t. r3 € RO
®, is 1.90-approximate bisimilar to ®-

®; 1s 0.76-approximate bisimilar to P53

Figures from Girard & Pappas, Automatica,
2007.
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