Lecture 6 Abstractions for the Analysis and Synthesis of Control Protocols for Hybrid Systems

Ufuk Topcu

Nok Wongpiromsarn Richard M. Murray EECI, 16 May 2012

Outline:

- Finite-state approximations of hybrid systems
- Use of model checking for the verification of hybrid systems
- Construction of finite-state abstractions for synthesis
- Approximate bisimulation functions

A (simple) hybrid system model

Hybrid system: $H = (\mathcal{X}, L, X_0, I, F, T)$ with

- \mathcal{X} , continuous state space;
- L, finite set of locations (modes);
- Overall state space $X = \mathcal{X} \times L$;
- $X_0 \subseteq X$, set of initial states;
- $I: L \to 2^{\mathcal{X}}$, *invariant* that maps $l \in L$ to the set of possible continuous states while in location l;
- $F: X \to 2^{\mathbb{R}^n}$, set of vector fields, i.e., $\dot{x} \in F(l, x)$;
- $T \subseteq X \times X$, relation capturing discrete transitions between locations.

Specifications

Given: $H = (\mathcal{X}, L, X_0, I, F, T)$

Solution at time *t* with the initial condition $x_0 \in \mathcal{X}_0$: $\phi(t; x_0)$

• With the simple model H, specifying the initial state also specifies the initial mode.

Sample temporal properties:

• <u>Stability</u>: Given equilibrium $x_e \in \mathcal{X}$, for all $x_0 \in \mathcal{X}_0 \subseteq \mathcal{X}_0$,

 $\phi(t;x_0) \in \mathcal{X}, \ \forall t \text{ and } \phi(t;x_0) \to x_e, \ t \to \infty$

• <u>Safety</u>: Given $\mathcal{X}_{unsafe} \subseteq \mathcal{X}$, safety property holds if there exists <u>no</u> t_{unsafe} and trajectory with initial condition $x_0 \in \mathcal{X}_0$, $\phi(t_{unsafe}; x_0) \in \mathcal{X}_{unsafe}$ $\phi(t; x_0) \in \mathcal{X}, \ \forall t \in [0, t_{unsafe}]$

• <u>Reachability</u>: Given $\mathcal{X}_{reach} \subseteq \mathcal{X}$, reachability property holds if there exists finite $t_{reach} \ge 0$ and a trajectory with initial condition $x_0 \in \mathcal{X}_0$, $\phi(t_{reach}; x_0) \in \mathcal{X}_{reach}$ and $\phi(t; x_0) \in \mathcal{X}, \ \forall t \in [0, t_{reach}]$

- *Eventuality*: reachable from every initial condition
- Combinations of the above, e.g., starting in X_A , reach both X_B and X_C , but X_B will not be reached before X_C is reached while staying safe.

 $I(\alpha_1)$

 \mathcal{X}_0

 \mathcal{X}_{reach}

 $I(\alpha_2)$

Analysis of hybrid systems

Why not directly use model checking?

- Model checking applied to finite transitions systems
- Exhaustively search for counterexamples....
 - if found, property does not hold.
 - if there is no counterexample in all possible executions, the property is verified.

Exhaustive search is not possible over continuous state spaces.

Approaches for hybrid system verification:

- 1. Construct finite-state approximations and apply model checking
 - Preserve the meaning of the properties, i.e., proposition preserving partitions
 - •Use "over"- or "under"-approximations
- 2. Deductive verification
 - Construct Lyapunov-type certificates
 - •Account for the discrete jumps in the construction of the certificate
- 3. Explicitly construct the set of reachable states
 - Limited classes of temporal properties (e.g., reachability and safety)
 - Not covered in this course

Finite-state, under- and over-approximations

Hybrid system: $H = (\mathcal{X}, L, X_0, I, F, \rightarrow_H)$

Finite-transition system: $TS = (Q, \rightarrow, Q_0)$

Define the map $T: Q \to 2^{\mathcal{X}}$ For discrete state $q, T^{-1}(q)$ is

the corresponding cell in \mathcal{X} .

Under-approximation: TS is an under-approximation of *H* if the following two statements hold.

•Given $q, q' \in Q$ with $q \neq q'$, if $q \rightarrow q'$, then for all $x_0 \in T^{-1}(q)$, there exists finite $\tau > 0$ such that

 $\phi(\tau; x_0) \in T^{-1}(q'), \quad \phi(t; x_0) \in T^{-1}(q) \cup T^{-1}(q'), \quad \forall t \in [0, \tau]$

• If $q \to q$, then $T^{-1}(q)$ is positively-invariant.

In other words:

- Every discrete trajectory in an under-approximation TS can be implemented by *H*.
- TS "simulates" H.

Over-approximation: TS is an over-approximation of H, if for each discrete transition in TS, there is a "possibility" to be implemented by H. Possibility induced by the coarseness of the partition.

Use of under-approximations

Let the following be given.

- A hybrid system *H*,
- a finite-state, under-approximation TS1 for H,

Verification

- Let an LTL specification φ be given.
- •Question: $H \models \varphi$?
- Model check " $TS1 \models \varphi$?"

```
Words(\neg \varphi) \cap \operatorname{Trace}(TS1) is nonempty

\Downarrow

Words(\neg \varphi) \cap \operatorname{Trace}(H) is nonempty
```

 $Words(\neg \varphi) \cap Trace(TS1)$ is empty

the specification.

H cannot satisfy

Words($\neg \varphi$)

$$TS1 \not\models \varphi \\ \downarrow \\ H \not\models \varphi$$

Trace(TS1)

Trace(H)

Inconclusive

Logic synthesis:

- If $Words(\varphi) \cap Trace(TS1)$ is nonempty, there exists a trajectory of *TS1* which satisfies φ and can be implemented by *H*.
- Otherwise, inconclusive.

Use of over-approximations

Logic synthesis:

- If $Words(\varphi) \cap Trace(TS2)$ is empty, no valid trajectories for TS2 or H.
- •Otherwise, inconclusive.

Remarks:

- •Under- and over-approximations give partial results.
- Potential remedies:
 - Finer approximations
 - Bisimulations

Example: verification

System models:

Specifications:

$$\begin{pmatrix} x_a < \theta_a^1 \land x_b > \theta_b^2 \to \Box \left(x_a < \theta_a^1 \land x_b > \theta_b^2 \right) \\ \land \left(x_b < \theta_b^1 \land x_a > \theta_a^2 \to \Box \left(x_b < \theta_b^1 \land x_a > \theta_a^2 \right) \right) \\ & \left(\sum \left(x_a < \theta_a^2 \lor x_b < \theta_b^2 \right) \right)$$

Both hold for the overapproximation; hence, they hold for the actual system.

Example from "Temporal logic analysis of gene networks under parametric uncertainty," Batt, Belta, Weiss, Joint special issue of IEEE TAC & Trans on Circuits, 2008.

Example: synthesis

A four-mode thermostat: *x*: room temperature, *y*: heater temp

Find a switching sequence such that:

 $\begin{array}{l} (18 \leq x \leq 20 \land 20 \leq y \leq 22) \rightarrow \\ \Box (18 \leq x \leq 20 \land 20 \leq y \leq 22)) \end{array}$

Construct an over-approximation using the partition in the figure below.

Abstractions using primitives

A task-level abstraction of the system using a library of primitives (low-level controllers) for

- executing tasks and
- transitioning between tasks

Figures from "Assignment of Heterogeneous Tasks to a Set of Heterogeneous Unmanned Aerial Vehicles," Rasmussen & Kingston (AFRL).

- •The level of abstraction dictates the level at which it can be specified.
- Task-level abstraction allows tasklevel specifications, e.g.
 - never enter no-fly-area
 - every reconnaissance is eventually followed by a search
 - pop-up tasks have priority

How to construct a finite-state abstraction?

Focus on synthesis: Construct a finite-state under-approximation (of the

- underlying continuous/hybrid dynamics) such that
 - the finite-state model is used in discrete planning, and
 - •all provably correct discrete plans can be implemented at the continuous level.

Incorporating continuous dynamics -- overview

Main idea:

Theorem: For any discrete run satisfying the specification, there exists an admissible control signal leading to a continuous trajectory satisfying the specification.

Proof: Constructive \rightarrow Finite-state model + Continuous control signals.

Abstraction refinement for reducing potential conservatism.

Finite state abstraction

Given:

•A system with controlled variables $s \in S$ in domain dom(S) and environment variables $e \in E$ in domain dom(E).

•Define v = (s, e), $V = S \cup E$ and $dom(V) = dom(S) \times dom(E)$.

•Controlled variables evolve with (for t = 0, 1, 2, ...):

-System specification $\,\varphi\,$

Find: A finite transition system with discrete states ν such that for any sequence $\nu_0\nu_1\ldots$ satisfying φ , (very roughly speaking) there exists a sequence of admissible control signals leading to an infinite sequence $v_0v_1v_2\ldots$ that satisfies φ . (stated more precisely later...)

Proposition preserving partition

Given dom(V) and atomic propositions in Π .

A partition of dom(V) is said to be proposition preserving if, for any atomic proposition $\pi \in \Pi$ and any states v and v' that belong to the same cell of the partition, v satisfies π if and only if v'satisfies π .

Example:
$$\Pi = \{x \le 1, y \ge 0, x + y \ge 0, \ldots\}$$

$$y$$

$$\uparrow 1$$

$$0$$

$$-1$$

$$-2$$

$$x$$

$$1$$

$$2$$

A discrete state ν is said to satisfy π if and only if there exists a continuous state v, in the cell labeled, that satisfies π .

$$\left(\nu_5 \Vdash_d \pi \Leftrightarrow \exists v \in \nu_5 \text{ s.t. } v \Vdash \pi\right)$$

proposition preserving:

$$v \Vdash \pi \Leftrightarrow v' \Vdash \pi$$
 \downarrow
 $\nu_5 \Vdash_d \pi \Leftrightarrow \forall v \in \nu_5 \text{ s.t. } v \Vdash \pi$

Finite-time reachability

A discrete state ν_j is finite-time reachable from a discrete state ν_i , only if starting from any $s[0] \in T_s^{-1}(\nu_i)$, there exists - a finite horizon length $N \in \{0, 1, ...\}$

- for any allowable disturbance, there exists $u[0], u[1], \ldots, u[N-1] \in U$ such that

$$s[N] \in T_s^{-1}(\nu_j)$$

$$s[t] \in T_s^{-1}(\nu_i) \cup T_s^{-1}(\nu_j), \ \forall t \in \{0, \dots, N\}$$

Verifying the reachability relation:

- Compute the set S_0 of s[0] from which $T_s(\nu_j)$ can be reached under the system dynamics in a pre-specified time N.
- Check whether $T_s^{-1}(\nu_i) \subseteq S_0$.

system
dynamics
$$\begin{cases} s[t+1] = As[t] + B_u u[t] + B_d d[t] \\ u[t] \in U \\ d[t] \in D \\ s[0] \in dom(S) \\ s[t+1] \in dom(S) \end{cases}$$

for all $d[0], \ldots, d[N-1] \in D$ (*D* polyhedral).

Put together: S_0 is computed as a polytope projection:

$$S_{0} = \left\{ s_{0} \in \mathbb{R}^{n} : \exists \hat{u} \in \mathbb{R}^{mN} \text{ s.t. } L \begin{bmatrix} s_{0} \\ \hat{u} \end{bmatrix} \leq M - G\hat{d}, \ \forall \hat{d} \in \bar{D}^{N} \right\}$$

stacking of u and d — set of vertices of $D^{N} = D \times \cdots \times D$

16

Refining the partition

While checking the reachability from $T_s^{-1}(\nu_i)$ to $T_s^{-1}(\nu_j)$, if $T_s^{-1}(\nu_i) \not\subseteq S_0$, then

- Split $T_s^{-1}(\nu_i) \cap S_0$ and $T_s^{-1}(\nu_i) \cap S_0^c$
- Remove ν_i from the set of discrete states
- Add two new discrete states corresponding to $T_s^{-1}(\nu_i) \cap S_0$ and $T_s^{-1}(\nu_i) \cap S_0^c$
- Repeat until no cell can be sub-partitioned s.t. the volumes of the two resulting new cells both greater than Vol_{min} .
- Smaller Vol_{min} leads to more cells in the partition and more allowable transitions.
- If the initial partition is proposition preserving, so is the resulting.

Define the finite transition system \mathbb{D} , an abstraction of \mathbb{S} as:

- $\mathcal{V} := \mathcal{S} \times \mathcal{E}$, set of discrete states
- (both controller and environment)
- $\nu_i = (\varsigma_i, \epsilon_i) \rightarrow v_j = (\varsigma_j, \epsilon_j)$ only if ς_j is reachable from ς_i .

Correctness of the hierarchical implementation

Proposition preserving property of the partition

• \mathbb{D} only includes the transitions that are implemented by the control signal u within some finite time (by construction through the reachability formulation)

- Stutter invariance of the specification $\mathcal {\mathcal { } }$, ...

Two words σ_1 and σ_2 over 2^{AP} are stutter equivalent, if there exists an infinite sequence $A_0A_1A_2...$ of sets of atomic propositions and natural numbers $n_0, n_1, n_2, ...$ and $m_0, m_1, m_2, ...$ such that σ_1 and σ_2 are of the form

$$\sigma_1 = A_0^{n_0} A_1^{n_1} A_2^{n_2} \dots \qquad \sigma_2 = A_0^{m_0} A_1^{m_1} A_2^{m_2} \dots$$

An LT property P is stutter-invariant if for any word $\sigma \in P$ all stutter-equivalent words are also contained in P.

Example: $v_0v_1 \ldots v_8 \ldots$ and $\nu_0\nu_1 \ldots$ are stutter-equivalent.

...we can prove:

 \mathcal{V}_7

 ν_6

 u_5

 v_8

 $v_7 v_6$

Let $\sigma_d = \nu_0 \nu_1 \dots$ be a sequence in \mathbb{D} with $\nu_k \to \nu_{k+1}$, $\nu_k = (\varsigma_k, \epsilon_k)$, $\varsigma_k \in S$ and $\epsilon_k \in \mathcal{E}$. If $\sigma_d \models_d \varphi$, then by applying a sequence of control signals from the Reachability Problem with initial set $T_s^{-1}(\varsigma_k)$ and final set $T_s^{-1}(\varsigma_{k+1})$, the sequence of continuous states $\sigma = \nu_0 \nu_1 \nu_2 \dots$ satisfies φ .

How to use abstractions for synthesis?

Starting with a proposition preserving partition:

Control-oriented tools to account for ...

- Finite-time reachability to determine discrete transitions
- Refine the partition to increase the number of valid discrete transitions

Hierarchical control architecture

Discrete planner ensures that the spec is satisfied

Continuous controller *implements* the discrete plan (handles low-level dynamics & constraints)

When put together, guaranteed to work "correctly." $[(\varphi_{init} \land \varphi_{env}) \rightarrow (\varphi_{safety} \land \varphi_{goal})]$

Approximate bisimulation relations & bisimulation functions

Two systems with $x_i \in \mathbb{R}^{n_i}, x_i(0) \in I_i \subseteq \mathbb{R}^{n_i}, u_i(t) \in U_i \subseteq \mathbb{R}^{m_i}, y_i \in \mathbb{R}^p$

$$\Phi_1: \begin{cases} \dot{x}_1(t) = f_1(x_1(t), u_1(t)) \\ y_1(t) = g_1(x_1(t)) \end{cases} \qquad \Phi_2: \begin{cases} \dot{x}_2(t) = f_2(x_2(t), u_2(t)) \\ y_2(t) = g_2(x_2(t)) \end{cases}$$

A relation $\mathcal{R}_{\delta} \in \mathbb{R}^{m_1} \times \mathbb{R}^{n_2}$ is a δ -approximate bisimulation relation between Φ_1 and Φ_2 if for all $(x_1, x_2) \in \mathcal{R}_{\delta}$:

- $\|g_1(x_1) g_2(x_2)\| \le \delta;$
- $\forall T > 0 \text{ and } \forall u_1(\cdot), \exists u_2(\cdot) \text{ s.t. } (\phi_1(t;x_1) \phi_2(t;x_2)) \in \mathcal{R}_{\delta} \forall t \in [0,T];$
- $\forall T > 0 \text{ and } \forall u_2(\cdot), \exists u_1(\cdot) \text{ s.t. } (\phi_1(t;x_1) \phi_2(t;x_2)) \in \mathcal{R}_{\delta} \forall t \in [0,T].$

If start in relation, stay in relation. Observations are "close."

A function $V : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^+ \cup \{+\infty\}$ is a bisimulation function between Φ_1 and Φ_2 if for all $\delta \ge 0$:

$$\mathcal{R}_{\delta} = \{(x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} : V(x_1, x_2) \le \delta\} \longleftarrow \text{ sublevel sets of V}$$
induce a relation

is a closed set and a δ -approximate bisimulation relation between Φ_1 and Φ_2 .

Approximate bisimulation relations & bisimulation functions

Two systems with $x_i \in \mathbb{R}^{n_i}, x_i(0) \in I_i \subseteq \mathbb{R}^{n_i}, u_i(t) \in U_i \subseteq \mathbb{R}^{m_i}, y_i \in \mathbb{R}^p$

$$\Phi_1: \begin{cases} \dot{x}_1(t) = f_1(x_1(t), u_1(t)) \\ y_1(t) = g_1(x_1(t)) \end{cases} \qquad \Phi_2: \begin{cases} \dot{x}_2(t) = f_2(x_2(t), u_2(t)) \\ y_2(t) = g_2(x_2(t)) \end{cases}$$

Let $W : \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \to \mathbb{R}^+$ be a continuously differentiable function. If for all $(x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$,

$$W(x_1, x_2) \ge ||g_1(x_1) - g_2(x_2)||^2$$

 $\left(\frac{\partial W}{\partial x_1}f_1(x_1, u_1) - \frac{\partial W}{\partial x_2}f(x_2, u_2) \le 0, \ \forall (x_1, x_2) \in \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}, \ u_1 \in \mathbb{R}^{m_1}, \ u_2 \in \mathbb{R}^{m_2}\right)$

then $V := |\sqrt{W}|$ is a bisimulation function between Φ_1 and Φ_2 .

guarantees that no matter what u_1 and u_2 do, the time derivative of W stays non-positive

Approximate bisimulations + safety

