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Formal Methods for System Verification
Specification using LTL
• Linear temporal logic (LTL)

is a math’l language for 
describing linear-time prop’s

• Provides a particularly useful
set of operators for construc-
ting LT properties without 
specifying sets

Methods for verifying an LTL 
specification
• Theorem proving: use formal

logical manipulations to show
that a property is satisfied for a
given system model
• Model checking: explicitly check all possible executions of a system model and verify 

that each of them satisfies the formal specification
- Roughly like trying to prove stability by simulating every initial condition
- Works because discrete transition systems have finite number of states
- Very good tools now exist for doing this efficiently (SPIN, nuSMV, etc)
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Subsystem/agent dynamics - continuous

Agent mode (or “role”) - discrete
•             encodes internal state + 

relationship to current task

• Transition 

Communications graph
• Encodes the system information flow

• Neighbor set 

Communications channel
• Communicated information can be lost, 

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode task as finite horizon optimal 

control + temporal logic (assume coupled)

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

Hybrid, Multi-Agent System Description
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Hybrid system: H = (X , L,X0, I, F, T ) with

• X , continuous state space;

• L, finite set of locations (modes);

• Overall state space X = X � L;

• X0 ⇥ X, set of initial states;

• I : L⇤ 2X , invariant that maps
l ⌅ L to the set of possible
continuous states while in location l;

• F : X ⇤ 2Rn
, set of vector fields,

i.e., ẋ ⌅ F (l, x);

• T ⇥ X �X, relation capturing
discrete transitions between locations.

I(�1)

X

L = {�1, �2, �3}

I(�2)

I(�3)

(l, x)
(l�, x�)

A (simple) hybrid system model



Sample temporal properties:
• Stability: Given equilibrium             , for all                       ,

                                          and   

xe � X x0 ⇥ X0 � X

�(t;x0) � X , ⇥t �(t;x0) ! xe, t ! 1

X0
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Specifications
H = (X , L,X0, I, F, T )Given:

Solution at time t with the initial condition                :
• With the simple model H, specifying the initial state also specifies the initial mode.

�(t;x0)

• Eventuality: reachable from every initial condition

• Combinations of the above, e.g., starting in       , reach both        and       , but      
will not be reached before        is reached while staying safe.

XA XB

XC

XB XC

x0 � X0

• Safety: Given                       , safety property holds if there 
exists no               and trajectory with initial condition               , tunsafe

�(t;x0) � X , ⇥t � [0, tunsafe]

Xunsafe � X
x0 � X0

�(tunsafe;x0) � Xunsafe

Xunsafe

• Reachability: Given                     , reachability property holds if there 
exists finite                    and a trajectory with initial condition               ,          treach � 0

�(t;x0) � X , ⇥t � [0, treach]�(treach;x0) � Xreach

Xreach � X
x0 � X0

and

Xreach
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Verification of hybrid systems: Overview
Why not directly use model checking?
• Model checking applied to finite transitions systems
• Exhaustively search for counterexamples....

• if found, property does not hold.
• if there is no counterexample in all possible executions, the property is verified. 

Exhaustive search is not possible over continuous state spaces. 

Approaches for hybrid system verification: 
1. Construct finite-state approximations and 
apply model checking

•Preserve the meaning of the properties, 
i.e., proposition preserving partitions

•Use “over”- or “under”-approximations

X

2. Deductive verification
•Construct Lyapunov-type certificates
•Account for the discrete jumps in the 
construction of the certificate

3. Explicitly construct the set of reachable states
•Limited classes of temporal properties (e.g., reachability and safety)
•Not covered in this lecture
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What does deductive verification mean?
Example with continuous, nonlinear dynamics:

ẋ(t) = f(x(t))

where                                                 is an asymptotically stable equilibrium.                                                 x(t) 2 Rn
, f(0) = 0, x = 0

Region-of-attraction: R :=
n

x : lim
t!1

�(t;x) = 0
o

Question 1 (a system analysis question):
Given                , is      invariant and            ? S ⇢ Rn S S � R the question we want to answer

V : Rn ! R
Question 2 (an algebraic question):
Does there exist a continuously differentiable function                      such that 
•V is positive definite,
•V(0) = 0,
•  
•             ?
� := {x : V (x) � 1} ⇥ {x : ⌅V · f(x) < 0} ⇤ {0}
S ✓ ⌦

the question we attempt to answer

Yes to Question 2  → Yes to Question 1.
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Barrier Certificates - Safety

Xunsafe

Xinitial

X

Safety property holds if there exists 
no             and trajectory such that:             T � 0

x = �(0;x) � Xinitial

�(T ;x) � Xunsafe

�(t;x) � X ⇥t � [0, T ].

ẋ(t) = f(x(t))
Suppose there exists a differentiable 
function B such that

Then, the safety property holds.  

B(x) � 0, ⇤x ⇥ Xinitial

B(x) > 0, ⇤x ⇥ Xunsafe

�B

�x
f(x) � 0, ⇤x ⇥ X .

Continuous dynamics: Hybrid dynamics:
H = (X , L,X0, I, F, T )

Suppose there exist differentiable functions      
(for each mode) such that

Then, the safety property holds.  

Bl

Bl(x) � 0, ⇤x ⇥ I(l) ⌅ Xinitial

Bl(x) > 0, ⇥x � I(l) ⇤ Xunsafe

�Bl

�x
F (x)  0, 8x 2 I(l)

Bl0(x
0
)�Bl(x)  0, for each jump

(l, x) ! (l0, x0)
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Barrier Certificates - Eventuality
Eventuality property holds if for all            
                   ,

for some non-negative T.

�(T ;x0) � Xtarget

x0 � Xinitial

�(t;x0) � X , ⇥t � [0, T ]

ẋ(t) = f(x(t))

Xinitial

X
Xtarget

X , Xtarget, Xinitial are bounded

Suppose that f is continuously differentiable 
and there exists a continuously differentiable 
function B such that

Then, the eventuality property holds.  

B(x) � 0, ⇤x ⇥ Xinitial

B(x) > 0, ⇤x ⇥ �X\�Xtarget

�B

�x
(x) · f(x) < 0, ⇤x ⇥ X\Xtargetleave X\Xtarget in finite time

don’t leave X
before reaching Xtarget

notation: set closure

• Straightforward extensions for hybrid dynamics as in safety verification are possible.

Don’t quite understand 
conditions
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Composing Barrier Certificates 79
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Figure 4.5: Verifying the temporal properties of a Van der Pol oscillator with dis-
turbance. We want to verify that under all possible disturbance input, if the system
starts in XA, then both XB and XC are reached in finite time, but XC will not be
reached before the system reaches XB. The nominal trajectory of the system (i.e., for
d = 0) starting at x = (0, 2) is depicted by the solid curve.

where d is the disturbance input, taking its value in D = [−0.25, 0.25] ⊂ R. Let

X = {x ∈ R2 : 0.5 ≤ ‖x‖2 ≤ 5}. In addition, let

XA = {x ∈ R
2 : (x1)

2 + (x2 − 2)2 ≤ 1},

XB = {x ∈ R
2 : (x1 − 2)2 + (x2)

2 ≤ 1},

XC = {x ∈ R
2 : (x1)

2 + (x2 + 2)2 ≤ 1}.

These sets are depicted in Figure 4.5, where a nominal trajectory of the system

starting at x = (0, 2) is also shown. Our objective in this example is to verify that

under all possible piecewise continuous and bounded disturbance d(t), if the system

starts in XA, then both XB and XC are reached in finite time, but XC will not be

reached before the system reaches XB.

To verify this temporal specification, we will search for two barrier certificates
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B1(x) and B2(x) satisfying the following conditions:



















B1(x) ≤ 0 ∀x ∈ XA,

B1(x) > 0 ∀x ∈ ∂X ∪ XC ,

∂B1

∂x (x)f(x, d) ≤ −ε ∀(x, d) ∈ (X \ XB) ×D,


















B2(x) ≤ 0 ∀x ∈ XA,

B2(x) > 0 ∀x ∈ ∂X ,

∂B2

∂x (x)f(x, d) ≤ −ε ∀x ∈ (X \ XC) ×D,

for some positive ε. Using sum of squares optimization, polynomial B1(x) and B2(x)

of degree ten can be found, thus the temporal specification is verified.

If system starts in XA,
then both XB and XC

are reached in finite
time, but XC will not
be reached before
system reaches XB .

Prajna, Ph.D. Thesis,  2005.
incorporating 
disturbances and 
uncertainties
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Constructing Barrier Certificates
Step 1: System properties → algebraic conditions
• Lyapunov functions, barrier certificates, dissipation 

inequalities

Step 2: Algebraic conditions → numerical optimization
• Restrict attention to polynomial vector fields, polynomial certificates
• S-procedure like conditions for set containment constraints
• Sum-of-square (SOS) relaxations for polynomial non-negativity
• Convert to semi-definite programming (SDP) problems

Step 3: Solve resulting set of SDPs
• Often in the form of linear matrix inequalities (LMIs)

Step 4: Construct polynomial certificates based on SDP 
solutions

This lecture (brief overview only):
• Positive semidefinite polynomials and sum-of- squares (SOS) programming
• Set containment conditions and S-procedure

{

Generally
taken care of 
by software 
packages.

{
Problem-

dependent



Positive Semidefinite Polynomials

� p ⇥ R [x] is positive semi-definite (PSD) if p(x) � 0 ⇤x. The
set of PSD polynomials in n variables {x1, . . . , xn} will be
denoted P [x1, . . . , xn] or P [x].

� Testing if p ⇥ P [x] is NP-hard when the polynomial degree is
at least four.

� For a general class of functions, verifying global non-negativity
is recursively undecidable.

Reference: Parrilo, P., Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and

Optimization, Ph.D. thesis, California Institute of Technology, 2000. (Chapter 4 of this thesis and the reference

contained therein summarize the computational issues associated with verifying global non-negativity of functions.)
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R[x1, . . . , xn] R[x]                     or         denotes the set of polynomials (with 
real coefficients) in the variables                   . {x1, . . . , xn}

Positive semidefinite polynomials
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Sum of Squares Polynomials

� p is a sum of squares (SOS) if there exist polynomials {fi}N
i=1

such that p =
�N

i=1 f2
i .

� The set of SOS polynomials in n variables {x1, . . . , xn} will
be denoted � [x1, . . . , xn] or � [x].

� If p is a SOS then p is PSD.
� The Motzkin polynomial, p = x2y4 + x4y2 + 1� 3x2y2, is

PSD but not SOS.
� Hilbert (1888) showed that P [x] = � [x] only for a) n = 1, b)

d = 2, and c) d = 4, n = 2.

� p is a SOS i� there exists Q ⇥ 0 such that p = zT Qz.

Reference: Choi, M., Lam, T., and Reznick, B., Sums of Squares of Real Polynomials, Proceedings of Symposia in

Pure Mathematics, Vol. 58, No. 2, 1995, pp. 103 � 126.

For every polynomial    of degree 2d, there exists a symmetric 
matrix Q such that

with 

    is SOS if and only if there exists             s.t.  

  

p

p(x) = z(x)T Qz(x)

z(x) :=
�
1, x1, . . . , xn, x2

1, x1x2, . . . , x
2
n, . . . , xd

n

⇥T

p Q � 0 p(x) = z(x)T Qz(x)
Given p, can be verified as SDP. 

Sum of Squares Polynomials
� p is a sum of squares (SOS) if there exist polynomials {fi}N

i=1

such that p =
�N

i=1 f2
i .

� The set of SOS polynomials in n variables {x1, . . . , xn} will
be denoted � [x1, . . . , xn] or � [x].

� If p is a SOS then p is PSD.
� The Motzkin polynomial, p = x2y4 + x4y2 + 1� 3x2y2, is

PSD but not SOS.
� Hilbert (1888) showed that P [x] = � [x] only for a) n = 1, b)

degree= 2, and c) degree= 4, n = 2.
� p is a SOS i� there exists Q ⇥ 0 such that p = zT Qz.

Proof:
p is SOS ⇤ ⇧ polynomials {fi}N

i=1 such that p =
PN

i=1 f2
i

⇤ ⇧{Li}N
i=1 � Rlz such that p =

PN
i=1(Liz)2

⇤ ⇧L ⌅ RN⇥lz such that p = zT LT Lz

⇤ ⇧Q ⇥ 0 such that p = zT Qz

Reference: Choi, M., Lam, T., and Reznick, B., Sums of Squares of Real Polynomials, Proceedings of Symposia in

Pure Mathematics, Vol. 58, No. 2, 1995, pp. 103 � 126.

24/235

Sum-of-Squares Polynomials



SOS Example

All possible Gram matrix representations of

p = 2x4
1 + 2x3

1x2 � x2
1x

2
2 + 5x4

2

are given by zT (Q + �N) z where:

z =
�

x2
1

x1x2

x2
2

⇥
, Q =

⇤
2 1 �0.5
1 0 0

�0.5 0 5

⌅
, N =

⇤
0 0 �0.5
0 1 0

�0.5 0 0

⌅

p is SOS i�

Q + �N ⇥ 0

for some � ⇤ R.
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SOS Example

All possible Gram matrix representations of

p = 2x4
1 + 2x3

1x2 � x2
1x

2
2 + 5x4

2

are given by zT (Q + �N) z where:

z =
�

x2
1

x1x2

x2
2

⇥
, Q =

⇤
2 1 �0.5
1 0 0

�0.5 0 5

⌅
, N =

⇤
0 0 �0.5
0 1 0

�0.5 0 0

⌅

p is SOS i�

Q + �N ⇥ 0

for some � ⇤ R.

p(x) = z(x)T Qz(x)

0 = z(x)T Nz(x)
(x1x2) · (x1x2) = x2

1 · x2
2

p(x) = 2x4
1 + 2x3

1x2 � x2
1x

2
2 + 5x4

2

LMI

SOS example



General SOS Programming

SOS Programming: Given c ⇥ Rm and polynomials {fj,k}Ns
j=1

m
k=0,

solve:

min
��Rm

cT �

subject to:

f1,0(x) + f1,1(x)�1 + · · · + f1,m(x)�m ⇥ � [x]
...

fNs,0(x) + fNs,1(x)�1 + · · · + fNs,m(x)�m ⇥ � [x]

There is freely available software (e.g. SOSTOOLS, YALMIP,
SOSOPT) that:

1. Converts the SOS program to an SDP

2. Solves the SDP with available SDP codes (e.g. Sedumi)

3. Converts the SDP results back into polynomial solutions
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SOS programming

V (x) =
X

↵i�i(x)

V (x) � l1(x) > 0 =) �l(x) + V (x) > 0

V̇ (x) =
X

↵i
@�i

@x

f(x)



⇤� ⇥ �[x] s.t. � g1(x) + �(x)g2(x) ⇥ �[x]

⌅� positive semidefinite polynomial s.t. � g1(x) + �(x)g2(x) ⇥ 0 ⇤x

{x : g2(x) ⇥ 0} �{ x : g1(x) ⇥ 0}

�

�

Polynomial S-procedure
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Set containment conditions

Set Containment Conditions

� Many nonlinear analysis problems can be formulated with set
containment constraints.

� We need conditions for proving set containments:

Given polynomials g1 and g2, define sets S1 and S2:

S1 := {x ⇤ Rn : g1(x) ⇥ 0}
S2 := {x ⇤ Rn : g2(x) ⇥ 0}

Is S2 � S1?

� In control theory, the S-procedure is a common condition used
to prove set containments involving quadratic functions. This
can be generalized to higher degree polynomials.

39/235

Sufficient condition: There exists positive semidefinite function s such that

�B(x) + s(x)g(x) = �B(x)� s(x)(�g(x)) � 0, 8x 2 Rn

Example:
B(x) � 0, ⇤x ⇥ Xinitial

Suppose                                            for some gXinitial = {x : g(x) � 0}



Global Stability Theorem

Theorem: Let l1, l2 ⇤ R [x] satisfy li(0) = 0 and li(x) > 0 ⇧x ⌅= 0
for i = 1, 2. If there exists V ⇤ R [x] such that:

� V (0) = 0
� V � l1 ⇤ � [x]
� �⌥V · f � l2 ⇤ � [x]

Then R0 = Rn.

Reference: Vidyasagar, M., Nonlinear Systems Analysis, SIAM, 2002.

(Refer to Section 5.3 for theorems on Lyapunov’s direct method.)
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V is positive definite, 
radially unbounded

V is decreasing along
the vector field

Global stability theorem



Global Stability Example with sosopt
% Code from Parrilo1_GlobalStabilityWithVec.m

% Create vector field for dynamics
pvar x1 x2;
x = [x1;x2];
x1dot = -x1 - 2*x2^2;
x2dot = -x2 - x1*x2 - 2*x2^3;
xdot = [x1dot; x2dot];

% Use sosopt to find a Lyapunov function
% that proves x = 0 is GAS

% Define decision variable for quadratic
% Lyapunov function
zV = monomials(x,2);
V = polydecvar(’c’,zV,’vec’);

% Constraint 1 : V(x) - L1 \in SOS
L1 = 1e-6 * ( x1^2 + x2^2 );
sosconstr{1} = V - L1;

% Constraint 2: -Vdot - L2 \in SOS
L2 = 1e-6 * ( x1^2 + x2^2 );
Vdot = jacobian(V,x)*xdot;
sosconstr{2} = -Vdot - L2;

% Solve with feasibility problem
[info,dopt,sossol] = sosopt(sosconstr,x);
Vsol = subs(V,dopt)
Vsol =

0.30089*x1^2 + 1.8228e-017*x1*x2 + 0.6018*x2^2
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Global stability examples with sosopt
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Figure 4.5: Verifying the temporal properties of a Van der Pol oscillator with dis-
turbance. We want to verify that under all possible disturbance input, if the system
starts in XA, then both XB and XC are reached in finite time, but XC will not be
reached before the system reaches XB. The nominal trajectory of the system (i.e., for
d = 0) starting at x = (0, 2) is depicted by the solid curve.

where d is the disturbance input, taking its value in D = [−0.25, 0.25] ⊂ R. Let

X = {x ∈ R2 : 0.5 ≤ ‖x‖2 ≤ 5}. In addition, let

XA = {x ∈ R
2 : (x1)

2 + (x2 − 2)2 ≤ 1},

XB = {x ∈ R
2 : (x1 − 2)2 + (x2)

2 ≤ 1},

XC = {x ∈ R
2 : (x1)

2 + (x2 + 2)2 ≤ 1}.

These sets are depicted in Figure 4.5, where a nominal trajectory of the system

starting at x = (0, 2) is also shown. Our objective in this example is to verify that

under all possible piecewise continuous and bounded disturbance d(t), if the system

starts in XA, then both XB and XC are reached in finite time, but XC will not be

reached before the system reaches XB.

To verify this temporal specification, we will search for two barrier certificates
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B1(x) and B2(x) satisfying the following conditions:



















B1(x) ≤ 0 ∀x ∈ XA,

B1(x) > 0 ∀x ∈ ∂X ∪ XC ,

∂B1

∂x (x)f(x, d) ≤ −ε ∀(x, d) ∈ (X \ XB) ×D,


















B2(x) ≤ 0 ∀x ∈ XA,

B2(x) > 0 ∀x ∈ ∂X ,

∂B2

∂x (x)f(x, d) ≤ −ε ∀x ∈ (X \ XC) ×D,

for some positive ε. Using sum of squares optimization, polynomial B1(x) and B2(x)

of degree ten can be found, thus the temporal specification is verified.

If system starts in XA,
then both XB and XC

are reached in finite
time, but XC will not
be reached before
system reaches XB .

Solving Hybrid Verification Problems using SOS

• Describe all sets using 
polynomials

-  
• Use S procedure to convert 

set containment problems into 
polynomial inequalities

• Use SOS tools to search for 
coefficients of basis 
polynomials the give basis 
functions and multipliers

XA = {x : g1(x)  0}
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Subsystem/agent dynamics - continuous

Agent mode (or “role”) - discrete
•             encodes internal state + 

relationship to current task

• Transition 

Communications graph
• Encodes the system information flow

• Neighbor set 

Communications channel
• Communicated information can be lost, 

delayed, reordered; rate constraints

• γ = binary random process (packet loss)

Task
• Encode task as finite horizon optimal 

control + temporal logic (assume coupled)

Strategy
• Control action for individual agents

Decentralized strategy

• Similar structure for role update

Hybrid, Multi-Agent System Description

20
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RoboFlag Subproblems
1.Formation control

• Maintain positions to 
guard defense zone

2.Distributed estimation
• Fuse sensor data to 

determine opponent 
location

3.Distributed assignment
• Assign individuals to tag 

incoming vehicles

Desirable features for designing and verifying distributed protocols
• Controls: stability, performance, robustness
• Computer science: safety, fairness, liveness
• Real-world: delays, asynchronous executions, (information loss)
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Distributed Decision Making: RoboFlag Drill
Klavins

CDC, 03

Task description
• Incoming robots should be blocked by 

defending robots
• Incoming robots are assigned randomly to 

whoever is free
• Defending robots must move to block, but 

cannot run into or cross over others
• Allow robots to communicate with left and 

right neighbors and switch assignments

Goals
• Would like a provably correct, distributed 

protocol for solving this problem
• Should (eventually) allow for lost data, 

incomplete information

Questions
• How do we describe task in terms of LTL?
• Given a protocol, how do we prove specs?
• How do we design the protocol given specs?

zi

yj
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Lost Wingman Protocol Verification

Temporal logic specification

• “Lost mode leads to the distance 
between the aircraft always being 
larger than dsep”

Protocol specification in CCL
�Use guarded commands to implement finite 

state automaton
�Allows reasoning about controlled 

performance using semi-automated theorem 
proving

�Relies on Lyapunov certificates to provide 
information about controlled system

Lost wingman in fingertip formation

Comms failure
between 1 and 2
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P(k1,k2) := {
  initializers
  guard1:rule1
  guard2:rule2
   ...

}

S(k1,k2):=P(k1,k2)+C(k1+1) sharing y,u

"soup" of 
guarded commands

composition = union

non-shared variables 
remain local to 

component programs

CCL: Computation and Control Language
Formal Language for Provably Correct Control Protocols

CCL Interpreter

Formal programming lang-
uage for control and comp-
utation. Interfaces with 
libraries in other languages. 

Automated Verification
CCL encoded in the Isabelle 
theorem prover; basic specs 
verified semi-automatically. 
Investigating various model 
checking tools.

Formal Results
Formal semantics in transition 
systems and temporal logic. 
RoboFlag drill formalized and 
basic algorithms verified.

CCL Protocol for
Decentralized 

Target Allocation
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Guarded Command Programs

• Non-deterministic execution schedule 
models concurrency

• Easy to reason about programs
• Guarded commands = update functions

25

g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8

P = ( I,                                    )

Initial 
Predicate

Command 
Soup

x > 0 : x' < x

inbox(i) : x' =recv(i)

current state

Any sequence of states produced by this process is a possible behavior 
of the system. We want to reason about them all. 

CCL

Choose s so that s |= I 

Choose g:r 

g(s)?

Choose s' so that r(s,s')
set s := s'

yesno

skip
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Scheduling and Composition

26

Program composition:
(I1,C1) + (I2,C2) = ( I1∧I2, C1∪C2 )

EPOCH
Each command is 
executed before any 
are again.

SYNCH(τ)
In any interval, the difference in 
the number of times any two 
commands are executed is ≤ τ.

UNITY
Each command must be 
executed infinitely often.

CCL
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include standard.ccl

program plant ( a, b, x0, delta ) := { 
  x := x0; 
  y := x; 
  u := 0.0; 
  true : { 
    x := x + delta * ( a * x + b * u ), 
    y := x, 
    print ( " x = ", x, "\n" ) 
  }; 
}; 

program control() := {
  y := 0.0; 
  u := 0.0; 
  true : { u := -y }; 
}; 

program sys ( a, b, x0 ) := plant ( a, b, x0, 0.1 ) +
                            control ( 2*a/b ) sharing u, y;

exec sys ( 3.1, 0.75, 15.23 ); 

An Example CCL Program

  x = 3.216250
  x = 3.095641
  x = 2.979554
  x = 2.867821
  x = 2.760278
  x = 2.656767
  x = 2.557138
  x = 2.461246
  x = 2.368949
  x = 2.280113
  x = 2.194609
  x = 2.112311
  x = 2.033100
  x = 1.956858
  x = 1.883476
  x = 1.812846
  x = 1.744864
  x = 1.679432
  x = 1.616453

  ...
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Defensive Zone
0

a b

c

Example: RoboFlag Drill
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Defensive Zone
0

a b

c

i        j

α(j) is too far down 
for i to get

RoboFlag Control Protocol

=
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fun r i j . 
  if red[alpha[j]][1] < abs ( blue[i] - 
red[alpha[j]][0] ) 
    then 1 
    else 0
  end;

fun switch i j .  
  r i j + r j i < r i i + r j j 
  | ( r i j + r j i = r i i + r j j 
    & red[alpha[i]][0]  > red[alpha[j][0] );

program ProtoPair ( i, j ) := {

  temp := 0;

  switch i j : {
    temp := alpha[i],
    alpha[i] := alpha[j],
    alpha[j] := temp,
  }

};

program Blue ( i ) := {

  red[alpha[i]][0] > blue[i] & blue[i] + 
delta < toplimit i : {
    blue[i] := blue[i] + delta
  }

  red[alpha[i]][0] < blue[i] & blue[i] - 
delta > botlimit i : {
    blue[i] := blue[i] - delta
  }

};

CCL Program for Switching Assignments

program Red ( i ) := {

  red[i][1] > delta : { 
    red[i][1] := red[i][1] - delta
  }

  red[i][1] < delta : {
    red[i] := { rrand 0 n, rrand lowerlimit 
n }
  }

};
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Safety (Defenders do not collide) 

Stability (switch predicate stays false)

“Lyapunov” stability
• Let ρ be the number of blue robots that are too far away to reach their red robots

• Let β be the total number of conflicts in the current assignment

• Define the Lyapunov function that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.
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V =
⇤�

n

2

⇥
+ 1

⌅
⇥ + � � =

n⇥

i=1

n⇥

j=i+1

⇥(i, j) where ⇥(i, j) =

�
1 if x�(i) > x�(j)

0 otherwise
� =

n�

i=1

r(i, i)

• skip  ∀v . v’ = v state remains unchanged  
• p co q ¨(p → [(◯q ∨ skip) ∧ ◊◯q]) 

  “if p is true, then next time state 
  changes, q will be true”

True if robots i and i +1 have targets
that cause crossed paths
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Thm  Prf(n) ⊨ ¨ zi < zi+1

- For the RoboFlag drill with n defenders and n attackers, the location of defender  
will always be to the left of defender i+1.

More notation:
• Hoare triple notation: {p} a {q} ≡ ∀ s → t, s ⊨ p → t ⊨ q

- {p} a {q} is true if the predicate p being true implies that q is true after action a

Lemma (Klavins, 5.2) Let P = (I, C) be a program and p and q be predicates.  If for all 
commands c in C we have {p} c {q} then P ⊨ p co q.

- If p is true then any action in the program P that can be applied in the current 
state leaves q true

- Thus to check if p co q is true for a program, check each possible action

Proof.  Using the lemma, it suffices to check that for all commands c in C we have {p} c 
{q}, where p = q = zi < zi+1.  So, we need to show that if zi < zi+1 then any command that 
changes zi or zi+1 leaves the order unchanged.  Two cases: i moves or i+1 moves.  For 
the first case, {p} c {q} becomes

From the definition of the guarded command, this is true.  Similar for second case. 

Sketch of Proof for RoboFlag Drill
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zi < zi+1 ⇤ (zi < x�(i) ⇤ zi < zi+1 � � : z�
i = zi + �) =⇥ z�

i < z�
i+1

a
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RoboFlag Simulation

Exercise 1: create a model of the RoboFlag drill in Promela
and verify correctness using SPIN model checker

Exercise 2: create a specification for the RoboFlag drill and
synthesize a (decentralized) protocol to solve it [later]
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Observation of CCL Programs
Goal: determine assignments by watching motion
• Assume CCL program describing protocol is known
• Brute force: enumerate all N! possibilities and eliminate

cases that are inconsistent with motion (over time)

Alternative approach: exploit structure
• Keep track of upper and lower bounds for each zi
• Can show this provides a partial order on sets of 

possible assignments
• Extended CCL update law preserves the order:

General case: observers for hybrid systems
• Construct a partial order on discrete states
• Extend CCL program to provide order-isomorphic

map (always possible with power set)
• Can construct observer if system is observable: 

predict + correct on upper/lower bounds (fast)

34

Del Vecchio, Klavins and M
Automatica, 2006

⇒ fast computation

N = 30
alignment error

estimator error
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actual F-15 software

model of dynamics

Control T33 to follow 
F15 and to execute "lost 

wingman" during 
simulated 

communications loss.

Real-World Example: Lost Wingman Protocol
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CCL Specification for Lost Wingman

CCL-based protocol
• High speed link used to communicate 

state information between aircraft
• Low speed link used to confirm status
• Update timers based on when we last 

sent/received data
• Change modes if data is not received 

within expected period (plus delay)

36
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Flight Test Results

Event timeline (right figure)
• Event 1: communications lost; T-33 executes tight turn; signals lost comms (slow link)
• Event 2: F-15 confirms communication lost message received
• Event 3: communications restored; T-33 requests rejoin (granted)
• Event 4: rejoin confirmed; return to normal operation
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Periodically Controlled Hybrid Automata (PCHA)
PCHA setup
• Continuous dynamics with piecewise constant inputs

• Controller executes with period T ∈ [Δ1, Δ2]

• Input commands are received asynchronously
• Execution consists of trajectory segments + discrete updates
• Verify safety (avoid collisions) + performance (turn corner)

Proof technique: verify invariant (safe) set via barrier functions
• Let I be an (safe) set specified by a set of functions Fi(x) ≥ 0
• Step 1: show that the control action renders I invariant
• Step 2: show that between updates we can bound the continuous

trajectories to live within appropriate sets
• Step 3: show progress by moving between nested collection of

invariant sets I1 → I2, etc

Remarks
• Can use this to show that settings in Alice were not properly chosen; modified 

settings lead to proper operation (after the fact)
• Very difficult to find invariant sets (barrier functions) for given control system...
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Wongpiromsarn, Mitra and M
HSCC09
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Verification of hybrid systems: Overview
Why not directly use model checking?
• Model checking applied to finite transitions systems
• Exhaustively search for counterexamples....

• if found, property does not hold.
• if there is no counterexample in all possible executions, the property is verified. 

Exhaustive search is not possible over continuous state spaces. 

Approaches for hybrid system verification: 
1. Construct finite-state approximations and 
apply model checking

•Preserve the meaning of the properties, 
i.e., proposition preserving partitions

•Use “over”- or “under”-approximations

X

2. Deductive verification
•Construct Lyapunov-type certificates
•Account for the discrete jumps in the 
construction of the certificate

3. Explicitly construct the set of reachable states
•Limited classes of temporal properties (e.g., reachability and safety)
•Not covered in this lecture


