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Outline
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-Computational complexity of model checking
Closed system synthesis
-Examples using SPIN model checker
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Question: Does TS5 satisfy 9, i.e., executions that

are possible

TS =7 and invalid

Answer (conceptual):
TS =@ [TS satisfies D]

)
Trace(TS) C Words(®P) [All executions of TS satisfy ® ]

0

Trace(TS) N Words(—=®) = () [No execution of TS violates ]

How to determine whether Trace(TS) N Words(—®) = (7
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Preliminaries: LTL — Buchi automata

Theorem. There exists an algorithm that takes an LTL
formula ® and returns a Buchi automaton A such that

Words(®) = L,,(A)

A tool for constructing Buchi automata from LTL formulas: LTL2BA
[http://www.lsv.ens-cachan.fr/~gastin/ItI2ba/index.php]
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Preliminaries: transition system ® Buchi automaton

Transition system: Nondeterministic Buchi automaton:

TS = (S, Act,—,I,AP, L) A=(Q,2%7,5,Qo, F)

Define the product automaton: 7S ® A = (S’, Act,—',I', AP’, L"), where
+ '=85x%xQ

VstEquEQWlth s =t and qu there exists (s,q) =’ (t,p)

Ls
= {(50,9) : 50 € I and gy € Qo s.t. qo ) q}

-AP’:Q
e L SxQ—29 and L'((s,q)) = {q}

() gy TS
—>(0 MC(:I:N)




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L)
Nondeterministic Buchi automaton: A = (@, 24F 5. Qo, F)




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L)
Nondeterministic Buchi automaton: A = (@, 24F 5. Qo, F)

Theorem: Trace(TS)NLL(A)#A0D << TS® A “eventually forever ”—F




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L)
Nondeterministic Buchi automaton: A = (@, 24F 5. Qo, F) 4

Theorem: Trace(TS)NL,(A)#D << TS® AWK “eventually forever ’@




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L)
Nondeterministic Buchi automaton: A = (@, 24F 5. Qo, F) 4

Theorem: Trace(TS)NLL(A)#D << TS® ALK “eventually forever ’@

Proof idea (<): Pick a path m'in T'S ® A s.t.
7' £ “eventually forever”—F, and let 17 be its

projection to TS. Then,
- trace(1r) € Trace(TS) -- by definition of product
-trace(1r) € L, (.A) -- by hypothesis and by
definition of product (L'(¢<s,q») = {q})




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L)
Nondeterministic Buchi automaton: A = (@, 24F 5. Qo, F) 4

Theorem: Trace(TS)NLL(A)#D << TS® ALK “eventually forever ’@

Proof idea (<): Pick a path m'in T'S ® A s.t.
7' £ “eventually forever”—F, and let 17 be its

projection to TS. Then,
- trace(1r) € Trace(TS) -- by definition of product
-trace(1r) € L, (.A) -- by hypothesis and by
definition of product (L'(¢<s,q») = {q})

TS ® A |~ “eventually forever” —F

0

There exists a state xin TS ® A
* X is reachable ] graph search, e.g.,
-L’(x) cF > (nested) depth-first
- X Is on a directed cycle ) search




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L) fin F
not in

Nondeterministic Buchi automaton: A = (@, 24F 5. Qo, F) 4

Theorem: Trace(TS)NLL(A)#D << TS® ALK “eventually forever ’@

Proof idea (<): Pick a path m'in T'S ® A s.t. \ 0 {9}
7' £ “eventually forever”—F' and let 1 be its (00‘ ""C(":"“") s

projection to TS. Then,
- trace(1r) € Trace(TS) -- by definition of product true g A
-trace(1r) € L, (.A) -- by hypothesis and by (3 g
definition of product (L’(¢«s,q>) = {q}) Q F={q}

TS ® A |~ “eventually forever” —F

0

There exists a state xin 7S ® A
-x’is reachable ] graph search, e.g.,
L'(x) cF > (nested) depth-first
- X Is on a directed cycle ) search




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L) fin F
not in

Nondeterministic Buchi automaton: A = (@, 24F 5. Qo, F) 4

Theorem: Trace(TS)NLL(A)#D << TS® ALK “eventually forever ’@

Proof idea (<): Pick a path m'in T'S ® A s.t. \ 0 {9}
7' £ “eventually forever”—F' and let 1 be its (00‘ ""C(":"“") s

projection to TS. Then,
- trace(1r) € Trace(TS) -- by definition of product true g A
-trace(1r) € L, (.A) -- by hypothesis and by (3 g
definition of product (L’(¢«s,q>) = {q}) Q F={q}

TS ® A (£~ “eventually forever” —F {q1}

0 ki

There exists a state xin 75 ® A

* X is reachable ] graph search, e.g.,
«L’(x) cF * (nested) depth-first m m

- X Is on a directed cycle ) search




Preliminaries

Transition system: TS = (S, Act,—, I, AP, L) fin F
Nondeterministic Buchi automaton: A = (@, 2AP, J, Qo, I) no%n

Theorem: Trace(TS)NLL(A)#D << TS® ALK “eventually forever ’@

Proof idea (<): Pick a path m'in T'S ® A s.t. 0 {9}

/ « 9 . \ .
' = “eventually forever”—F', and let 1 be its s0: red sl:green | T
projection to TS. Then,

true —g

- trace(1r) € Trace(TS) -- by definition of product . a A

-trace(1r) € L, (.A) -- by hypothesis and by Q g

definition of product (L’(¢«s,q>) = {q}) F={q}

L/(<307 C]0> Z F <807 Q1> not on cycle

{QO} {ql}

TS ® A |~ “eventually forever” —F
" €D

There exists a state xin 75 ® A

* X is reachable ] graph search, e.g.,

L'(x) cF * (nested) depth-first m m

- X Is on a directed cycle ) search q0 q1
L'({s1,q90) £ F  {s1,q1) not reachable
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Putting

Given:
- Transition system TS
*LTL formula ¢

together

-NBA A_g accepting —® with the set F of accepting states

TS

Trace(TS)

L
)
Z Words(®)
0

Trace(TS) N Words(—®) # ()

0

Trace(TS)N L, (A-g) # 0

0

TS ® A_¢ £~ “eventually forever” —F
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The process flow of model checking

( System] [ Negation of property ]

Model of system LTL-formula —¢

model checker

v

Generalised Biichi automaton

Y ¥
Transition system TS Biichi automaton A-,

| Product transition system

IS X -Aﬁp

¥
IS® A = Ppersa)

Y
(‘No’ (counter-example) )

Efficient model checking tools automate the process: SPIN, nuSMV, TLC,...
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Example 1: traffic lights (property verified)

System TS: synchronous composition of Specification F;: e) )
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aﬁa ‘ Bl 16 H C1 ? — —>® :) |
OO
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Example 1: traffic lights (property verified)

System T7S: synchronous composition of
two traffic lights and a controller

%)
ﬁ@g
{o1}

traffic traffic
light 1 light 2

{91}

@)
ﬁﬁ : ’ = —>@
{9 } OQ

92}
controller

Property verified:
TS E Py

Specification P;: o) X
“The light are never green
simultaneously.” o1 &8 @2

CD:

Ap,

SPIN code:

System model (synchronous
composition of the modules):

:: atomic{ (gl==0 && g2==0) -> gl=1;
:: atomic{ (gl==0 && g2==0) -> gl=0;
:: atomic{ (gl==1 && g2==0) -> gl=0;
:: atomic{ (gl==0 && g2==1) -> gl=0;

0 O oo
NNNN
| | L |
SO,
et g g g

A_p, from LTL2BA:
TO_init :  /* init */
if
:: (1) -> goto TO_init
:: (gl && g2) -> goto accept_all
fi;
accept_all : /* 1 */




Example 1: traffic lights (property verified)

System T7S: synchronous composition of Specification P;:
two traffic lights and a controller “The light are never green

% 91} simultaneously.”
“ I
@ - /7 \U
al |a ﬁ
l (Spin Version 6.1.0 -- 4 May 2011)
@ + Partial Order Reduction
{91} {g !

c3 Full state space search for:
traffic traffic never claim + (never_0)
_ ntr assertion violations  + (if within scope of claim)
||g ht 1 ||g ht 2 acceptance cycles + (fairness disabled)
invalid end states - (disabled by never claim)

State-vector 28 byte, depth reached 3, errors: 0
3 states, stored
2 states, matched
5 transitions (= stored+matched)

TS = P1 0 atomic steps

hash conflicts: 0 (resolved)

Property verified:

| L L |
SO,
e g gl g

Stats on memory usage (in Megabytes):
0.000 equivalent memory usage for states (stored*(State-vector + overhead))
0.289 actual memory usage for states (unsuccessful compression: 180519.05%)
state-vector as stored = 101063 byte + 28 byte overhead
4.000 memory used for hash table (-w19)
0.534 memory used for DFS stack (-m10000)
4.730 total actual memory usage




Example 2: traffic lights
(counterexample found — property not verified)

System TS: composition of two traffic lights Specification P
and a controller {gl} “The first light is

infinitely often green.”
o - _>-
{92}
{g

}

traffic traffic

light 1 light 2 Controller




Example 2: traffic lights
(counterexample found — property not verified)

System T7S: composition of two traffic lights
and a controller {gl}

@ %)
ﬁ \ ﬁ ° = e-
{91} {gz}

traffic traffic con troIIer {9 }
light 1 light 2

Property not verified: 7S [~ P»
Counterexample:
(<Q17 51, C1, 1><Q17 52, C3, 1>)w

Specification s:
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infinitely often green.”
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<<<<<START OF CYCLE>>>>>
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: (state 13) [(((g1==0)&&(g2==1)))]
 (state 14) [g1 =0]
- (state 15) [g2 =0]

spin: trail ends after 8 steps
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Example 3: traffic lights
(counterexample used to modify the controller)

System TS: composition of two traffic lights Specification -
and a modified controller “The first light is

infinitely often green.”

w .
new controller: 5 IS
not a valid control
signal anymore




Example 3: traffic lights
(counterexample used to modify the controller)

System TS: composition of two traffic lights Specification -
and a modified controller “The first light is

infinitely often green.”

w
new controller: 5 IS
not a valid control
S|gnal anymore

Property verified:
TS E Py

—> Capen i > Capoen iy
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Transition system: TS = (5, Act, —, I, AP, L). Specification: o
Problem size:

+# of reachable " # of states size of one
states in 1T'S in A_4 state in bytes
O(|S]) 90 (|=2])

i i “length” of - ®, e.g., # of operators in -
Potential reductions:

- Restrict the ranges of variables - Use separable properties, - Lossy compression, e.g., hash-
- Use abstraction, separation of instead of large, combined compact and bitstate hashing
concerns, generalization ones » May result in
- Use compressed representation incompleteness
of the state space (e.g. BDD) - Lossless compression and
» Used in symbolic model alternate state representation
checkers, e.g., SMV, NuSMV methods
- Partial order reduction (avoid » May increase time while
computing equivalent paths) reduce memory

“On-the-fly” construction of 7§, A_s and the product automaton
(while searching the automaton) to avoid constructing the complete
state space

Time complexity of DFS: O(# of states + # of transitions in TS ® A_g)
1




Closed system synthesis

Closed system: behaviors are generated
purely by the system itself without any
external influence

Given:

- A transition system P
* An LTL formula ¢

Compute: A path 7 of P such that
T =




Closed system synthesis

P: composition of two traffic lights

Closed system: behaviors are generated
purely by the system itself without any
external influence

Given:

- A transition system P
- An LTL formula & g1 A Og:

Compute: A path 7 of P such that Sample paths of P

e = ((s050)(s150)(s151)(s081))" X
((s080)(s051))" X
“v

((5050)(s150){S050)(5051))




Closed system synthesis--a “"controls” interpretation

memory

outputy / domain
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» The controller Cis a function C': M x § — Act

* The controller keeps some history of states

- It picks the next action for P such that the resulting path satisfies
the specification @ (i.e., C constrains the paths system can take.



Closed system synthesis--a “"controls” interpretation

output y

<_

memory
domain

» The controller Cis afunction C : M x S — Act

* The controller keeps some history of states
- It picks the next action for P such that the resulting path satisfies
the specification @ (i.e., C constrains the paths system can take.

Let M be a sequence of length 1, i.e., the controller
keeps only the previous state

C(0, (s050))

5051,

0,
)5
$150) {
)5
)5

S0S0

S )

S050

5051

?

)
)
5150))
)
)

b1
b1
2
051

0%

= m™ = ({S050)(5150)(5050)(S051))"

= [O=(g1 A g2) ANOOGg ADOg:




A solution approach

- Closed system synthesis can be
formulated as a non-emptiness of the
specification or satisfiability problem

Jy - d(y)




A solution approach

- Closed system synthesis can be
formulated as a non-emptiness of the
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- For synthesis problems, “interesting”
behaviors are “good” behaviors (as
opposed to verification problems where
“interesting behaviors are “bad” behaviors)

Trace(P)

(all possible
executions)

executions that
are possible and
valid




A solution approach

- Closed system synthesis can be
formulated as a non-emptiness of the T'race (P )
specification or satisfiability problem (all possible

executions)
Jy - ©(y)

- For synthesis problems, “interesting”

behaviors are “good” behaviors (as executions that

opposed to verification problems where are Pof;;"!zj’e and

“interesting behaviors are “bad” behaviors)

- Construct a verification model and claim that
Trace(P) N Words(®) = ()

* A counterexample provided in case of negative result is a path 7 of P that satisfies ¢

- Positive result means Trace(P) N Words(®) = 0, i.e., a pathT of P that satisfies ®
does not exist




Example: traffic lights

System model:
(Z) TSl @ TSQ

—(s0:red )

Specification:
(g1 A g2) A

@Ew (A) = Words(P)




Example: traffic lights

System model: SPIN code:
p L5 p T5: System model (asynchronous

—>(-& nd) —>(:& nd) composition):

active proctype TL1() {
do

atomic{ g1 0 > gl
atomic{ gl 1 -> gl

od

}

. . active proctype TL2() {
Specification: do
atomic{ g2 == 0 -> g2 = 1}

_l(gl /\92) /\ atomic{ g2 == 1 -> g2 = 0 }

od

}
L,(A) = Words(P) Automaton from LTL2BA:

TO_init:
if

(tgl) Il ('g2) -> goto TO_init
(gl && 'g2) -> goto T1.S1
fi;
T1.S1:
if
('gl) || (1g2) -> goto T1.S1
('gl && g2) -> goto accept_S1
fi;
accept_S1:
if
(tg1l) || (1g2) -> goto TO_init
(gl && 'g2) -> goto T1.S1
fi;

}




Solution to the traffic light problem

System model:
@ ZZT;1

@ CZE;Q

— —
P = of Jor || el |
g1 g2

Specification:
=(g1 A g2) N

Gg1 A

Vg2

@Ew (A) = Words(®)

Solution from SPIN output:

e [ART OF CYCLE>=>o

(state 1)
(state 2)

(state 4)
(state 5)

(state 1)
(state 2)

(state 4)
(state 5)

(state 1)
(state 2)

(state 4)
(state 5)

[({91==0))]
[01 = 1]

[((g1==1))]
[91 = @]

[((92==8))]
(92 = 1]

[({92==1))]
[02 = 8]

[((92==8))]
[92 = 1]

[((g2==1))]
(92 = @]

ﬂ'::(<8080><8150><SOSO><3051><8050><8081>>w

(01 )+—(500)—(50s1)




Example: the farmer puzzle

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.
Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

How can the farmer get both animals and the cabbage safely across the river?
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Example: the farmer puzzle

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.
Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

How can the farmer get both animals and the cabbage safely across the river?

w#EgNgF)V f=g

(f=w=g=c=1)A
(w#gng#c)V f=g)

= ' (w#g/\g#C)Vfg
p e if,w,g;cy, : :

ie€{0,1}




Solving the farmer puzzle (using SPIN)

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.

Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

System model in SPIN:

active proctype P() { — farmer crosses the river alone
do

1 f=1-f <=

::  atomic{ f==g -> f=1-

::  atomic{ f==w -> f=1-

::  atomic{ f==c -> f=1-
od .

) — farmer and cabbage cross the river

farmer and goat cross the river

1_
1- .
- farmer and wolf cross the river

)
b
b

Specification:

Wf=w=g=c=1)A
O(w#gVf=g A
O(g#cV f=g9)




Solving the farmer puzzle (using SPIN)

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.

Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

System model in SPIN:

active proctype PO {
do

— farmer crosses the river alone

r f=1-f <=

farmer and goat cross the river

::  atomic{ f==g ->
::  atomic{ f==w ->

::  atomic{ f==c ->
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}
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Alternative solution

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.
Constraints:
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- The wolf will eat the goat if the farmer is not present.
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Example: frog puzzle

Find a way to send all the yellow frogs to the right hand side of the pond and send
all the brown frogs to the left hand side.
Constraints:

- Frogs can only jump in the direction they are facing.
* Frogs can either jump one rock forward if the next rock is empty or they can
jump over a frog if the next rock has a frog on it and the rock after it is empty.

http://www.hellam.net/maths2000/frogs.html
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Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

p = (S(Fl) s(Fy), s(F3) € {s4, 85,56} N

A
truetrue 8(F4), S(F5), S(FG) - {30, S1, 82})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOOE®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOOE®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOOE®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOOE®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOOE®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOOE®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




Solving the frog puzzle as logic synthesis

- Rock i is not occupied or occupied r; € {0,1}
- State of frog i: s(F;) € {so,S1...,56}

- Transition system of frog i: F;

-Overall system model: P = Fy || F5 || --- || Fé

. e

W =S N2 NN
So 81 59 53 84 85 86

OOOOOO®
= -———-—--—-d

O = O(s(F1), s(Fy),s(F3) € {sa4, 85,56} N s(Fu), s(F5), s(Fs) € {s0,51,52})

2 (s(F),s(Fy),s(F3) € {s4,55,56} A

A
p SUF2),
tr“etme s(Fy),s(Fs5), s(Fs) € {s0,51,52})




