Lecture 4 Model Checking and Logic Synthesis

Nok Wongpiromsarn

Richard M. Murray

Ufuk Topcu

EECI, 14 May 2012

Outline

- Model checking: what it is, how it works, how it is used
- Computational complexity of model checking
- •Closed system synthesis
- Examples using SPIN model checker

The basic idea behind model checking

Given:

- Transition system TS
- -LTL formula $\,\Phi\,$

Question: Does TS satisfy Φ , i.e.,

 $TS \models \Phi$?

The basic idea behind model checking

Given:

- Transition system TS
- •LTL formula $\,\Phi\,$

Question: Does TS satisfy Φ , i.e.,

$$TS \models \Phi$$
 ?

Answer (conceptual):

$$TS \models \Phi$$

$$\ddagger$$

$$Trace(TS) \subseteq Words(\Phi)$$

$$\ddagger$$

$$Trace(TS) \cap Words(\neg \Phi) = \emptyset$$

[*TS* satisfies Φ]

[All executions of TS satisfy Φ]

[No execution of *TS* violates Φ]

The basic idea behind model checking

Given:

- Transition system TS
- •LTL formula $\,\Phi\,$

Question: Does TS satisfy Φ , i.e.,

$$TS \models \Phi$$
 ?

Answer (conceptual):

 $TS \models \Phi \qquad [TS \text{ satisfies } \Phi]$ $\label{eq:statisfies} Trace(TS) \subseteq Words(\Phi) \qquad [All \text{ executions of } TS \text{ satisfy } \Phi]$ $\label{eq:statisfies} Trace(TS) \cap Words(\neg \Phi) = \emptyset \qquad [No \text{ execution of } TS \text{ violates } \Phi]$

How to determine whether $Trace(TS) \cap Words(\neg \Phi) = \emptyset$?

Theorem. There exists an algorithm that takes an LTL formula Φ and returns a Büchi automaton \mathcal{A} such that

 $Words(\Phi) = \mathcal{L}_{\omega}(\mathcal{A})$

Theorem. There exists an algorithm that takes an LTL formula Φ and returns a Büchi automaton \mathcal{A} such that

 $Words(\Phi) = \mathcal{L}_{\omega}(\mathcal{A})$

Theorem. There exists an algorithm that takes an LTL formula Φ and returns a Büchi automaton \mathcal{A} such that

 $Words(\Phi) = \mathcal{L}_{\omega}(\mathcal{A})$

Theorem. There exists an algorithm that takes an LTL formula Φ and returns a Büchi automaton \mathcal{A} such that

 $Words(\Phi) = \mathcal{L}_{\omega}(\mathcal{A})$

A tool for constructing Buchi automata from LTL formulas: LTL2BA [http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php]

Preliminaries: transition system \otimes Buchi automaton

Transition system:

Nondeterministic Buchi automaton:

 $TS = (S, Act, \rightarrow, I, AP, L) \qquad \qquad \mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Define the product automaton: $TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L')$, where

- $S' = S \times Q$
- $\forall s, t \in S, q, p \in Q$ with $s \xrightarrow{\alpha} t$ and $q \xrightarrow{L(t)} p$, there exists $\langle s, q \rangle \xrightarrow{\alpha}' \langle t, p \rangle$
- $I' = \{ \langle s_0, q \rangle : s_0 \in I \text{ and } \exists q_0 \in Q_0 \text{ s.t. } q_0 \xrightarrow{L(s_0)} q \}$
- AP' = Q

•
$$L': S \times Q \to 2^Q$$
 and $L'(\langle s, q \rangle) = \{q\}$

4

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Theorem: $Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset \quad \Leftrightarrow \quad TS \otimes \mathcal{A} \not\models \text{"eventually forever"} \neg F$

not in F

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Theorem: $Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset \quad \Leftrightarrow TS \otimes \mathcal{A} \not\models \text{``eventually forever''} (\neg F)$

not in F

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Theorem: $Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset \quad \Leftrightarrow TS \otimes \mathcal{A} \not\models$ "eventually forever"

Proof idea (\Leftarrow): Pick a path π ' in $TS \otimes \mathcal{A}$ s.t. $\pi' \not\models$ "eventually forever" $\neg F$, and let π be its projection to *TS*. Then,

• *trace*(π) \in *Trace*(*TS*) -- by definition of product

• *trace*(π) $\in \mathcal{L}_{\omega}(\mathcal{A})$ -- by hypothesis and by definition of product ($L'(\langle s,q \rangle) = \{q\}$)

not in F

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Theorem: $Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset \quad \Leftrightarrow \quad TS \otimes \mathcal{A} \not\models$ "eventually forever"

Proof idea (\Leftarrow): Pick a path π ' in $TS \otimes \mathcal{A}$ s.t. $\pi' \not\models$ "eventually forever" $\neg F$, and let π be its projection to *TS*. Then,

• *trace*(π) ∈ *Trace*(*TS*) -- by definition of product

• *trace*(π) $\in \mathcal{L}_{\omega}(\mathcal{A})$ -- by hypothesis and by definition of product (*L*'(*<s,q>*) = {*q*})

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Theorem: $Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset \quad \Leftrightarrow TS \otimes \mathcal{A} \not\models$ "eventually forever"

Proof idea (\Leftarrow): Pick a path π ' in $TS \otimes \mathcal{A}$ s.t. $\pi' \not\models$ "eventually forever" $\neg F$, and let π be its projection to *TS*. Then,

- *trace*(π) ∈ *Trace*(*TS*) -- by definition of product
- *trace*(π) $\in \mathcal{L}_{\omega}(\mathcal{A})$ -- by hypothesis and by definition of product (*L*'(*<s*,*q>*) = {*q*})

not in F

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

Theorem: $Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset \quad \Leftrightarrow TS \otimes \mathcal{A} \not\models \text{``eventually forever ''} \neg F$

Proof idea (\Leftarrow): Pick a path π ' in $TS \otimes \mathcal{A}$ s.t. $\pi' \not\models$ "eventually forever" $\neg F$, and let π be its projection to *TS*. Then,

• *trace*(π) \in *Trace*(*TS*) -- by definition of product

• *trace*(π) $\in \mathcal{L}_{\omega}(\mathcal{A})$ -- by hypothesis and by definition of product (*L*'(*<s*,*q>*) = {*q*})

not in F

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$ not in F Nondeterministic Buchi automaton: $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ $Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}) \neq \emptyset \quad \Leftrightarrow TS \otimes \mathcal{A} \not\models \text{``eventually forever '} (\neg F$ Theorem: $\{g\}$ ()*Proof idea* (\Leftarrow): Pick a path π ' in $TS \otimes \mathcal{A}$ s.t. sl:green s0: red $\pi' \not\models$ "eventually forever" $\neg F$, and let π be its TSprojection to TS. Then, true • *trace*(π) \in *Trace*(*TS*) -- by definition of product • *trace*(π) $\in \mathcal{L}_{\omega}(\mathcal{A})$ -- by hypothesis and by $\neg g$ 0D definition of product $(L'(\langle s,q \rangle) = \{q\})$ $\langle s_0, q_1 \rangle$ not on cycle $L'(\langle s_0, q_0 \rangle \not\subseteq F)$ $\{q_0\}$ $\{q_1\}$ $TS \otimes \mathcal{A} \not\models$ "eventually forever" $\neg F$ s0, q0 s0, q l There exists a state x in $TS \otimes \mathcal{A}$ • *x* is reachable graph search, e.g., sl,q0 sl,ql • *L*'(x) ⊆*F* (nested) depth-first • x is on a directed cycle $\int \frac{1}{search}$ $\{q_0\}$ q_1 $L'(\langle s_1, q_0 \rangle \not\subseteq F \quad \langle s_1, q_1 \rangle \text{ not reachable}$

5

Given:

- Transition system TS
- -LTL formula $\,\Phi\,$
- •NBA $\mathcal{A}_{\neg\Phi}$ accepting $\neg\Phi$ with the set F of accepting states

$TS \not\models \Phi$

- Transition system TS
- -LTL formula $\,\Phi\,$
- •NBA $\mathcal{A}_{\neg\Phi}$ accepting $\neg\Phi$ with the set F of accepting states

```
TS \not\models \Phi\textcircled{}Trace(TS) \not\subseteq Words(\Phi)
```

- Transition system TS
- LTL formula $\,\Phi\,$
- •NBA $\mathcal{A}_{\neg\Phi}$ accepting $\neg\Phi$ with the set *F* of accepting states

```
TS \not\models \Phi
\ddagger
Trace(TS) \not\subseteq Words(\Phi)
\ddagger
Trace(TS) \cap Words(\neg \Phi) \neq \emptyset
```

- Transition system TS
- LTL formula $\,\Phi\,$
- •NBA $\mathcal{A}_{\neg\Phi}$ accepting $\neg\Phi$ with the set *F* of accepting states

```
TS \not\models \Phi
\ddagger
Trace(TS) \not\subseteq Words(\Phi)
\ddagger
Trace(TS) \cap Words(\neg \Phi) \neq \emptyset
\ddagger
Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}_{\neg \Phi}) \neq \emptyset
```

- Transition system TS
- -LTL formula $\,\Phi\,$
- •NBA $\mathcal{A}_{\neg\Phi}$ accepting $\neg\Phi$ with the set *F* of accepting states

```
TS \not\models \Phi
                                       Trace(TS) \not\subseteq Words(\Phi)
                                       \hat{\mathbf{1}}
        Trace(TS) \cap Words(\neg \Phi) \neq \emptyset
                                       \square
          Trace(TS) \cap \mathcal{L}_{\omega}(\mathcal{A}_{\neg \Phi}) \neq \emptyset
                                       \hat{\mathbf{n}}
TS \otimes \mathcal{A}_{\neg \Phi} \not\models "eventually forever" \neg F
```

The process flow of model checking

Efficient model checking tools automate the process: SPIN, nuSMV, TLC,...

Example 1: traffic lights (property verified)

Example 1: traffic lights (property verified)

System *TS*: synchronous composition of two traffic lights and a controller $\{g_1\}$ (q_2, s_1, c_2) α Ø (q_1, s_1, c_1) $\{g_2\}$ $\{g_1\}$ q_1, s_2, a_3 traffic traffic g_2 controller light 1 light 2

Property verified:

 $TS \vDash P_1$

Specification P_1 : "The light are never green simultaneously."

SPIN code:

System model (synchronous composition of the modules):

```
:: atomic{ (g1==0 & \& g2==0) \rightarrow g1=1; g2=0 }

:: atomic{ (g1==0 & \& g2==0) \rightarrow g1=0; g2=1 }

:: atomic{ (g1==1 & \& g2==0) \rightarrow g1=0; g2=0 }

:: atomic{ (g1==0 & \& g2==1) \rightarrow g1=0; g2=0 }

\mathcal{A}_{\neg P_1} from LTL2BA:

T0_init : /* init */

if

:: (1) -> goto T0_init

:: (g1 & g2) -> goto accept_all

fi;

accept_all : /* 1 */
```

Example 1: traffic lights (property verified)

Example 2: traffic lights (counterexample found \rightarrow property not verified)

Specification P_2 :

"The first light is infinitely often green."

Example 2: traffic lights (counterexample found \rightarrow property not verified)

System *TS*: composition of two traffic lights and a controller $\{g_1\}$ (q_2, s_1, c_2) α α Ø (q_1, s_1, c_1) α α s_2 q_2 $\{g_2\}$ $\{g_1\}$ q_1, s_2, c_3 $\{g_2\}$ traffic traffic controller light 1 light 2

Property not verified: $TS \not\models P_2$ Counterexample:

 $(\langle q_1, s_1, c_1, 1 \rangle \langle q_1, s_2, c_3, 1 \rangle)^{\omega}$

Specification P_2 : "The first light is

infinitely often green."

Counterexample from SPIN output:

Example 2: traffic lights (counterexample found \rightarrow property not verified)

System *TS*: composition of two traffic lights and a controller $\{g_1\}$ (q_2, s_1, c_2) α α Ø (q_1, s_1, c_1) α α s_2 q_2 $\{g_2\}$ $\{g_1\}$ q_1, s_2, c_3 $\{g_2\}$ traffic traffic controller light 1 light 2

Specification P_2 :

"The first light is infinitely often green."

Property not verified: $TS \not\models P_2$ Counterexample:

 $(\langle q_1, s_1, c_1, 1 \rangle \langle q_1, s_2, c_3, 1 \rangle)^{\omega}$

Counterexample from SPIN output:

9

Example 3: traffic lights (counterexample used to modify the controller)

System *TS*: composition of two traffic lights and a modified controller

Specification P_2 : "The first light is infinitely often green."

Example 3: traffic lights (counterexample used to modify the controller) **System** *TS*: composition of two traffic lights Specification P_2 : and a modified controller "The first light is infinitely often green." new controller: β^{ω} is not a valid control signal anymore **Property verified:** $TS \models P_2$ $\{g_2\}$ $\{g_1\}$ $q_1, s_1, c_1, init$ (q_2, s_1, c_2) q_1, s_1, c_1 α q_1, s_2, c_4 q_1, s_1, c_3

 α

 $\{g_1\}$

 $\{g_2\}$

init

!g1

1

!g1

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$. Specification: Φ

Problem size:

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$. Specification: Φ

Problem size:

- Restrict the ranges of variables
- Use abstraction, separation of concerns, generalization
- Use compressed representation of the state space (e.g. BDD)
 - Used in symbolic model checkers, e.g., SMV, NuSMV
- **Partial order reduction** (avoid computing equivalent paths)

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$. Specification: Φ

Problem size:

Potential reductions:

- Restrict the ranges of variables
- Use abstraction, separation of concerns, generalization
- Use compressed representation of the state space (e.g. BDD)
 - Used in symbolic model checkers, e.g., SMV, NuSMV
- Partial order reduction (avoid computing equivalent paths)

 Use separable properties, instead of large, combined ones

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$. Specification: Φ

Problem size:

 $\left(\begin{array}{c} \# \text{ of reachable} \\ \text{states in } TS \end{array}\right) \times \left(\begin{array}{c} \# \text{ of states} \\ \text{in } \mathcal{A}_{\neg \Phi} \end{array}\right) \times \left(\begin{array}{c} \text{size of one} \\ \text{state in bytes} \end{array}\right)$ $2^{O(|\neg \Phi|)}$ "length" of $\neg \Phi$, e.g., # of operators in $\neg \Phi$ O(|S|)

Potential reductions:

- Restrict the ranges of variables
- Use abstraction, separation of concerns, generalization
- Use compressed representation of the state space (e.g. BDD)
 - Used in symbolic model checkers, e.g., SMV, NuSMV
- · Partial order reduction (avoid computing equivalent paths)

• Use separable properties, instead of large, combined ones

· Lossy compression, e.g., hashcompact and bitstate hashing May result in incompleteness

- Lossless compression and alternate state representation methods
 - May increase time while reduce memory

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$. Specification: Φ

Problem size:

"On-the-fly" construction of *TS*, $A_{\neg\Phi}$ and the product automaton (while searching the automaton) to avoid constructing the complete state space
Computational complexity of model checking

Transition system: $TS = (S, Act, \rightarrow, I, AP, L)$. Specification: Φ

Problem size:

state space

Time complexity of DFS: $O(\# \text{ of states } + \# \text{ of transitions in } TS \otimes A_{\neg \Phi})$

Closed system synthesis

Closed system: behaviors are generated purely by the system itself without any external influence

Given:

- A transition system P
- ${\, {\bf \bullet}\,} {\rm An}$ LTL formula Φ

Compute: A path π of P such that

 $\pi \models \Phi$

Closed system synthesis

Closed system: behaviors are generated purely by the system itself without any external influence

Given:

- A transition system P
- ullet An LTL formula Φ

Compute: A path π of P such that

 $\pi \models \Phi$

P: composition of two traffic lights

$$\Phi = \Box \neg (g_1 \land g_2) \land \Box \Diamond g_1 \land \Box \Diamond g_2$$

Sample paths of P:

$$\pi_{1} = (\langle s_{0}s_{0}\rangle\langle s_{1}s_{0}\rangle\langle s_{1}s_{1}\rangle\langle s_{0}s_{1}\rangle)^{\omega} \times$$

$$\pi_{2} = (\langle s_{0}s_{0}\rangle\langle s_{0}s_{1}\rangle)^{\omega} \times$$

$$\pi_{3} = (\langle s_{0}s_{0}\rangle\langle s_{1}s_{0}\rangle\langle s_{0}s_{0}\rangle\langle s_{0}s_{1}\rangle)^{\omega} \checkmark$$

Closed system synthesis--a "controls" interpretation

The controller C is a function $C: M \times S \to Act$

- The controller keeps some history of states
- It picks the next action for P such that the resulting path satisfies the specification Φ (i.e., C constrains the paths system can take.

memory

Closed system synthesis--a "controls" interpretation

The controller C is a function $C: M \times S \to Act$

- The controller keeps some history of states
- It picks the next action for P such that the resulting path satisfies the specification Φ (i.e., C constrains the paths system can take.

memory

Let *M* be a sequence of length 1, i.e., the controller keeps only the previous state

$$C(\emptyset, \langle s_0 s_0 \rangle) = \beta_1$$

$$C(\langle s_0 s_1 \rangle, \langle s_0 s_0 \rangle) = \beta_1$$

$$C(\langle s_1 s_0 \rangle, \langle s_0 s_0 \rangle) = \beta_2$$

$$C(\langle s_0 s_0 \rangle, \langle s_1 s_0 \rangle) = \alpha_1$$

$$C(\langle s_0 s_0 \rangle, \langle s_0 s_1 \rangle) = \alpha_2$$

 $\Rightarrow \pi = (\langle s_0 s_0 \rangle \langle s_1 s_0 \rangle \langle s_0 s_0 \rangle \langle s_0 s_1 \rangle)^{\omega}$

and $\pi \models \Phi = \Box \neg (g_1 \land g_2) \land \Box \Diamond g_1 \land \Box \Diamond g_2$

A solution approach

 Closed system synthesis can be formulated as a non-emptiness of the specification or satisfiability problem

 $\exists y \cdot \Phi(y)$

A solution approach

 Closed system synthesis can be formulated as a non-emptiness of the specification or satisfiability problem

 $\exists y \cdot \Phi(y)$

 For synthesis problems, "interesting" behaviors are "good" behaviors (as opposed to verification problems where "interesting behaviors are "bad" behaviors)

A solution approach

 Closed system synthesis can be formulated as a non-emptiness of the specification or satisfiability problem

 $\exists y \cdot \Phi(y)$

 For synthesis problems, "interesting" behaviors are "good" behaviors (as opposed to verification problems where "interesting behaviors are "bad" behaviors)

Construct a verification model and claim that

 $Trace(P) \cap Words(\Phi) = \emptyset$

- A counterexample provided in case of negative result is a path π of P that satisfies Φ
- Positive result means $Trace(P) \cap Words(\Phi) = \emptyset$, i.e., a path π of P that satisfies Φ does not exist

Example: traffic lights

Specification:

Example: traffic lights

 $\Phi = \Box \neg (g_1 \land g_2) \land \Box \Diamond g_1 \land \Box \Diamond g_2$ $\int \mathcal{L}_{\omega}(\mathcal{A}) = Words(\Phi)$ \mathcal{A} $g_1 \land \neg g_2$ $\neg (g_1 \land g_2)$ $\neg (g_1 \land g_2)$

SPIN code:

```
System model (asynchronous
composition):
 active proctype TL1() {
    do
    :: atomic \{ g1 == 0 \rightarrow g1 = 1 \}
    :: atomic \{ g1 == 1 \rightarrow g1 = 0 \}
    od
 }
 active proctype TL2() {
    do
    :: atomic \{ g2 == 0 \rightarrow g2 = 1 \}
    :: atomic \{ g2 == 1 \rightarrow g2 = 0 \}
    od
 }
Automaton from LTL2BA:
 TO_init:
    if
      (!g1) || (!g2) -> goto TO_init
    ::
    :: (g1 && !g2) -> goto T1_S1
    fi;
 T1_S1:
    if
        (!g1) || (!g2) -> goto T1_S1
    ::
    :: (!g1 && g2) -> goto accept_S1
    fi:
 accept_S1:
    if
    :: (!g1) || (!g2) -> goto TO_init
    :: (g1 && !g2) -> goto T1_S1
    fi;
```

15

Solution to the traffic light problem

System model:

Specification:

Φ	=	$\Box \neg (g_1 \land g_2) \land \Box \Diamond g_1 \land \Box \Diamond g_2$
		$\bigvee \mathcal{L}_{\omega}(\mathcal{A}) = Words(\Phi)$
		\mathcal{A}
		$(g_1 \wedge g_2)$
		$g_1 \wedge \neg g_2 $ $\neg (g_1 \wedge g_2)$
-	$\neg(g_1 \land g_1)$	(g_2) (q) $(g_1 \land \neg g_2)$ (q) (q) (q) (q) (q) (q)

Solution from SPIN output:

<<< <start< th=""><th>OF</th><th>CYCLE>>>>></th></start<>	OF	CYCLE>>>>>
(state 1)		[((q1==0))]

(state	2)	[g1 =	1]

(state 4)	[((g1==1))]
(state 5)	[g1 = 0]

(state 1) [((g2==0))] (state 2) [g2 = 1]

(state 4)	[((g2==1))]
(state 5)	[g2 = 0]

(state 1)	[((g2==0))]
(state 2)	[g2 = 1]

(state 4)	[((g2==1))]
(state 5)	[g2 = 0]

$$\pi = (\langle s_0 s_0 \rangle \langle s_1 s_0 \rangle \langle s_0 s_0 \rangle \langle s_0 s_1 \rangle \langle s_0 s_0 \rangle \langle s_0 s_1 \rangle)^{\omega}$$

Example: the farmer puzzle

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage. Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

Example: the farmer puzzle

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage. Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

Example: the farmer puzzle

17

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage. Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

$$\Phi = \Diamond (f = w = g = c = 1) \land$$
$$\Box (w \neq g \lor f = g) \land$$
$$\Box (g \neq c \lor f = g)$$
$$\bigcup \mathcal{L}_{\omega}(\mathcal{A}) = Words(\Phi)$$

$$(w \neq g \land g \neq c) \lor f = g$$

$$(f = w = g = c = 1) \land$$

$$(w \neq g \land g \neq c) \lor f = g$$

$$(w \neq g \land g \neq c) \lor f = g$$

Solving the farmer puzzle (using SPIN)

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage. Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

System model in SPIN:

Specification:

$$\begin{split} \Phi &= & \Diamond(f=w=g=c=1) \land \\ & \Box(w \neq g \lor f=g) \land \\ & \Box(g \neq c \lor f=g) \end{split}$$

Solving the farmer puzzle (using SPIN)

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage. Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

System model in SPIN:

18

Specification:

$$\Phi = \Diamond (f = w = g = c = 1) \land$$
$$\Box (w \neq g \lor f = g) \land$$
$$\Box (g \neq c \lor f = g)$$

A solution:

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage. Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage. Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

How can the farmer get both animals and the cabbage safely across the river?

$$\Phi = \Diamond (f = w = g = c = 1)$$

$$\int \mathcal{L}_{\omega}(\mathcal{A}) = Words(\Phi)$$

 \mathbf{V}

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.

Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

farmer can cross only when goat and cabbage are not at the same place and goat and wolf are not System model in SPIN: active proctype P() { farmer and goat can cross only when they are at the do same place atomic{ (g!=c && g!=w) → f=1-f } :: atomic{ f==g \rightarrow f=1-f; g=1-g } farmer and wolf can cross only when they are at the :: atomic{ (f==w && g!=c) -> f=1-f; w=1-w same place and goat and cabbage are not :: atomic{ (f==c && g!=w) -> f=1-f; c=1-c } :: farmer and cabbage can cross only when they are od at the same place and goat and wolf are not

Specification:

$$\Phi = \Diamond (f = w = g = c = 1)$$

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.

Constraints:

- The boat is only big enough to carry the farmer plus one other animal or object.
- The wolf will eat the goat if the farmer is not present.
- The goat will eat the cabbage if the farmer is not present.

farmer can cross only when goat and cabbage are not at the same place and goat and wolf are not System model in SPIN: active proctype P() { farmer and goat can cross only when they are at the do same place atomic{ (g!=c && g!=w) → f=1-f } ▲ :: atomic{ f==g \rightarrow f=1-f; g=1-g } :: farmer and wolf can cross only when they are at the atomic{ (f==w && g!=c) -> f=1-f; w=1-w same place and goat and cabbage are not :: atomic{ (f==c && g!=w) -> f=1-f; c=1-c } :: farmer and cabbage can cross only when they are od at the same place and goat and wolf are not

Specification:

$$\Phi = \Diamond (f = w = g = c = 1)$$

Another solution:

Example: frog puzzle

Find a way to send all the yellow frogs to the right hand side of the pond and send all the brown frogs to the left hand side.

Constraints:

- Frogs can only jump in the direction they are facing.
- Frogs can either jump one rock forward if the next rock is empty or they can jump over a frog if the next rock has a frog on it and the rock after it is empty.

http://www.hellam.net/maths2000/frogs.html

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1, ..., s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1, ..., s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond \big(s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\} \big)$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond \big(s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\} \big)$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond \big(s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\} \big)$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond \big(s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\} \big)$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond \big(s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\} \big)$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond \big(s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\} \big)$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond \big(s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\} \big)$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

- Rock *i* is not occupied or occupied $r_i \in \{0, 1\}$
- State of frog *i*: $s(F_i) \in \{s_0, s_1 \dots, s_6\}$
- Transition system of frog *i*: F_i
- Overall system model: $P = F_1 \parallel F_2 \parallel \cdots \parallel F_6$

 $\Phi = \Diamond (s(F_1), s(F_2), s(F_3) \in \{s_4, s_5, s_6\} \land s(F_4), s(F_5), s(F_6) \in \{s_0, s_1, s_2\})$

