
Lecture 3
Automata-Based Representation of Linear-Time

Properties and Linear Temporal Logic (LTL)

Richard M. Murray

Nok Wongpiromsarn Ufuk Topcu

EECI, 14 May 2012

Principles of Model
Checking,
Christel Baier and
Joost-Pieter Katoen.
MIT Press, 2008.

Chapter 5

Outline
• Automata-based representation of
linear-time properties

• Syntax and semantics of LTL
• Specifying properties in LTL
• Equivalence of LTL formulas
• Fairness in LTL
• Other temporal logics (if time)

http://mitpress.mit.edu/catalog/author/default.asp?aid=35329
http://mitpress.mit.edu/catalog/author/default.asp?aid=35329
http://mitpress.mit.edu/catalog/author/default.asp?aid=35330
http://mitpress.mit.edu/catalog/author/default.asp?aid=35330

Representations of linear-time properties

2

Two more representations of linear-time properties:
• Linear temporal logic (LTL):
readable by humans

• Automata-based:
readable by machine

• LTL is a formal language for describing linear-time properties
• It provides particularly useful operators for constructing linear-time properties without
explicitly specifying sets (of, e.g., infinite sequences of subsets of atomic propositions)

Nondeterministic finite automaton (NFA)

3

A nondeterministic finite automaton A = (Q,Σ, δ, Q0, F) is a tuple with
- A is a set of states,
- Σ is an alphabet,
- δ : Q× Σ→ 2Q is a transition function,
- Q0 ⊆ Q is a set of initial states, and
- F ⊆ Q is a set of accept (or: final) states.

δ(q0, A) = {q0}, δ(q0, B) = {q0, q1}
δ(q1, A) = {q2}, δ(q1, B) = {q2}
δ(q2, A) = ∅, δ(q0, B) = ∅

Q = {q0, q1, q2}, Σ = {A, B}
Q0 = {q0}, F = {q2}

Let w = A1 . . . An ∈ Σ∗ be a finite word.
A run for w in A is a finite sequence of
states q0q1 . . . qn s.t.
- q0 ∈ Q0

- qi
Ai+1−−−→ qi+1 for all 0 ≤ i < n. word run

empty word q0
B q0q1

ABA q0q0q0q0
BBA q0q0q0q0
BA

BBA
q0q1q2
q0q0q1q2

set of finite words

A run q0q1 . . . qn is called accepting if qn ∈ F .

accepted

The accepted language L(A) of A is the set
of finite words in Σ∗ accepted by A.

A finite word in accepted if it leads to an
accepting run.

Regular safety properties

4

NFA: A = (Q,Σ, δ, Q0, F)

q1

q0

q2

yellow

¬yellow

red

¬red∧

¬yellow ¬red∧
yellow

Example: AP = {red, green, yellow}
“Each red must be preceded immediately by a yellow”
is a regular safety property.

Sample bad prefixes:
• {}{}{red}
• {}{red}
• {yellow}{yellow}{green}{red}
• A0A1 . . . An s.t. n > 0, red ∈ An, and yellow /∈ An−1

general form of minimal bad prefixes

A set L ⊆ Σ∗ of finite strings is called a regular language
if there is a nondeterministic finite automaton A s.t. L = L(A).

language (set of
finite words)
accepted by
the NFA

A safety property Psafe over AP is called regular if its set of bad
prefixes constitutes a regular language over 2AP .

∃ NFA A s.t. L(A) = bad prefixes of PsafeThat is:

(2AP)ω

(2AP)ω\Psafe

Verifying regular safety properties

5

Given a transition system TS and a regular safety property Psafe,
both over the atomic propositions AP.

Let A be an NFA s.t. L(A) = BadPref(Psafe).

TS |= Psafe iff Traces(TS) ⊆ Psafe

iff Traces(TS) ∩ ((2AP)ω\Psafe) = ∅
iff Traces(TS) ∩BadPref(Psafe).(2AP)ω = ∅
iff pref(Traces(TS)) ∩BadPref(Psafe) = ∅
iff pref(Traces(TS)) ∩ L(A) = ∅

finite prefixes

For words w and σ, w.σ denotes their concatenation.

Traces(TS) Psafe

6

SafetyInvariant Liveness

state condition something bad
never happens

something good
will happen
eventually

violated at
individual states

any infinite run
violating the property

has a finite prefix

violated only by infinite
runs

verification: find the
reachable states and check

the invariant condition

verification: based on
nondeterministic finite
automaton which accepts
“finite runs”

verification:

?

A nondeterministic Buchi automaton is same as an NFA
with its runs interpreted differently.

A = (Q,Σ, δ, Q0, F)

Nondeterministic Buchi automaton (NBA)

7

Let w = A1A2 . . . ∈ Σω be an infinite string. A run for w in A
is an infinite sequence q0q1 . . . of states s.t.
- q0 ∈ Q0 and
- q0

A1−−→ q1
A2−−→ q2

A3−−→

A run is accepting if qj ∈ F for infinitely many j.

A string w is accepted by A if there is an
accepting run of w in A.

Lω(A): set of infinite strings accepted by A.

AP = {red, green}

input word:
{green}{}{green}{}{green}{}...

q0q1q0q1q0q1 . . .

run:

({green, red}{}{green}{red})ω
input word:

run:

q0q1q0q1q0q1 . . .
A set of infinite string Lω ⊆ Σω is
called an ω-regular language if there
is an NBA A s.t. Lω = Lω(A).

The NBA on the right accepts the infinite words
satisfying the LT property: “infinitely often green.”

 -regular properties

8

ω
NBA: A = (Q,Σ, δ, Q0, F)

An LT property P over AP is called ω-regular if P is an
ω-regular language over 2AP .

Invariant, regular safety, and various liveness properties are ω-regular.

Let P be an ω-regular property and A be an NBA that
represents the ”bad traces” for P.

Basic idea behind model checking ω-regular properties:

TS �|= P if and only if Traces(TS) �⊆ P

if and only if Traces(TS) ∩
�
(2AP)ω \ P

�
�= ∅

if and only if Traces(TS) ∩ P �= ∅
if and only if Traces(TS) ∩ Lω(A) �= ∅

9

SafetyInvariant Liveness

state condition something bad
never happens

something good
will happen
eventually

violated at
individual states

any infinite run
violating the property

has a finite prefix

violated only by infinite
runs

verification: find the
reachable states and check

the invariant condition

verification: based on
nondeterministic finite
automaton which accepts
“finite runs”

verification: based on
nondeterministic Buchi
automaton which
accepts infinite runs

Representations of linear-time properties

10

Two more representations of linear-time properties:
• Linear temporal logic (LTL):
readable by humans

• Automata-based:
readable by machine

• LTL is a formal language for describing linear-time properties
• It provides particularly useful operators for constructing linear-time properties without
explicitly specifying sets (of, e.g., infinite sequences of subsets of atomic propositions)

Temporal logic

Two key operators in temporal logic
• ◊ “eventually” - a property is satisfied at some point in the future
•¨ “always” - a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time
•Linear temporal logic ⇒ each moment in time has a well-defined successor moment
•Branching temporal logic ⇒ reason about multiple possible time courses
• “Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic
•Specific class of operators for specifying linear time properties
• Introduced by Pneuli in the 1970s (recently passed away)
•Large collection of tools for specification, design, analysis

Other temporal logics
•CTL = computation tree logic (branching time; will see later, if time)
•TCTL = timed CTL - check to make sure certain events occur in a certain time
•TLA = temporal logic of actions (Lamport) [variant of LTL]
•µ calculus = add “least fixed point” operator (more tomorrow)

11

Syntax of LTL

LTL formulas:

•a = atomic proposition
•◯ = “next”: φ is true at next step
•U = “until”: φ2 is true at some point, φ1 is true until that time

Formula evaluation: evaluate LTL propositions over a sequence of subsets of atomic
propositions

12

Additional operators and formulas

Derived temporal logic operators
•Eventually ◊ϕ := true U ϕ ϕ will become true at some point in the future
•Always ¨ϕ := ¬◊¬ϕ ϕ is always true; “(never (eventually (¬ϕ)))”

13

Operator precedence
•Unary binds stronger
than binary

 ¬ φ1 U ◯ φ2 = (¬ φ1)U (◯ φ2)
•Bind from right to left:
¨◊p = (¨ (◊p))
p U q U r = p U (q U r)
•U takes precedence over
∧, ∨ and →

Some common composite operators
•p → ◊q p implies eventually q (response)
•p → q U r p implies q until r (precedence)
•¨◊p always eventually p (progress)
•◊¨p eventually always p (stability)
•◊p → ◊q eventually p implies eventually q
 (correlation)

Semantics: when does a path satisfy an LTL spec?

14

Let φ be an LTL formula over AP. The linear-time property induced by φ is

where the satisfaction relation is the smallest relation with the properties

For σ=A0 A1 A2..., σ[j...]=Aj Aj+1...

For derived operators: Sample derivation:

15

Semantics: when does a system satisfy an LTL spec?

Putting together:

[Bullet 3 above]

[Definition of satisfaction for LT properties]

[Definition of Words(φ)]

[Bullet 2 above]

Example: traffic light

System description
•Focus on lights in on particular direction
•Light can be any of three colors: green, yellow, read
•Atomic propositions = light color

Ordering specifications
•Liveness: “traffic light is green infinitely often”

•Chronological ordering: “once red, the light cannot become green immediately”

•More detailed: “once red, the light always becomes green eventually after being yellow
for some time”

Progress property
•Every request will eventually lead to a response

16

☐ (red → ¬ ◯ green)

☐(red → ◯ (red U (yellow ∧ ◯ (yellow U green))))

☐ (request → ◊response)

☐◊green

☐(red → (◊ green ∧ (¬ green U yellow)))

Example: autonomous navigation

17

position : x

Specify safe, allowable, required, or desired behavior of system and/
or environment.

Reduced Speed Zone ck pt

� (dist(x,Obs) ≥ Xsafe ∧ dist(x,Loc(Veh)) ≥ Xsafe)

� ((x ∈ Reduced Speed Zone) → (v ≤ vreduced))

Traffic rules:
• No collision
• Obey speed limits
• Stay in travel lane unless blocked
• Intersection precedence & merging, stop line, passing,...

Environment assumptions:
• Each intersection is clear infinitely often
• Limited sensing range, detect obstacles before too late,...

�♦(Intersection = empty)

Goals:
• Eventually visit the check point
• Every time check point is reached, eventually come to start

♦(x = ck pt)

�((x = ck pt) → ♦(x = start))

Consider the following transition system with AP = {a,b}

Property 1: TS |= [] a?
• Yes, all states are labeled with a

Property 2: TS |= X (a ^ b)?
• No: From s2 or s3, there are transitions for which a ^ b doesn’t hold

Property 3: TS |= [] (!b -> [](a ^ !b))?
• True

Property 4: TS |= b U (a ^ !b)?
• False: (s1s2)ω

”Quiz”

18

Non-identities
• ◊(a ∧ b) ≢ ◊a ∧ ◊b

• ☐(a ∨ b) ≢ ☐a ∨ ☐b

19

Equivalence of LTL formulas

Specifying timed properties for synchronous systems

20

Fairness

21

Mainly an issue with concurrent processes
•To make sure that the proper interaction
occurs, often need to know that each
process gets executed reasonably often
•Multi-threaded execution: each thread should
receive some fraction of processes time
•To rule out unrealistic behavior

Examples:
•N processors sharing a service: ensure each processor gets access to the service
• In a distributed protocol, ensure that each agent communicates with its “neighbors”
regularly (infinitely often)
•Autonomous car at an intersection: ensure the intersection clears or the lights turn
green in the future

Two issues:
• Implementation: How do we implement our algorithms to insure that we get
“fairness” in execution?
•Specification: How do we model fairness in a formal way to reason about
program correctness?

Fairness properties & their LTL representation

22

Let Φ and Ψ be propositional logical formulas over a set of atomic propositions

Unconditional
fairness

“Every process gets its
turn infinitely often.”

Strong
fairness

“Every process that is enabled
infinitely often gets its turn

infinitely often.”

Weak
fairness

“Every process that is continuously
enabled from a certain time on gets

its turn infinitely often.”

An LTL fairness assumption:

Rules of thumb
•strong (or unconditional) fairness: useful for solving contentions
•weak fairness: sufficient for resolving the non-determinism due to interleaving (i.e., a
possible option is not consistently ignored)

LTL → Nondeterministic Buchi automata

Theorem. There exists an algorithm that takes an LTL formula, Φ, and
returns a Büchi automaton A such that

Words(Φ) = Lω(A)

A tool for constructing Buchi automata from LTL formulas: LTL2BA
[http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php]

Theorem. There exists an algorithm that takes an LTL
formula Φ and returns a Büchi automaton A such that

Words(Φ) = Lω(A)

23

A

q0 q1

true ¬g

¬g

Φ = ¬�♦g

A

q1q0

true¬g ∨ h

h

true

Φ = �(g → ♦h) Φ = ♦(f ∧ ¬(gUh))

A
q0

q1

true

q2

true

¬g
¬g ∧ f

¬g ∧ f ∧ ¬h
¬g ∧ ¬h

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php

Branching time and computation tree logic (CTL)

24

LTL formulas are interpreted over paths; hence, there is a clear (and linear) notion of
ordering of events over time.

LTL does not allow complicated quantification over the paths.
• E.g., “For every execution it is always possible to return to the initial state” cannot
be specified in LTL.

Computation tree logic (CTL) allows evaluation over some or all paths.

Interpretation an LTL formula at a state: all paths starting from the state satisfy the formula.

∀�∃♦start

for all executions at any state it is possible to eventually reach start

Example: triply redundant control systems

Systems consists of three processors
and a single voter
• si,j = i processors up, j voters up
• Assume processors fail one at a

time; voter can fail at any time
• If voter fails, reset to fully functioning

state (all three processors up)
• System in operation if at least 2 processors

remain operational

Properties we might like to prove

25

Holds

Doesn’t hold

Doesn’t hold

Holds

Other types of temporal logic

CTL ≠ LTL
• Can show that LTL and

CTL are not proper sub-
sets of each other

• LTL reasons over a
complete path; CTL from
a give state

CTL* captures both

Timed Computational Tree Logic
• Extend notions of transition systems and CTL to

include “clocks” (multiple clocks OK)
• Transitions can depend on the value of clocks
• Can require that certain properties happen within a

given time window

26

Summary: specifying behavior with (linear) temporal logic

Description
•State of the system is a snapshot of values of all
variables
•Reason about paths σ: sequence of states of the
system
•No strict notion of time, just ordering of events
• Actions are relations between states: state s is
related to state t by action a if a takes s to t (via
prime notation: x’ = x + 1)
•Formulas (specifications) describe the set of
allowable behaviors
•Safety specification: what actions are allowed
•Fairness specification: when can a component
take an action (eg, infinitely often)

Example
•Action: a ≡ x’ = x + 1
•Behavior: σ ≡ x := 1, x := 2, x:= 3, ...
•Safety: ¨x > 0 (true for this behavior)
•Fairness: ¨(x’ = x + 1 ∨ x’ = x) ∧ ¨◊ (x’ ≠ x)

Properties
•Can reason about time by adding
“time variables” (t’ = t + 1)
•Specifications and proofs can be
difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, SPIN, nuSMV, etc)

27

l ¨p ≡ always p (invariance)
l ◊p ≡ eventually p (guarantee)
l p → ◊q ≡ p implies eventually q

(response)
l p → q U r ≡ p implies q until r

(precedence)
l ¨◊p ≡ always eventually p

(progress)
l ◊¨p ≡ eventually always p

(stability)
l ◊p → ◊q ≡ eventually p implies

eventually q (correlation)

