Lecture 3

Automata-Based Representation of Linear-Time
Properties and Linear Temporal Logic (LTL)

Richard M. Murray

Nok Wongpiromsarn Ufuk Topcu

EECI, 14 May 2012

Outline

- Automata-based representation of
linear-time properties

- Syntax and semantics of LTL
- Specifying properties in LTL
- Equivalence of LTL formulas Prnciples of Model Checking
*Fairness in LTL I
- Other temporal logics (if time)

Principles of Model
Checking,

Christel Baier and
Joost-Pieter Katoen.
MIT Press, 2008.

Chapter 5

http://mitpress.mit.edu/catalog/author/default.asp?aid=35329
http://mitpress.mit.edu/catalog/author/default.asp?aid=35329
http://mitpress.mit.edu/catalog/author/default.asp?aid=35330
http://mitpress.mit.edu/catalog/author/default.asp?aid=35330

Representations of linear-time properties

Two more representations of linear-time properties:

- Automata-based: - Linear temporal logic (LTL):
readable by machine readable by humans

- LTL is a formal language for describing linear-time properties
- It provides particularly useful operators for constructing linear-time properties without
explicitly specifying sets (of, e.g., infinite sequences of subsets of atomic propositions)

requirements assumptions
(on the system | |(on the unknowns, e.g., ‘— |
behavior) environment behavior) SYStﬂJ

formal system
specifications model
4

controller that render no such
the system to controller
satisfy the spec’s exists

satisfied violated
(+certificate) (+counterexample)

Nondeterministic finite automaton (NFA)

A nondeterministic finite automaton A = (Q, X, J, Qo, F) is a tuple with

- A is a set of states,

- . 1s an alphabet,

-5 :Q x X — 29 is a transition function,

- Qo € @ is a set of initial states, and

- F C @ is a set of accept (or: final) states.

(set of finite words

Let w=A41... A4, € X" be a finite word.
A run for w in A is a finite sequence of
states qoqi1 - - - qn S.t.

- qo € Qo
A, ,
‘Qz’—+1>Qi+1 for all 0 <1 < n.

A run qpq; ...q, is called accepting if ¢,, € F'.

A finite word in accepted if it leads to an
accepting run.

The accepted language L(A) of A is the set
of finite words in >* accepted by A.

accepted

-

B
Q =1{q0,q1,q2}, X ={A, B}
Qo = {q0}, P = {q2}
0(q0, A) = {q0}, o(= {q0,q1}

0(ql, A) = {q2},

6(q2, A) =0, d(= ()
word run
empty word q0

B q0q1
ABA q0gq0q0q0
BBA q0gq0q0q0

/{ BA q0qlqg2 }

BBA q0gq0qlqg2

. NFA: A = (Q72757Q07F)
Regular safety properties

A set £ C X* of finite strings is called a regular language -~ ggliepxzrs)s,)
if there is a nondeterministic finite automaton A s.t. £ = L(A). the NFA

language (set of

A safety property Psqfe over AP is called regular if its set of bad
prefixes constitutes a regular language over 24P

That is: 3 NFA A s.t. £(.A) = bad prefixes of Py, ¢

yellow
Example: AP = {red, green, yellow}
“Each red must be preceded immediately by a yellow” @
sare :
| gular safety property. —yelloyf redA
Sample bad prefixes: yellow
* {H}red}
- {{red} q0)\ —redA
* {yellow}{yellow}{green}{red} —yellow
’@oz‘h . A, st. n>0,red € A, and yellow & A,,_1) red

general form of minimal bad prefixes

Verifying regular safety properties

Given a transition system 71'S and a regular safety property Psg fe,

both over the atomic propositions AP.

Let A be an NFA s.t. £(A) = BadPref(Psqfe)-

TS = Pape it Traces(T'S) C Psgre
iff Traces(T'S) N ((247)*\ Pyare) = 0
iff Traces(T'S) N BadPref(Psgfe)- (2
ifft pref(Traces(TS))N BadPref(Ps
iff pref(Traces(T'S))NL(A)=10

finite prefixes /\/

For words w and o, w.o denotes their concatenation.

Invariant

state condition

violated at
individual states

verification: find the
reachable states and check
the invariant condition

Safety

something bad
never happens

any infinite run
violating the property
has a finite prefix

verification: based on
nondeterministic finite
automaton which accepts
“finite runs”

Liveness

something good
will happen
eventually

violated only by infinite
runs

verification:

?

Nondeterministic Buchi automaton (NBA)

A nondeterministic Buchi automaton is same as an NFA A = (Q, 3,9, Qo, F))

with its runs interpreted differently.

Let w = A1 Ay ... € ¥ be an infinite string. A run for w in A

is an infinite sequence quq; ... of states s.t.

- go € Qo and 4

Al As As
-qo —q1 —q2 — ...

A run is accepting it q; € F for infinitely many j.

A string w is accepted by A if there is an
accepting run of w in A.

L,(A): set of infinite strings accepted by A.

A set of infinite string £, C X% is
called an w-regular language it there

is an NBA A s.t. £, =L, (A).

AP = {red, green}

'lgreen

input word:

run:
doq414904914041 - - -

input word:

green

{green{}{green}{}{green}{;..

({green,red}{}{green}{red})”

The NBA on the right accepts the infinite words
satisfying the LT property:“infinitely often green.”

run:
dod14904914041 - - -

%
7

NBA: A= (Q,%,6,Q, F)
w-regular properties

An LT property P over AP is called w-regular if P is an
w-regular language over 24

Invariant, regular safety, and various liveness properties are w-regular.

Let P be an w-regular property and A be an NBA that
represents the ”bad traces” for P.

Basic idea behind model checking w-regular properties:

TS = P if and only if Traces(TS) L P

if and only if Traces(TS) N ((QAP)“ \ P) #+ ()
(T'S) N
(1'5) N

if and only if Traces(1S
if and only if Traces(1'S

Invariant

state condition

violated at
individual states

verification: find the
reachable states and check
the invariant condition

Safety

something bad
never happens

any infinite run
violating the property
has a finite prefix

verification: based on
nondeterministic finite
automaton which accepts
“finite runs”

Liveness

something good
will happen
eventually

violated only by infinite
runs

verification: based on
nondeterministic Buchi
automaton which
accepts infinite runs

Representations of linear-time properties

Two more representations of linear-time properties:

- Automata-based: - Linear temporal logic (LTL):
readable by machine readable by humans

- LTL is a formal language for describing linear-time properties
- It provides particularly useful operators for constructing linear-time properties without
explicitly specifying sets (of, e.g., infinite sequences of subsets of atomic propositions)

requirements assumptions
(on the system | |(on the unknowns, e.g., ‘— |
behavior) environment behavior) SYStﬂJ

formal system
specifications model
4

controller that render no such
the system to controller
satisfy the spec’s exists

satisfied violated
(+certificate) (+counterexample)

Temporal logic

Two key operators in temporal logic
-0 “eventually” - a property is satisfied at some point in the future
-0 *“always” - a property is satisfied now and forever into the future

“Temporal” refers underlying nature of time
- Linear temporal logic = each moment in time has a well-defined successor moment

* Branching temporal logic = reason about multiple possible time courses
-“Temporal” here refers to “ordered events”; no explicit notion of time

LTL = linear temporal logic
- Specific class of operators for specifying linear time properties
*Introduced by Pneuli in the 1970s (recently passed away)
-Large collection of tools for specification, design, analysis

Other temporal logics
- CTL = computation tree logic (branching time; will see later, if time)
-TCTL = timed CTL - check to make sure certain events occur in a certain time
- TLA = temporal logic of actions (Lamport) [variant of LTL]
- M calculus = add “least fixed point” operator (more tomorrow)

LTL formulas:

@ ::= true ‘ a |

'

-a = atomic proposition

Syntax of LTL

(O =“next’: ¢ is true at next step

*U = “until”: @2 is true at some point, @1 is true until that time

Formula evaluation: evaluate LTL propositions over a sequence of subsets of atomic

991/\992) ¢ | O | prUge

propositions

a arbitrary arbitrary arbitrary arbitrary

. N N\ 7 g, ¥ Y e 7\

atomic prop.a () () () -) ()
arbitrary 1) arbitrary arbitrary arbitrary

G2 G 2N o R

next step Oa () ~())) ()
a N\ "'1b a /\ "'1b a /N "'1b b arbitrary

: g N N\ N\
until a U b k_ Y, g "N i Y C

Additional operators and formulas

Derived temporal logic operators

‘Eventually 0¢ :=true U ¢ will become true at some point in the future

- Always O =07 ¢ is always true; “(never (eventually (7¢)))”
—d Q4 -a a arbitrary
eventually 0a ()——())) () -
a a a a a
always Oa () () - = o -

Some common composite operators

‘p — 0Q p implies eventually q (response)
‘p—o>qUr p implies q until r (precedence)
-O0p always eventually p (progress)
-O0p eventually always p (stability)
-Op — 0q eventually p implies eventually q

(correlation)

Operator precedence

-Unary binds stronger
than binary

@1 UQO @2= (7 o1)U (O ¢2)

-Bind from right to left:
O0p = (O (0p))
pUqUr=pU(qUr)

- U takes precedence over
A, Vand —

Semantics: when does a path satisfy an LTL spec?

Let ¢ be an LTL formula over AP. The linear-time property induced by ¢ is
Words(p) = {(T € 241 ¥ lek 7/}

where the satisfaction relation is the smallest relation with the properties

g~ SAue For a=Ao A1 Az..., afj...]=A Ai...
g = a if ae€ Ay (ie., Ag Ea)
o E pr1Apy iff oy and o = o
o BE —p iff oFop
g = (}go iff 0’[1... =AlAQA3...':’50
o E prUpy iff 3j20.0[j...]Fys and ofi...] =y, forall0<i < j
For derived operators: Sample derivation:
—— . cEOp==0-¢ if -3j>0.0j...]F-¢

o E Op if 720.0p...|FE¢ iff 35> 0. 0fj...] ko
o E Oy iff Vi=20.0j...] Ee iff Vj>0.0[5..]F¢.

. S : o0
o F OOp f Jj.00..]F¢ 3 g means V¢ 2 0. d3 = ¢

o0

g - Ol it % 3.0997 ... E@ 00

vV j means Ji = 0. Vj > 1

Semantics: when does a system satisfy an LTL spec?

Let TS = (S, Act,—,I, AP, L) be a transition system without terminal states, and let ¢
be an LTL-formula over AP.

e For infinite path fragment 7 of T'S, the satisfaction relation is defined by
T =@ iff trace(m) = .
e For state s € S, the satisfaction relation = is defined by
sk iff (Vm € Paths(s). © =).

e TS satisfies ¢, denoted T'S = ¢, if Traces(TS) C Words(y).

Putting together:

e e [Bullet 3 above]
Traces(TS) C Words(y)

iff [Definition of satisfaction for LT properties]
TS = Words(yp)

iff [Definition of Words(o)]
7 = @ for all m € Paths(TS)

iff [Bullet 2 above]

3o = for all sy € I.

Example: traffic light

System description e
. A'i _'_’{ re ,,I
- Focus on lights in on particular direction A 2N
-Light can be any of three colors: green, yellow, read S ot 3
. yellow) [red/yellow)
- Atomic propositions = light color S—— N’
. . - \u/ green \]'I
Ordering specifications \ P

*Liveness: “traffic light is green infinitely often”
1ogreen

* Chronological ordering: “once red, the light cannot become green immediately”
[(red - 7 O green)

*More detailed: “once red, the light always becomes green eventually after being yellow
for some time”

(red - (¢ green A (™ green U yellow)))
O(red - © (red U (yellow A © (yellow U green))))
Progress property
*Every request will eventually lead to a response
[J (request — ¢response)

Example: autonomous navigation
Specify safe, allowable, required, or desired behavior of system and/

or environment.

Reduced_Speed_Zone ck_pt

position :

> @

Traffic rules:
* No collision
* Obey speed limits

(] (dist(x, Obs) > Xgate A dist(x, Loc(Veh)) > Xgate)

((z € Reduced_Speed_Zone) — (v < Vreduced))

« Stay in travel lane unless blocked
* Intersection precedence & merging, stop line, passing,...

Goals:

- Eventually visit the check point O(x = ck_pt)
« Every time check point is reached, eventually come to start

((z = ck_pt) = O(x = start))

Environment assumptions:

» Each intersection is clear infinitely often [(Intersection = empty)
* Limited sensing range, detect obstacles before too late,...

HQL“'ZH

Consider the following transition system with AP ={a,b}

—{ 81 | [82) —{ 33 I

Property 1: TS |=[] a?
® Yes, all states are labeled with a

Property 2: TS |= X (a * b)?
e No: From s2 or s3, there are transitions for which a * b doesn’t hold

Property 3: TS |=[] (b -> [1(a * 'b))?
® True

Property 4: TS |=b U (a * 'b)?
e False: (s1s2)®

Equivalence of LTL formulas

LTL formulae ¢, @, are equivalent, denoted ¢, = 9, if Words(yp,) = Words(ys).

duality law idempotency law
“QOp¢ = O PO = Op
-Qp = O-p O0¢ = Op
-Op = O-p pU(pUy) = oU¥
(PUP)Uy = Uy
absorption law expansion law
000p = O9%p Uy = ¥ V (¢ A OlpU¥))
O¢0p = ¢0p oY = v vV QW
Oy = ¢ A O
distributive law Non-identities
OlpUy) = (OU(O¥) e O(anb)=0anAdb
OleVy) = OpV Oy ® J(avb)=DOavOb

O(eAy) = OpADy

Specifying timed properties for synchronous systems

For synchronous systems, LTL can be used as a formalism to specify “real-time” properties
that refer to a discrete time scale. Recall that in synchronous systems, the involved
processes proceed in a lock step fashion, i.e., at each discrete time instance each process
performs a (sometimes idle) step. In this kind of system, the next-step operator () has a
“timed” interpretation: () ¢ states that “at the next time instant ¢ holds”. By putting
applications of () in sequence, we obtain, e.g.:

OFp = BISTID “© holds after (exactly) k time instants”.
k-times

Assertions like “@ will hold within at most k time instants” are obtained by
0% = V O'e
0<i<k

Statements like “¢ holds now and will hold during the next k instants” can be represented
as follows:

Dsk(p — —logkﬁ(p — | \/ Ot—\(p

20

Fairness

Mainly an issue with concurrent processes

- To make sure that the proper interaction : : sliepented
Multi-threaded execution execution

occurs, often need to know that each
process gets executed reasonably often

- Multi-threaded execution: each thread should (wait) .t
receive some fraction of processes time {wait)

« To rule out unrealistic behavior

e

Examples:
*N processors sharing a service: ensure each processor gets access to the service

-In a distributed protocol, ensure that each agent communicates with its “neighbors”
regularly (infinitely often)

- Autonomous car at an intersection: ensure the intersection clears or the lights turn
green in the future

TwoO issues:

- Implementation: How do we implement our algorithms to insure that we get
“fairness” in execution?

- Specification: How do we model fairness in a formal way to reason about
program correctness?

21

Fairness properties & their LTL representation

Let @ and W be propositional logical formulas over a set of atomic propositions

Unconditional “Every process gets its o
fairness turn infinitely often.” yair = LIOVY.

“Every process that is enabled

fS_t rong infinitely often gets its turn sfair = 00 — OQW.
airness Y)
infinitely often.
Weak “Every process that is continuously
fairness enabled from a certain time on gets wfair = OU® — [QOW.

its turn infinitely often.”

An LTL fairness assumption:

fair = ufair A sfair A wfair.

Rules of thumb

- strong (or unconditional) fairness: useful for solving contentions

-weak fairness: sufficient for resolving the non-determinism due to interleaving (i.e., a
possible option is not consistently ignored)

22

LTL — Nondeterministic Buchi automata

Theorem. There exists an algorithm that takes an LTL
formula ® and returns a Buchi automaton A such that

Words(®) = L,,(A)

¢ =-L0g ¢ =[(g — Oh)
A true - A —-gVh true

A tool for constructing Buchi automata from LTL formulas: LTL2BA
[http://www.lsv.ens-cachan.fr/~gastin/ItI2ba/index.php]

23

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php
http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/index.php

Branching time and computation tree logic (CTL)

LTL formulas are interpreted over paths; hence, there is a clear (and linear) notion of
ordering of events over time.

Interpretation an LTL formula at a state: all paths starting from the state satisfy the formula.

(50, 0)
AN N (51,
() =\ 81) {z=0) o .
B P S
{I#O} '_// (-5'2,2) (9; 2
. P ' i / \
\\1/’1<;=""—"—‘“*3¥/1“\‘ (s3,3) (83, 3)
\iVaa —fkfij{ungo} \ .
O e & o ‘ PR

(s2,4) (83,4) (s3,4)(82,4) (83,4)

LTL does not allow complicated quantification over the pAaths.

-E.g., “For every execution it is always possible to return to the initial state” cannot
be specified in LTL.

Computation tree logic (CTL) allows evaluation over some or all paths.
8 = 3p iff =« = @ for some 7w € Paths(s)
s =V iff = = ¢ for all # € Paths(s)

R

for all executions at any state it is possible to eventually reach start

24

Example: triply redundant control systems

Systems consists of three processors |

and a single voter y - :
® si,j =i processors up, j voters up $3,1)up3 8,1)UP2 $1,1)uP1 $0.1) Upg
e -~

® Assume processors fail one at a
time; voter can fail at any time

e |f voter fails, reset to fully functioning i e
state (all three processors up) doﬁmx‘

e System in operation if at least 2 processors
remain operational

Properties we might like to prove

Property Formalization in CTL

Possibly the system never goes down 300 - down Holds
Invariantly the system never goes down VLI - down Doesn’t hold
It 1s always possible to start as new VLI 30 ups Holds

The system always eventually goes down
and is operational until going down ¥V ((upy V up,)Udown) Doesn'’thold

25

Other types of temporal logic

CTL#LTL

e Can show that LTL and
CTL are not proper sub-
sets of each other

® LTL reasons over a
complete path; CTL from

a give state . Kk
s O O0a VO30 a
CTL* captures both
® ::= true a ®; A Dy -® | dyp pu==>a | w1 A\ ©2 | - Oe | erUepe

Timed Computational Tree Logic . approach ,——

e Extend notions of transition systems and CTL to =) o
Include “clocks” (multiple clocks OK) 20 s

e Transitions can depend on the value of clocks s 3"\'

e Can require that certain properties happen within a o ",'
given time window 4

after
VD(faT — Vogl vOs! Up) > 2 minutes

26

Summary: specifying behavior with (linear) temporal logic

Description

- State of the system is a snapshot of values of all
variables

- Reason about paths o: sequence of states of the
system

* No strict notion of time, just ordering of events

- Actions are relations between states: state s is
related to state t by action a if a takes sto t (via
prime notation: X’ = x + 1)

- Formulas (specifications) describe the set of
allowable behaviors

- Safety specification: what actions are allowed

- Fairness specification: when can a component
take an action (eg, infinitely often)

Example
*Action:a=x"=x+1
Behavior: c=x:=1,x:=2, x:=3, ...
- Safety: [Ix > 0 (true for this behavior)
-Fairness: (X =x + 1 v X' =x) A) (X’ # x)

[1p = always p (invariance)

Op = eventually p (guarantee)
p — (g = p implies eventually g
(response)

p — q Ur=pimplies g until r
(precedence)

(00p = always eventually p
(progress)

OCdp = eventually always p
(stability)

Op — (g = eventually p implies
eventually g (correlation)

Properties
- Can reason about time by adding

“time variables” (t =t+ 1)

- Specifications and proofs can be

difficult to interpret by hand, but
computer tools existing (eg, TLC,
Isabelle, PVS, SPIN, nuSMV, etc)

27

