Lecture 2
Automata Theory

Ufuk Topcu
Nok Wongpiromsarn Richard M. Murray

EECI, 14 May 2012

Outline Principles of Model Checking,
* Modeling (discrete) concurrent C. Baier and J.-P. Katoen,
systems: transition systems, The MIT Press, 2008
concurrency and interleaving
* Linear-time properties: Chapters 2.1,2.2,3.2-3.4
invariants, safety and liveness

properties
Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

This short-course is on this picture applied to a particular class
of systems/problems.

requirements assumptions
(on the system | |(on the unknowns, e.g.,
behavior) environment behavior)

complete system or
some of its components

controller that render no such
the system to controller
satisfy the spec’s exists

satisfied violated
(+certificate) (+counterexample)

This short-course is on this picture applied to a particular class
of systems/problems.

requirements assumptions
(on the system | |(on the unknowns, e.g.,
behavior) environment behavior)

complete system or
some of its components

formal system
specifications model

controller that render no such
the system to controller
satisfy the spec’s exists

satisfied violated
(+certificate) (+counterexample)

This short-course is on this picture applied to a particular class
of systems/problems.

requirements assumptions
(on the system | |(on the unknowns, e.g.,
behavior) environment behawor)

complete system or
some of its components

-

formal
{, specifications
-

This lecture
IS an intro
to these.

satisfied violated controller that render no such

(+certificate) (tcounterexample) S ;Esf;);it:Tpgz’s COQ;?;ISIer

Finite fransition system

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

* inputs,

* outputs, and

* internal states and transitions between the states.

Finite fransition system

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

* inputs,

* outputs, and

* internal states and transitions between the states.

front rear

__Pad | pac

()
{door is open}

{door is not open}

Finite fransition system

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

* inputs,

* outputs, and

* internal states and transitions between the states.

front rear

E%d pad

door

front

~@ W
{door is open}

{door is not open}

Finite fransition system

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

* inputs,

* outputs, and

* internal states and transitions between the states.

front rear

- pad

Rd O
{door is open}

{door is not open}

neither

Finite fransition system

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

* inputs,

* outputs, and

* internal states and transitions between the states.

front rear

- pad

door

rear, both, neither front, rear, both
front

R O
{door is open}

{door is not open}
neither

Finite fransition system

Example: Traffic logic planner in Alice.

ROAD REGIONI
STO,NPS

coll.-free path found
stopped & obs detected

< DR,PS !; STO,PS
coll.-free path found

passing finished or
obs disappeared

Partial nomenclature:
DR = drive.

TO = :
SIS g, DRPRS) g (STOPRS
NP = no passing, no N - coll-free path found

reversing. I backup finished| |7 coll-free path &

no coll-free path

Il th &
passing finished or obs disappeared nci DR PR & aa

— . . . HDRPRS>=M &
P= passing, NO reversing. & HBACKUP <N R,

!) coll-free path for no coll.-free paltq Hianes > |
PR = passing, reversing DRPRS found &H#DRPRS >=
allowed.

& #Hlanes = |
S = safe clearance with
obstacle.
A = aggressive clearance
with obstacle.
B = no clearance with

o coll-free path & #lanes > |

backup finished - fé ACKUP

& HBACKUP >=

— _no coll-free path

no coll-free path & Hlanes = |

(coll.-fnee path found
coll-free path for
DRA found

no coll-free path

no coll.-free p3
& Hlanes=

OFF-ROAD FAILED PAUSED

obstacle. e path found \l

oll-free path

Finite fransition system

Example: Traffic lights.

traffic
light |

(87 (87

{91}

traffic
light |

traffic
light 2

controller

@
Bl s

{92}

traffic
light 2

environment

Preliminaries

A proposition is a statement that can be either true or false, but not both.

Examples:
- “Traffic light is green” is a proposition.
*“The front pad is occupied” is a proposition.
* “Is the front pad?” is not a proposition.

Preliminaries

A proposition is a statement that can be either true or false, but not both.

Examples:
- “Traffic light is green” is a proposition.
*“The front pad is occupied” is a proposition.
* “Is the front pad?” is not a proposition.

An atomic proposition is one whose truth or falsity does not depend on the
truth or falsity of any other proposition.

Examples:
* All propositions above are atomic propositions.
* “If traffic light is green, the car can drive” is not an atomic proposition.

Preliminaries

A proposition is a statement that can be either true or false, but not both.

Examples:
- “Traffic light is green” is a proposition.
*“The front pad is occupied” is a proposition.
* “Is the front pad?” is not a proposition.

An atomic proposition is one whose truth or falsity does not depend on the
truth or falsity of any other proposition.

Examples:
* All propositions above are atomic propositions.
* “If traffic light is green, the car can drive” is not an atomic proposition.

For notational brevity, use propositional variables to abbreviate propositions. For
example,

Traffic light is green

Front pad is occupied

Finite fransition system
A transition system TS is a tuple T'S = (S, Act, —, I, AP, L), where

S is a set of states,

Act is a set of actions,

—C 8§ x Act x S is a transition relation,
I C S is a set of initial states,

AP is a set of atomic propositions,

L: S — 24F is a labeling function, and

TS is called finite it S, Act, and AP are finite.

example

~

. @
rear, both, neither front, rear,both | S ={q0, ¢}
front Act = {rear, front, both, neither}

— = {(QO) f’l"OTLt, Ch), (C]1, neither? QO)7

\ @ (q1,rear,q1),...}
I ={qo}

L(qo) = {door is not open}
kL<Q1) = {door is open}

{door is not open} {door is open}

neither

Finite fransition system
A transition system TS is a tuple T'S = (S, Act, —, I, AP, L), where

S is a set of states, -
* AP depends on the

characteristics of the
Hg S X ACt X S 1S a transition I‘ela,tion, System of interest.

* For state s, L(s) is the set
of atomic propositions
that are satisfied at s.

L:S — 247 ig a labeling function, and * Labels model outputs or
observables.

Act is a set of actions,

I C S is a set of initial states,

AP is a set of atomic propositions,

TS is called finite if S, Act, and AP are finite. * Actions model inputs or

“communication.”)

example

. s ~
rear, both, neither front, rear, both S =1q0,q1}

front Act = {rear, front, both, neither}
= {(Q(b f’l“Ont, Q1)7 (Q17 neith@ra QO)7

\ @ (q1,rear,q1),...}
I'=1{qo}

L(qo) = {door is not open}

{door is open} kL<Q1) = {door is open}

d is not .
{door is not open} either

Propositional logic

Given finite set AP of atomic propositions, the set of
propositional logic formulas is inductively defined by:

true is a formula;
any a € AP is a formula;

From “Specifying Systems” by
L. Lamport: Propositional logic
is the math of the Boolean
values, true and false, and the
operators —, A, V,—

it 91, @2, and ¢ are formulas, so are =¢ and @1 N ¢o; and

nothing else is a formula.

Pruo pos|-|-|ona| |09|C From “Specifying Systems” by

L. Lamport: Propositional logic
is the math of the Boolean
values, true and false, and the
operators —, A, V,—

Given finite set AP of atomic propositions, the set of
propositional logic formulas is inductively defined by:

true is a formula;

any a € AP is a formula;

it 91, @2, and ¢ are formulas, so are =¢ and @1 N ¢o; and
nothing else is a formula.

Notation
Connectives:

— (negation), A (and)

V (or), — (implies)

] for “true” and O for “false.”

Example propositional logic
formulas obtained by applying the
above four rules:

P1V @2 = = (=p1 A o)
P1 — @2 1= "P1 V @2

Propositional logic

Given finite set AP of atomic propositions, the set of
propositional logic formulas is inductively defined by:

true is a formula;
any a € AP is a formula;

From “Specifying Systems” by
L. Lamport: Propositional logic
is the math of the Boolean
values, true and false, and the
operators —, A, V,—

it 91, @2, and ¢ are formulas, so are =¢ and @1 N ¢o; and

nothing else is a formula.

Notation
Connectives:

— (negation), A (and)

V (or), — (implies)

] for “true” and O for “false.”

Example propositional logic
formulas obtained by applying the
above four rules:

P1V @2 1= —(—¢1 A 2)
P1 — @2 1= "P1 V @2

The evaluation function p: AP — {0,1}
assigns a truth value to each a € AP.

The truth value u(®) of a formula ®
is determined by substituting the
values for the atomic propositions
specified by u.

Given: AP ={a,b,c}, u(a) =0 and
p(b) = pfc) = 1.
¢y =(@an-b) Ve, p(d®)=1
by =(aNn-b)ANe, p(Pe) =0

Logical dynamical system as a finite transition system

r1|k + 1] = zolk] V ulk], 1[0
rolk + 1] = x1|k| Aulk], x2[0
ylk| = z1[k] ® wo|K]

$1 D ¢2 1= (71 A g2) V (91 A =¢h2)
XOR (exclusive or) gives true only if

exactly one of the operands is true.

S ={0,1}"
Act ={0,1}
I'=1{(0,1)}

AP = {y}

{y} (indicating 1) if 1 ©axy =1
 (indicating 0) otherwise

oo - |

\ J

Concurrent systems

Systems in which multiple tasks can be executed at the same time potentially with inter-task
communication and resource sharing.

Concurrent systems

Systems in which multiple tasks can be executed at the same time potentially with inter-task
communication and resource sharing.

suspended
Single threaded execution Multi-threaded execution execution

Example: multi-threaded control
i) [T i ﬁf
* Separate code into read meas gyp] (wait)

write ctrl ‘

(wait)

independent threads computation
Switch between threads,
allowing each to run Thread Usage in Alice (DGCO05)

simu It&ﬂGOUSl)’ Supervisory Control

POtentiaI PrObIemS: Road Finding Cost Map Path Planner > Path Follower Vehicle
deadlocks, race conditions A T AEaRon

Y

Elevation Map State Estimator Vehicle

Modes of communication Se“f"’s l x

between the subsystems: P T— L
* hand-shaking (leads to
synchrony)
changing the values of
shared variables (leads to
asynchrony)

Environment

Module Threads Module Threads

adrive (actuation) 19 ladarFeeder (5) 8
trajFollower 10 stereoFeeder (2)
astate (state estimator) 10 road (road follower)
plannerModule 4 superCon
fusionMapper 16 DBS

* doesn’t count heartbeat and logging threads

Composition of transition systems (by handshaking)

Let TSl — (Sl, ACtl, —1, 11, APl, Ll) and TSQ — (SQ, ACtQ, —9, IQ, APQ, Lg)
be transition systems. Their parallel composition, T'S1||TSs is the transition
system defined by

T51||TS2 — (Sl X SQ,ACtl U ACtQ, —>,Il X IQ,APl U APQ,L)
where L((s1,s2)) = L1(s1) U La(s2) and — is defined by the following rules:

o If o € Act; N Acta, 51 —1 s}, and sy —9 85, then (s1,52) — (s, 55).

«

o If v € Acty \ Acty and s; —1 s}, then (s1,s2) — (s, 52).

o If o € Acty \ Acty and sy —9 sh, then (s1,52) — (51, 85).

0 3 {92}

q2, 51 q2, 52

{91} {92} gy P g g0

traffic traffic
light | light 2

Composition of transition systems (by handshaking)

Let TSl — (Sl, ACtl, —1, 11, APl, Ll) and TSQ = (SQ, ACtQ, —9, IQ, APQ, Lg)
be transition systems. Their parallel composition, T'S1||TSs is the transition
system defined by

T51||TS2 — (Sl X SQ,ACtl U ACtQ, —>,Il X IQ,APl U APQ,L)
where L((s1,s2)) = L1(s1) U La(s2) and — is defined by the following rules:

o If o € Act; N Acta, 51 —1 s}, and sy —9 85, then (s1,52) — (s, 55).

«

o If v € Acty \ Acty and s; —1 s}, then (s1,s2) — (s, 52).

o If o € Acty \ Acty and sy —9 sh, then (s1,52) — (51, 85).

{91} {92}

traffic traffic
light | light 2

Composition of transition systems (by handshaking)

Let TSl — (Sl, ACtl, —1, 11, APl, Ll) and TSQ — (SQ, ACtQ, —9, IQ, APQ, Lg)
be transition systems. Their parallel composition, T'S1||TSs is the transition
system defined by

T51||TS2 = (Sl X SQ,ACtl U ACtQ,—>,Il X IQ,APl U APQ,L)

where L((s1,s2)) = L1(s1) U La(s2) and — is defined by the following rules:

(8%

o If o € Act; N Acta, 51 —1 s}, and sy —9 85, then (s1,52) — (s, 55).

«

o If v € Acty \ Acty and s; —1 s}, then (s1,s2) — (s, 52).

o If « € Acty \ Acty and so s sh, then (sq, s9) = (81, 52

0 3 {92}

Q1 S2

g2, S1 C]2 S92

{91} {92} {91} g {91, 92}

traffic traffic g2}
Ilght I I|ght 2 ontr’O”er + Unreachable

states

Paths of a finite transition system

Given a transition system T'S = (S, Act, —, 1, AP, L).
Fors € S,

Post(s) := {s’ €S :3a € Act s.t. 5= s’}

* Example: Post((0,0)) = {(0,0),(1,0)}.

* A state s is terminal iff Post(s) is empty.

Paths of a finite transition system

Given a transition system T'S = (S, Act, —, 1, AP, L).
Fors € S,

Post(s) := {s’ €S :3a € Act s.t. 5= s’}

* Example: Post((0,0)) = {(0,0),(1,0)}.

* A state s is terminal iff Post(s) is empty.

Paths of a finite transition system

Given a transition system T'S = (S, Act, —, 1, AP, L).
Fors € S,

Post(s) := {s’ €S :3a € Act s.t. 5= s’}

* Example: Post((0,0)) = {(0,0),(1,0)}.
* A state s is terminal iff Post(s) is empty.
* A sequence of states, either finite ™ = sps5182... Sy

or infinite m = spsysy...,is a path fragment if
s;11 € Post(s;), Vi > 0.

-

(0,1) == (1,0) 5 (1,1) & (1,1) & - .

(1,0) = (0,0) 2 (0,0) = (1,0) = ---

Paths of a finite transition system

Given a transition system T'S = (S, Act, —, 1, AP, L).
Fors € S,

Post(s) := {s’ €S :3a € Act s.t. 5= s’}

* Example: Post((0,0)) = {(0,0),(1,0)}.
* A state s is terminal iff Post(s) is empty.
* A sequence of states, either finite ™ = sps5182... Sy

or infinite m = spsysy...,is a path fragment if
s;11 € Post(s;), Vi > 0.

‘a path°
(0,1) = (1,0) 5 (1,1) 5 (1,1) &
not a path

* A path is a path fragment s.t. sg € [
and it is
- either finite with terminal S,
- or infinite. (1,0) 2 (0,0) = (0,0) = (1,0) >
* Denote the set of paths

h.
in TS by Path(TS). nota pat

(() 1) — (1 O) (1,1).

Traces of a finite transition system

. . . Equivalent FSMs w/ and w/o terminal state
Consider a finite transition system

TS = (S, Act, —, 1, AP, L) OO 0=0
with no terminal states (wlog). @ () @

The trace of an infinite path fragment 7 = s¢s;s, ... is defined by
trace(m) = L(sg)L(s1)L(s32) ...+ |
The set, Traces(TS), of traces of TS is defined by {Sequence of sets of atomlc}

propositions that are valid in

Traces(TS) = {trace(mw) : m € Paths(TS)} the states along the path

Traces of a finite transition system

. . . Equivalent FSMs w/ and w/o terminal state
Consider a finite transition system

TS = (S, Act, —, 1, AP, L) OO 0=0
with no terminal states (wlog). @ () @

The trace of an infinite path fragment 7 = s¢s;s, ... is defined by

trace(mw) = L(sg)L(s1)L(s2) .. .- |
sequence of sets of atomic}

propositions that are valid in
the states along the path

The set, Traces(TS), of traces of TS is defined by {

Traces(TS) = {trace(w) : m € Paths(TS)}

rear, both, neither front, rear, both

Actions: f, f,n,b, f, f,0,...

Path: qoq14190900191q1 - - -
Trace: —o0,0,0,—0,70,0,0,0,...

{dooris not open} | iiher {door is open}

(with some abuse of notation)

Linear-time properties

A linear-time (LT') property P over atomic propositions in AP
is a set of infinite sequences over 247 .

Let P be an LT property over AP and T'S = (S, Act,—,I, AP, L) be a

transition system.
T'S satisfies P, denoted as T'S = P, iff Traces(TS) C P.

Linear-time properties

A linear-time (LT') property P over atomic propositions in AP
is a set of infinite sequences over 247 .

Let P be an LT property over AP and T'S = (S, Act,—,I, AP, L) be a

transition system.

TS satisfies P, denoted as T'S = P ’ e
traces of TS

admissible, desired, undesired, etc. behavior

Linear-time properties

A linear-time (LT') property P over atomic propositions in AP
is a set of infinite sequences over 247 .

Let P be an LT property over AP and T'S = (S, Act,—,1, AP, L) be a
transition system.

T'S satisfies P, denoted as T'S = P ’ e
traces of TS

admissible, desired, undesired, etc. behavior

Example: AP = {redl, greenl,red2, green2}

Pl ="The first light is infinitely often green.”

| AgA1As ... with greenl € A; C 2AP holds
for infinitely many i]

v oArl, g2 g1, r2H{r1,g2}{g1,7r2} ...
J 0{g1}0{g1}0{g1}0. ..

vV {91, 92}{g1, g2}{g1, 92} ...

< {rl,g2}{r1g1}00...

P2 =“The lights are never both green simultaneously.”

[AgA1As ... with greenl ¢ A; or green2 ¢ Aj;,
for all ¢ > 0]

Linear-time properties

A linear-time (LT') property P over atomic propositions in AP
is a set of infinite sequences over 247 .

Let P be an LT property over AP and T'S = (S, Act,—,1, AP, L) be a
transition system.

TS satisfies P, denoted as T'S = P, i

traces of 7'S
admissible, desired, undesired, etc. behavior

Example: AP = {redl, greenl,red2, green2}

Pl ="The first light is infinitely often green.”

| AgA1As ... with greenl € A; C 2AP holds
for infinitely many i]

v oArl, g2 H{gl,r2}H{r1, 92} {g1,72} ... 1, 82, C3
Vv 0{g1}0{g1}0{g1}0... o
v {91,92Hg1,92}{g1,92} ... + Unreachable
< Arl, g2H{rig1}00. .. states

99

P2 =“The lights are never both green simultaneously.

[AgA1As ... with greenl ¢ A; or green2 ¢ Aj;,
for all ¢ > 0]

Linear-time properties

A linear-time (LT') property P over atomic propositions in AP
is a set of infinite sequences over 247 .

Let P be an LT property over AP and T'S = (S, Act,—,1, AP, L) be a
transition system.

TS satisfies P, denoted as T'S = P, i

traces of 7'S
admissible, desired, undesired, etc. behavior

Example: AP = {redl, greenl,red2, green2}

Pl ="The first light is infinitely often green.”

| AgA1As ... with greenl € A; C 2AP holds
for infinitely many i]

v oArl, g2 H{gl,r2}H{r1, 92} {g1,72} ... 1, 82, C3
vV 0{g1}0{g1}0{g1}0... {92}
v {91,92Hg1,92}{g1,92} ... + Unreachable

X {7“1, gQ}{rlgl}@@ ... states
N The transition system

P2 =“The lights are never both green simultaneously. satisfies P2. but it does

[AgA1As ... with greenl ¢ A; or green2 & A;, not satisfy PI.
for all i > 0]

Invariants

An LT property Pg over AP is an invariant with
respect to a propositional logic formula ® over AP if

P@Z{AoAlAQ...E(QAP)w : Aj :(I)VJZO}

Invariants

Notation: repeat
An LT property Pg over AP is an invariant with infinitely many times

respect to a propositional logic formula ® over AP if /
"For A C AP, let the)
K — Y

Py = {AgA1As... € (227) . A; |E ® V) >0}, evaluation u4 be the

characteristic function

\ of A.

A pa(P) =1

J

Invariants

Notation: repeat
An LT property Pg over AP is an invariant with infinitely many times

respect to a propositional logic formula ® over AP if /
S "For A C AP, let the A

Pp = {AgA1 Ay ... € (24)Y . A; E ® V) > 0}. evaluation 114 be the

characteristic function

\ of A.

A pa(P) =1

/

Example: The LT property “the lights are never both green simultaneously” is an
invariant with respect to ® = —greenl V —green2.

Invariants

Notation: repeat
An LT property Pg over AP is an invariant with infinitely many times

respect to a propositional logic formula ® over AP if /
S "For A C AP, let the A

Pp = {AgA1 Ay ... € (24)Y . A; E ® V) > 0}. evaluation 114 be the

characteristic function

\ of A.

A pa(P) =1

/

Example: The LT property “the lights are never both green simultaneously” is an
invariant with respect to ® = —greenl V —green2.

Given T'S, ®, and Py, T'S = Ps? ‘A state s is reachable if there exists an
execution fragment s.t. so € I and

The following four statements are

equivalent. .
|. TS = Py Reach(T'S) :set of reachable states in TSJ

2. trace(w) € Pp, Vr € Path(TS)

3. L(s) = ®, Vs € S on a path of T'S Invariants are state properties.
4. L(s) = ®, Vs € Reach(TS) That is, for verification, find the

reachable states and check P.

al a9 an
So —> 81 —>r —> 8, =S

Safety properties

An LT property Psqre is a safety property if for all words
o € (QAP)“’\PSQJ:@ there exists a finite prefix ¢ of o s.t.

Piare N {0’ € (247)¥ : 5 is a finite prefix of o'} = 0.

Bad things have happened in the bad prefix J.Hence, no infinite word that
starts with O satisfies P fe .

Safety properties

An LT property Psqre is a safety property if for all words
o € (ZAP)“’\Psafe there exists a finite prefix ¢ of o s.t.

Piare N {0’ € (247)¥ : 5 is a finite prefix of o'} = 0.

Bad things have happened in the bad prefix J.Hence, no infinite word that
starts with O satisfies P fe .

Example: AP = {red, green, yellow}

 “At least one of the lights is always on”
is a safety property.

{O':A()Al... . Aj QAP/\AJ #@}
Bad prefixes: finite words that contain ().

* “Two lights are never on at the same
time” is a safety property.

{O':A()Al... . AngP/\CCLTd(Aj)Sl}

Bad prefixes: finite words that contain
{red,green}, {red,yellow}, and so on.

Safety properties

An LT property Psqre is a safety property if for all words
o € (ZAP)“’\Psafe there exists a finite prefix ¢ of o s.t.

Piare N {0’ € (247)¥ : 5 is a finite prefix of o'} = 0.

Bad things have happened in the bad prefix J.Hence, no infinite word that

starts with O satisfies P fe .

Example: AP = {red, green, yellow}

 “At least one of the lights is always on”
is a safety property.

{O':A()Al... . Aj QAP/\AJ #@}
Bad prefixes: finite words that contain ().

* “Two lights are never on at the same
time” is a safety property.

{O':A()Al... . AngP/\CCLTd(Aj)él}

Bad prefixes: finite words that contain
{red,green}, {red,yellow}, and so on.

Any invariant is a safety
property. There are safety
properties that are not invariant.

Example: AP = {red, yellow}

“Each red is immediately preceded
by a yellow” is a safety property,
but not invariant (because it is not
a state property).

Sample bad prefixes:
D0{r}
{yHyHrH{ry0{r}

Liveness properties

An LT property P is a liveness property if and only if for each
finite word w of 24 there exists an infinite word o € (24F)«
satistying wo € P.

Example: Two traffic lights with AP = {redl, greenl, red2, green2}

* First light will eventually turn green
* First light will turn green infinitely often

Liveness properties

An LT property P is a liveness property if and only if for each
2AP)w

finite word w of 2% there exists an infinite word o € (
satistying wo € P.

Example: Two traffic lights with AP = {redl, greenl, red2, green2}

* First light will eventually turn green
» First light will turn green infinitely often

Use of liveness properties:
- specify the absence of (undesired) infinite loops or progress toward a goal.
* rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous
execution, every process is activate infinitely often.

Liveness properties

An LT property P is a liveness property if and only if for each
finite word w of 24 there exists an infinite word o € (24F)«
satistying wo € P.

Example: Two traffic lights with AP = {redl, greenl, red2, green2}

* First light will eventually turn green
» First light will turn green infinitely often

Use of liveness properties:
- specify the absence of (undesired) infinite loops or progress toward a goal.
* rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous
execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property!?

“the first light is eventually green
after it is initially red three time instances in a row”

Liveness properties

An LT property P is a liveness property if and only if for each
finite word w of 24 there exists an infinite word o € (24F)«
satistying wo € P.

Example: Two traffic lights with AP = {redl, greenl, red2, green2}

* First light will eventually turn green
» First light will turn green infinitely often

Use of liveness properties:
- specify the absence of (undesired) infinite loops or progress toward a goal.
* rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous
execution, every process is activate infinitely often.

liveness

AP\ * AP\w
Example: Is the following a safety or liveness property? (2%7) g1 (277)

“the first light is eventually green
after it is initially red three time instances in a row”

Answer: It is a combination of a safety and a liveness property.

- Liveness: any finite word can be extended by an infinite word ApA;A> ... with
greenl € A; forsome j>0.
- Safety: any finite word AoA1 A with redl ¢ A; for any i € {0,1,2} is a bad prefix.

|7

Invariant

state condition

violated at
individual states

verification: find the
reachable states and check
the invariant condition

Safety

something bad
never happens

any infinite run
violating the property
has a finite prefix

verification:

f?

Liveness

something good
will happen
eventually

violated only by infinite
runs

verification:

