
Lecture 2
Automata Theory

Ufuk Topcu

Nok Wongpiromsarn Richard M. Murray

EECI, 14 May 2012

Outline
• Modeling (discrete) concurrent

systems: transition systems,
concurrency and interleaving

• Linear-time properties:
invariants, safety and liveness
properties

Principles of Model Checking,
C. Baier and J.-P. Katoen,
The MIT Press, 2008

Chapters 2.1, 2.2, 3.2-3.4

2

requirements
(on the system

behavior)

assumptions
(on the unknowns, e.g.,
environment behavior)

complete system or
some of its components

requirements
(on the system

behavior)

satisfied
(+certificate)

violated
(+counterexample)

verification

controller that render
the system to

satisfy the spec’s

no such
controller

exists

synthesis

This short-course is on this picture applied to a particular class
of systems/problems.

2

requirements
(on the system

behavior)

assumptions
(on the unknowns, e.g.,
environment behavior)

complete system or
some of its components

requirements
(on the system

behavior)

satisfied
(+certificate)

violated
(+counterexample)

verification

controller that render
the system to

satisfy the spec’s

no such
controller

exists

synthesis

This short-course is on this picture applied to a particular class
of systems/problems.

formal
specifications

system
model

This lecture
is an intro
to these.

2

requirements
(on the system

behavior)

assumptions
(on the unknowns, e.g.,
environment behavior)

complete system or
some of its components

requirements
(on the system

behavior)

satisfied
(+certificate)

violated
(+counterexample)

verification

controller that render
the system to

satisfy the spec’s

no such
controller

exists

synthesis

This short-course is on this picture applied to a particular class
of systems/problems.

formal
specifications

system
model

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states.

Finite transition system

3

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states.

Finite transition system

front
pad

rear
pad

door

3

q1
{door is open}

q0

{door is not open}

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states.

Finite transition system

front
pad

rear
pad

door

3

front

q1
{door is open}

q0

{door is not open}

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states.

Finite transition system

front
pad

rear
pad

door

3

front

neither

q1
{door is open}

q0

{door is not open}

A finite transition system is a mathematical description of the behavior of
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states.

Finite transition system

front
pad

rear
pad

door

3

rear, both, neither front, rear, both
front

neither

q1
{door is open}

q0

{door is not open}

Finite transition system

4

Example: Traffic logic planner in Alice.

DR = drive.
STO = stop.
NP = no passing, no
reversing.
P = passing, no reversing.
PR = passing, reversing
allowed.
S = safe clearance with
obstacle.
A = aggressive clearance
with obstacle.
B = no clearance with
obstacle.

Partial nomenclature:

Finite transition system

5

Example: Traffic lights.

traffic
light 2

traffic
light 1

α

q1

q2

α

�

{g1}
traffic
light 1

s2

s1

β β

�

{g2}
traffic
light 2

β β

α α

�

�

�
c1

c2

c3

controller

environment

e1

e2

γ1 γ2

γ1

γ2

A proposition is a statement that can be either true or false, but not both.

Examples:
• “Traffic light is green” is a proposition.
• “The front pad is occupied” is a proposition.
• “Is the front pad?” is not a proposition.

Preliminaries

6

A proposition is a statement that can be either true or false, but not both.

Examples:
• “Traffic light is green” is a proposition.
• “The front pad is occupied” is a proposition.
• “Is the front pad?” is not a proposition.

An atomic proposition is one whose truth or falsity does not depend on the
truth or falsity of any other proposition.

Examples:
• All propositions above are atomic propositions.
• “If traffic light is green, the car can drive” is not an atomic proposition.

Preliminaries

6

A proposition is a statement that can be either true or false, but not both.

Examples:
• “Traffic light is green” is a proposition.
• “The front pad is occupied” is a proposition.
• “Is the front pad?” is not a proposition.

An atomic proposition is one whose truth or falsity does not depend on the
truth or falsity of any other proposition.

Examples:
• All propositions above are atomic propositions.
• “If traffic light is green, the car can drive” is not an atomic proposition.

Preliminaries

For notational brevity, use propositional variables to abbreviate propositions. For
example,

p ≡ Traffic light is green

q ≡ Front pad is occupied
6

Finite transition system
A transition system TS is a tuple TS = (S, Act,→, I, AP,L), where

• S is a set of states,

• Act is a set of actions,

• →⊆ S ×Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S → 2AP is a labeling function, and

TS is called finite if S, Act, and AP are finite.

7

q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

S = {q0, q1}
Act = {rear, front, both, neither}
→= {(q0, front, q1), (q1, neither, q0),

(q1, rear, q1), . . .}
I = {q0}
L(q0) = {door is not open}
L(q1) = {door is open}

example

Finite transition system
A transition system TS is a tuple TS = (S, Act,→, I, AP,L), where

• S is a set of states,

• Act is a set of actions,

• →⊆ S ×Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S → 2AP is a labeling function, and

TS is called finite if S, Act, and AP are finite.

7

q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

S = {q0, q1}
Act = {rear, front, both, neither}
→= {(q0, front, q1), (q1, neither, q0),

(q1, rear, q1), . . .}
I = {q0}
L(q0) = {door is not open}
L(q1) = {door is open}

example

• AP depends on the
characteristics of the
system of interest.

• For state s, L(s) is the set
of atomic propositions
that are satisfied at s.

• Labels model outputs or
observables.

• Actions model inputs or
“communication.”

Propositional logic

8

Given finite set AP of atomic propositions, the set of
propositional logic formulas is inductively defined by:
- true is a formula;
- any a ∈ AP is a formula;
- if φ1, φ2, and φ are formulas, so are ¬φ and φ1 ∧ φ2; and
- nothing else is a formula.

From “Specifying Systems” by
L. Lamport: Propositional logic
is the math of the Boolean
values, true and false, and the
operators ¬,∧,∨,→

Propositional logic

8

Given finite set AP of atomic propositions, the set of
propositional logic formulas is inductively defined by:
- true is a formula;
- any a ∈ AP is a formula;
- if φ1, φ2, and φ are formulas, so are ¬φ and φ1 ∧ φ2; and
- nothing else is a formula.

Notation
•Connectives:

•1 for “true” and 0 for “false.”

¬ (negation), ∧ (and)
∨ (or), → (implies)

Example propositional logic
formulas obtained by applying the
above four rules:

φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)
φ1 → φ2 := ¬φ1 ∨ φ2

From “Specifying Systems” by
L. Lamport: Propositional logic
is the math of the Boolean
values, true and false, and the
operators ¬,∧,∨,→

Propositional logic

8

Given finite set AP of atomic propositions, the set of
propositional logic formulas is inductively defined by:
- true is a formula;
- any a ∈ AP is a formula;
- if φ1, φ2, and φ are formulas, so are ¬φ and φ1 ∧ φ2; and
- nothing else is a formula.

Notation
•Connectives:

•1 for “true” and 0 for “false.”

¬ (negation), ∧ (and)
∨ (or), → (implies)

Example propositional logic
formulas obtained by applying the
above four rules:

φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)
φ1 → φ2 := ¬φ1 ∨ φ2

From “Specifying Systems” by
L. Lamport: Propositional logic
is the math of the Boolean
values, true and false, and the
operators ¬,∧,∨,→

The evaluation function µ : AP → {0, 1}
assigns a truth value to each a ∈ AP.

Given: AP = {a, b, c}, µ(a) = 0 and
µ(b) = µ(c) = 1.

Φ1 = (a ∧ ¬b) ∨ c, µ(Φ1) = 1
Φ2 = (a ∧ ¬b) ∧ c, µ(Φ2) = 0

The truth value µ(Φ) of a formula Φ
is determined by substituting the
values for the atomic propositions
specified by µ.

Logical dynamical system as a finite transition system

x1[k + 1] = x2[k] ∨ u[k], x1[0] = 0,

x2[k + 1] = x1[k] ∧ u[k], x2[0] = 1,

y[k] = x1[k]⊕ x2[k]

XOR (exclusive or) gives true only if
exactly one of the operands is true.

S = {0, 1]}2

Act = {0, 1}
I = {(0, 1)}

AP = {y}

L(x1, x2) =
�

{y} (indicating 1) if x1 ⊕ x2 = 0
∅ (indicating 0) otherwise

9

φ1 ⊕ φ2 := (¬φ1 ∧ φ2) ∨ (φ1 ∧ ¬φ2)

1

Concurrent systems

10

Systems in which multiple tasks can be executed at the same time potentially with inter-task
communication and resource sharing.

Modes of communication
between the subsystems:
• hand-shaking (leads to

synchrony)
• changing the values of

shared variables (leads to
asynchrony)

Example: multi-threaded control

• Separate code into
independent threads

• Switch between threads,
allowing each to run
simultaneously

• Potential problems:
deadlocks, race conditions

Thread Usage in Alice (DGC05)

Concurrent systems

10

Systems in which multiple tasks can be executed at the same time potentially with inter-task
communication and resource sharing.

Composition of transition systems (by handshaking)

11

q1

q2

α

∅

{g1}

α

∅
s1

s2

β β

{g2}
q2, s2

q1, s1

q2, s1

q1, s2

α α α α

β

β

β

β

{g2}∅

{g1} {g1, g2}

traffic
light 1

traffic
light 2

Let TS1 = (S1, Act1,→1, I1, AP1, L1) and TS2 = (S2, Act2,→2, I2, AP2, L2)
be transition systems. Their parallel composition, TS1||TS2 is the transition
system defined by

TS1||TS2 = (S1 × S2, Act1 ∪Act2,→, I1 × I2, AP1 ∪AP2, L)

where L(�s1, s2�) = L1(s1) ∪ L2(s2) and → is defined by the following rules:

• If α ∈ Act1 ∩Act2, s1
α→1 s�

1, and s2
α→2 s�

2, then �s1, s2�
α→ �s�

1, s
�
2�.

• If α ∈ Act1 \ Act2 and s1
α→1 s�

1, then �s1, s2�
α→ �s�

1, s2�.

• If α ∈ Act2 \ Act1 and s2
α→2 s�

2, then �s1, s2�
α→ �s1, s�

2�.

Composition of transition systems (by handshaking)

11

q1

q2

α

∅

{g1}

α

∅
s1

s2

β β

{g2}
q2, s2

q1, s1

q2, s1

q1, s2

α α α α

β

β

β

β

{g2}∅

{g1} {g1, g2}

traffic
light 1

traffic
light 2

Let TS1 = (S1, Act1,→1, I1, AP1, L1) and TS2 = (S2, Act2,→2, I2, AP2, L2)
be transition systems. Their parallel composition, TS1||TS2 is the transition
system defined by

TS1||TS2 = (S1 × S2, Act1 ∪Act2,→, I1 × I2, AP1 ∪AP2, L)

where L(�s1, s2�) = L1(s1) ∪ L2(s2) and → is defined by the following rules:

• If α ∈ Act1 ∩Act2, s1
α→1 s�

1, and s2
α→2 s�

2, then �s1, s2�
α→ �s�

1, s
�
2�.

• If α ∈ Act1 \ Act2 and s1
α→1 s�

1, then �s1, s2�
α→ �s�

1, s2�.

• If α ∈ Act2 \ Act1 and s2
α→2 s�

2, then �s1, s2�
α→ �s1, s�

2�.

Composition of transition systems (by handshaking)

11

q1

q2

α

∅

{g1}

α

∅
s1

s2

β β

{g2}
q2, s2

q1, s1

q2, s1

q1, s2

α α α α

β

β

β

β

{g2}∅

{g1} {g1, g2}

q2, s2

q1, s1

q2, s1

q1, s2

α α α α

β

β

β

β

{g2}∅

{g1} {g1, g2}

∅

β β

∅

α α

c1

c2

c3

∅

∅

β β

α α

q1, s1, c1

q2, s1, c2

q1, s2, c3

{g1}

{g2}
+ Unreachable

states

traffic
light 1

traffic
light 2 “controller”

Let TS1 = (S1, Act1,→1, I1, AP1, L1) and TS2 = (S2, Act2,→2, I2, AP2, L2)
be transition systems. Their parallel composition, TS1||TS2 is the transition
system defined by

TS1||TS2 = (S1 × S2, Act1 ∪Act2,→, I1 × I2, AP1 ∪AP2, L)

where L(�s1, s2�) = L1(s1) ∪ L2(s2) and → is defined by the following rules:

• If α ∈ Act1 ∩Act2, s1
α→1 s�

1, and s2
α→2 s�

2, then �s1, s2�
α→ �s�

1, s
�
2�.

• If α ∈ Act1 \ Act2 and s1
α→1 s�

1, then �s1, s2�
α→ �s�

1, s2�.

• If α ∈ Act2 \ Act1 and s2
α→2 s�

2, then �s1, s2�
α→ �s1, s�

2�.

Given a transition system .
For

• Example: Post((0,0)) = {(0,0),(1,0)}.

Paths of a finite transition system
TS = (S, Act,→, I, AP,L)

12

s ∈ S,

Post(s) :=
�

s� ∈ S : ∃a ∈ Act s.t. s
a−→ s�

�

• A state s is terminal iff Post(s) is empty.

Given a transition system .
For

• Example: Post((0,0)) = {(0,0),(1,0)}.

Paths of a finite transition system
TS = (S, Act,→, I, AP,L)

q

12

s ∈ S,

Post(s) :=
�

s� ∈ S : ∃a ∈ Act s.t. s
a−→ s�

�

• A state s is terminal iff Post(s) is empty.

π = s0s1s2 . . .
• A sequence of states, either finite
 or infinite , is a path fragment if

π = s0s1s2 . . . sn

si+1 ∈ Post(si), ∀i ≥ 0.

(0, 1) 0,1−−→ (1, 0) 1−→ (1, 1).

(0, 1) 0,1−−→ (1, 0) 1−→ (1, 1) 1−→ (1, 1) 0−→ · · ·

(1, 0) 0−→ (0, 0) 0−→ (0, 0) 1−→ (1, 0) 0−→ · · ·

Given a transition system .
For

• Example: Post((0,0)) = {(0,0),(1,0)}.

Paths of a finite transition system
TS = (S, Act,→, I, AP,L)

12

s ∈ S,

Post(s) :=
�

s� ∈ S : ∃a ∈ Act s.t. s
a−→ s�

�

• A state s is terminal iff Post(s) is empty.

π = s0s1s2 . . .
• A sequence of states, either finite
 or infinite , is a path fragment if

π = s0s1s2 . . . sn

si+1 ∈ Post(si), ∀i ≥ 0.

(0, 1) 0,1−−→ (1, 0) 1−→ (1, 1).

(0, 1) 0,1−−→ (1, 0) 1−→ (1, 1) 1−→ (1, 1) 0−→ · · ·

(1, 0) 0−→ (0, 0) 0−→ (0, 0) 1−→ (1, 0) 0−→ · · ·

Given a transition system .
For

• Example: Post((0,0)) = {(0,0),(1,0)}.

Paths of a finite transition system
TS = (S, Act,→, I, AP,L)

12

• A path is a path fragment s.t.
and it is

• either finite with terminal
• or infinite.

• Denote the set of paths
in TS by .

s0 ∈ I

sn

Path(TS)

a path:

not a path:

not a path:

s ∈ S,

Post(s) :=
�

s� ∈ S : ∃a ∈ Act s.t. s
a−→ s�

�

• A state s is terminal iff Post(s) is empty.

Traces of a finite transition system
Equivalent FSMs w/ and w/o terminal stateConsider a finite transition system

with no terminal states (wlog).
TS = (S, Act,→, I, AP,L)

The trace of an infinite path fragment is defined by

The set, , of traces of TS is defined by
 .

π = s0s1s2 . . .

trace(π) = L(s0)L(s1)L(s2) . . .

Traces(TS) = {trace(π) : π ∈ Paths(TS)}
Traces(TS) sequence of sets of atomic

propositions that are valid in
the states along the path

13

Traces of a finite transition system
Equivalent FSMs w/ and w/o terminal stateConsider a finite transition system

with no terminal states (wlog).
TS = (S, Act,→, I, AP,L)

The trace of an infinite path fragment is defined by

The set, , of traces of TS is defined by
 .

π = s0s1s2 . . .

trace(π) = L(s0)L(s1)L(s2) . . .

Traces(TS) = {trace(π) : π ∈ Paths(TS)}
Traces(TS) sequence of sets of atomic

propositions that are valid in
the states along the path

13

q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

Actions: f, f, n, b, f, f, b, . . .
Path: q0q1q1q0q0q1q1q1 . . .
Trace: ¬o, o, o,¬o,¬o, o, o, o, . . .

(with some abuse of notation)

Linear-time properties

Let P be an LT property over AP and TS = (S, Act,→, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

14

Linear-time properties

Let P be an LT property over AP and TS = (S, Act,→, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

14

traces of TS
admissible, desired, undesired, etc. behavior

Linear-time properties

Let P be an LT property over AP and TS = (S, Act,→, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

P1 = “The first light is infinitely often green.”

[A0A1A2 . . . with green1 ∈ Ai ⊆ 2AP holds
for infinitely many i]

AP = {red1, green1, red2, green2}Example:

{r1, g2}{g1, r2}{r1, g2}{g1, r2} . . .
∅{g1}∅{g1}∅{g1}∅ . . .
{g1, g2}{g1, g2}{g1, g2} . . .
{r1, g2}{r1g1}∅∅ . . .

√
√
√

×

P2 = “The lights are never both green simultaneously.”
[A0A1A2 . . . with green1 /∈ Ai or green2 /∈ Ai,
for all i ≥ 0]

14

traces of TS
admissible, desired, undesired, etc. behavior

q2, s2

q1, s1

q2, s1

q1, s2

α α α α

β

β

β

β

{g2}∅

{g1} {g1, g2}

∅

β β

∅

α α

c1

c2

c3

∅

∅

β β

α α

q1, s1, c1

q2, s1, c2

q1, s2, c3

{g1}

{g2}
+ Unreachable

states

Linear-time properties

Let P be an LT property over AP and TS = (S, Act,→, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

P1 = “The first light is infinitely often green.”

[A0A1A2 . . . with green1 ∈ Ai ⊆ 2AP holds
for infinitely many i]

AP = {red1, green1, red2, green2}Example:

{r1, g2}{g1, r2}{r1, g2}{g1, r2} . . .
∅{g1}∅{g1}∅{g1}∅ . . .
{g1, g2}{g1, g2}{g1, g2} . . .
{r1, g2}{r1g1}∅∅ . . .

√
√
√

×

P2 = “The lights are never both green simultaneously.”
[A0A1A2 . . . with green1 /∈ Ai or green2 /∈ Ai,
for all i ≥ 0]

14

traces of TS
admissible, desired, undesired, etc. behavior

q2, s2

q1, s1

q2, s1

q1, s2

α α α α

β

β

β

β

{g2}∅

{g1} {g1, g2}

∅

β β

∅

α α

c1

c2

c3

∅

∅

β β

α α

q1, s1, c1

q2, s1, c2

q1, s2, c3

{g1}

{g2}
+ Unreachable

states

The transition system
satisfies P2, but it does
not satisfy P1.

Linear-time properties

Let P be an LT property over AP and TS = (S, Act,→, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

P1 = “The first light is infinitely often green.”

[A0A1A2 . . . with green1 ∈ Ai ⊆ 2AP holds
for infinitely many i]

AP = {red1, green1, red2, green2}Example:

{r1, g2}{g1, r2}{r1, g2}{g1, r2} . . .
∅{g1}∅{g1}∅{g1}∅ . . .
{g1, g2}{g1, g2}{g1, g2} . . .
{r1, g2}{r1g1}∅∅ . . .

√
√
√

×

P2 = “The lights are never both green simultaneously.”
[A0A1A2 . . . with green1 /∈ Ai or green2 /∈ Ai,
for all i ≥ 0]

14

traces of TS
admissible, desired, undesired, etc. behavior

Invariants

PΦ = {A0A1A2 . . . ∈ (2AP)ω : Aj |= Φ ∀j ≥ 0}.

15

An LT property PΦ over AP is an invariant with
respect to a propositional logic formula Φ over AP if

Notation: repeat
infinitely many times

For A ⊆ AP , let the
evaluation µA be the
characteristic function
of A.

A |= Φ iff µA(Φ) = 1

Invariants

PΦ = {A0A1A2 . . . ∈ (2AP)ω : Aj |= Φ ∀j ≥ 0}.

15

An LT property PΦ over AP is an invariant with
respect to a propositional logic formula Φ over AP if

Notation: repeat
infinitely many times

For A ⊆ AP , let the
evaluation µA be the
characteristic function
of A.

A |= Φ iff µA(Φ) = 1

Invariants

PΦ = {A0A1A2 . . . ∈ (2AP)ω : Aj |= Φ ∀j ≥ 0}.

Example: The LT property “the lights are never both green simultaneously” is an
invariant with respect to .Φ = ¬green1 ∨ ¬green2

15

An LT property PΦ over AP is an invariant with
respect to a propositional logic formula Φ over AP if

Notation: repeat
infinitely many times

For A ⊆ AP , let the
evaluation µA be the
characteristic function
of A.

A |= Φ iff µA(Φ) = 1

Invariants

PΦ = {A0A1A2 . . . ∈ (2AP)ω : Aj |= Φ ∀j ≥ 0}.

Example: The LT property “the lights are never both green simultaneously” is an
invariant with respect to .Φ = ¬green1 ∨ ¬green2

15

An LT property PΦ over AP is an invariant with
respect to a propositional logic formula Φ over AP if

Given TS, Φ, and PΦ, TS |= PΦ?

The following four statements are
equivalent.
1.
2.
3.
4.

TS |= PΦ

trace(π) ∈ PΦ, ∀π ∈ Path(TS)
L(s) |= Φ, ∀s ∈ S on a path of TS

L(s) |= Φ, ∀s ∈ Reach(TS)

A state s is reachable if there exists an
execution fragment s.t. and

 : set of reachable states in TS

s0 ∈ I

s0
a1−→ s1

a2−→ · · · an−−→ sn = s

Reach(TS)

Invariants are state properties.
That is, for verification, find the
reachable states and check .Φ

Safety properties

Psafe ∩ {σ� ∈ (2AP)ω : σ̂ is a finite prefix of σ�} = ∅.

An LT property Psafe is a safety property if for all words
σ ∈ (2AP)ω\Psafe there exists a finite prefix σ̂ of σ s.t.

Bad things have happened in the bad prefix . Hence, no infinite word that
starts with satisfies .

σ̂
σ̂ Psafe

16

Safety properties

Psafe ∩ {σ� ∈ (2AP)ω : σ̂ is a finite prefix of σ�} = ∅.

An LT property Psafe is a safety property if for all words
σ ∈ (2AP)ω\Psafe there exists a finite prefix σ̂ of σ s.t.

Bad things have happened in the bad prefix . Hence, no infinite word that
starts with satisfies .

σ̂
σ̂ Psafe

Example: AP = {red, green, yellow}

• “At least one of the lights is always on”
is a safety property.

{σ = A0A1 . . . : Aj ⊆ AP ∧Aj �= ∅}
Bad prefixes: finite words that contain . ∅

• “Two lights are never on at the same
time” is a safety property.

{σ = A0A1 . . . : Aj ⊆ AP ∧ card(Aj) ≤ 1}

Bad prefixes: finite words that contain
{red,green}, {red,yellow}, and so on.

16

Safety properties

Psafe ∩ {σ� ∈ (2AP)ω : σ̂ is a finite prefix of σ�} = ∅.

An LT property Psafe is a safety property if for all words
σ ∈ (2AP)ω\Psafe there exists a finite prefix σ̂ of σ s.t.

Bad things have happened in the bad prefix . Hence, no infinite word that
starts with satisfies .

σ̂
σ̂ Psafe

Example: AP = {red, green, yellow}

• “At least one of the lights is always on”
is a safety property.

{σ = A0A1 . . . : Aj ⊆ AP ∧Aj �= ∅}
Bad prefixes: finite words that contain . ∅

• “Two lights are never on at the same
time” is a safety property.

{σ = A0A1 . . . : Aj ⊆ AP ∧ card(Aj) ≤ 1}

Bad prefixes: finite words that contain
{red,green}, {red,yellow}, and so on.

16

Any invariant is a safety
property. There are safety
properties that are not invariant.

Example: AP = {red, yellow}

“Each red is immediately preceded
by a yellow” is a safety property,
but not invariant (because it is not
a state property).

Sample bad prefixes:
∅∅{r}
{y}{y}{r}{r}∅{r}

Example: Two traffic lights with
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties

17

An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word σ ∈ (2AP)ω

satisfying wσ ∈ P.

AP = {red1, green1, red2, green2}

Example: Two traffic lights with
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties

17

An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word σ ∈ (2AP)ω

satisfying wσ ∈ P.

AP = {red1, green1, red2, green2}

Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous
execution, every process is activate infinitely often.

Example: Two traffic lights with
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties

17

An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word σ ∈ (2AP)ω

satisfying wσ ∈ P.

AP = {red1, green1, red2, green2}

Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous
execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

“the first light is eventually green
after it is initially red three time instances in a row”

Example: Two traffic lights with
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties

17

An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word σ ∈ (2AP)ω

satisfying wσ ∈ P.

AP = {red1, green1, red2, green2}

Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous
execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

“the first light is eventually green
after it is initially red three time instances in a row”

green1 ∈ Aj j ≥ 0
A0A1A2

Answer: It is a combination of a safety and a liveness property.
• Liveness: any finite word can be extended by an infinite word with
 for some .
• Safety: any finite word with for any is a bad prefix.

A0A1A2 . . .

red1 /∈ Ai i ∈ {0, 1, 2}

(2AP)∗g1(2AP)ωr1r1r1(2AP)ω

safety liveness

18

SafetyInvariant Liveness

state condition something bad
never happens

something good
will happen
eventually

violated at
individual states

any infinite run
violating the property

has a finite prefix

violated only by infinite
runs

verification: find the
reachable states and check

the invariant condition

verification: verification:

? ?

