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Outline
• Modeling (discrete) concurrent 

systems: transition systems, 
concurrency and interleaving

• Linear-time properties: 
invariants, safety and liveness 
properties
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A finite transition system is a mathematical description of the behavior of 
systems, plants, controllers or environments with finite (discrete)

• inputs,
• outputs, and
• internal states and transitions between the states. 
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Finite transition system
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Example: Traffic logic planner in Alice. 

DR = drive.
STO = stop.
NP = no passing, no 
reversing.
P = passing, no reversing.
PR = passing, reversing 
allowed.
S = safe clearance with 
obstacle.
A = aggressive clearance 
with obstacle.
B = no clearance with 
obstacle.

Partial nomenclature:



Finite transition system
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A proposition is a statement that can be either true or false, but not both.

Examples:
• “Traffic light is green” is a proposition.
• “The front pad is occupied” is a proposition.
• “Is the front pad?” is not a proposition.

Preliminaries 
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Preliminaries 

For notational brevity, use propositional variables to abbreviate propositions. For 
example, 

p ≡ Traffic light is green

q ≡ Front pad is occupied
6



Finite transition system
A transition system TS is a tuple TS = (S, Act,→, I, AP,L), where

• S is a set of states,

• Act is a set of actions,

• →⊆ S ×Act× S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions,

• L : S → 2AP is a labeling function, and

TS is called finite if S, Act, and AP are finite.
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q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

S = {q0, q1}
Act = {rear, front, both, neither}
→= {(q0, front, q1), (q1, neither, q0),

(q1, rear, q1), . . .}
I = {q0}
L(q0) = {door is not open}
L(q1) = {door is open}

example
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example

• AP depends on the 
characteristics of the 
system of interest.

• For state s, L(s) is the set 
of atomic propositions 
that are satisfied at s.

• Labels model outputs or 
observables.

• Actions model inputs or 
“communication.”



Propositional logic

8

Given finite set AP of atomic propositions, the set of 
propositional logic formulas is inductively defined by:
- true is a formula;
- any a ∈ AP is a formula;
- if φ1, φ2, and φ are formulas, so are ¬φ and φ1 ∧ φ2; and
- nothing else is a formula.

From “Specifying Systems” by 
L. Lamport: Propositional logic 
is the math of the Boolean 
values, true and false, and the 
operators ¬,∧,∨,→
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propositional logic formulas is inductively defined by:
- true is a formula;
- any a ∈ AP is a formula;
- if φ1, φ2, and φ are formulas, so are ¬φ and φ1 ∧ φ2; and
- nothing else is a formula.
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•Connectives:
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¬ (negation), ∧ (and)
∨ (or), → (implies)
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∨ (or), → (implies)

Example propositional logic 
formulas obtained by applying the 
above four rules:

φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2)
φ1 → φ2 := ¬φ1 ∨ φ2

From “Specifying Systems” by 
L. Lamport: Propositional logic 
is the math of the Boolean 
values, true and false, and the 
operators ¬,∧,∨,→

The evaluation function µ : AP → {0, 1}
assigns a truth value to each a ∈ AP.

Given: AP = {a, b, c}, µ(a) = 0 and
µ(b) = µ(c) = 1.

Φ1 = (a ∧ ¬b) ∨ c, µ(Φ1) = 1
Φ2 = (a ∧ ¬b) ∧ c, µ(Φ2) = 0

The truth value µ(Φ) of a formula Φ
is determined by substituting the
values for the atomic propositions
specified by µ.



Logical dynamical system as a finite transition system

x1[k + 1] = x2[k] ∨ u[k], x1[0] = 0,

x2[k + 1] = x1[k] ∧ u[k], x2[0] = 1,

y[k] = x1[k]⊕ x2[k]

XOR (exclusive or) gives true only if 
exactly one of the operands is true.

S = {0, 1]}2

Act = {0, 1}
I = {(0, 1)}

AP = {y}

L(x1, x2) =
�

{y} (indicating 1) if x1 ⊕ x2 = 0
∅ (indicating 0) otherwise

9

φ1 ⊕ φ2 := (¬φ1 ∧ φ2) ∨ (φ1 ∧ ¬φ2)

1



Concurrent systems
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Systems in which multiple tasks can be executed at the same time potentially with inter-task 
communication and resource sharing.



Modes of communication 
between the subsystems:
• hand-shaking (leads to 

synchrony)
• changing the values of 

shared variables (leads to 
asynchrony)

Example: multi-threaded control

• Separate code into 
independent threads

• Switch between threads, 
allowing each to run 
simultaneously

• Potential problems: 
deadlocks, race conditions

Thread Usage in Alice (DGC05)

Concurrent systems

10

Systems in which multiple tasks can be executed at the same time potentially with inter-task 
communication and resource sharing.
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Let TS1 = (S1, Act1,→1, I1, AP1, L1) and TS2 = (S2, Act2,→2, I2, AP2, L2)
be transition systems. Their parallel composition, TS1||TS2 is the transition
system defined by

TS1||TS2 = (S1 × S2, Act1 ∪Act2,→, I1 × I2, AP1 ∪AP2, L)

where L(�s1, s2�) = L1(s1) ∪ L2(s2) and → is defined by the following rules:

• If α ∈ Act1 ∩Act2, s1
α→1 s�

1, and s2
α→2 s�

2, then �s1, s2�
α→ �s�

1, s
�
2�.

• If α ∈ Act1 \ Act2 and s1
α→1 s�

1, then �s1, s2�
α→ �s�

1, s2�.

• If α ∈ Act2 \ Act1 and s2
α→2 s�

2, then �s1, s2�
α→ �s1, s�

2�.
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Given a transition system                                         .
For 

• Example: Post((0,0)) = {(0,0),(1,0)}. 

Paths of a finite transition system
TS = (S, Act,→, I, AP,L)

12

s ∈ S,

Post(s) :=
�

s� ∈ S : ∃a ∈ Act s.t. s
a−→ s�

�

• A state s is terminal iff Post(s) is empty.
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π = s0s1s2 . . .
• A sequence of states, either finite                           
   or infinite                       , is a path fragment if 

π = s0s1s2 . . . sn
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• A path is a path fragment s.t. 
and it is 

• either finite with terminal
• or infinite.  

• Denote the set of paths 
in TS by               .

s0 ∈ I

sn

Path(TS)

a path:

not a path:

not a path:

s ∈ S,

Post(s) :=
�

s� ∈ S : ∃a ∈ Act s.t. s
a−→ s�

�

• A state s is terminal iff Post(s) is empty.



Traces of a finite transition system
Equivalent FSMs w/ and w/o terminal stateConsider a finite transition system                                        

with no terminal states (wlog).
TS = (S, Act,→, I, AP,L)

The trace of an infinite path fragment                       is defined by

The set,                   , of traces of TS is defined by
                                                                               .
 

π = s0s1s2 . . .

trace(π) = L(s0)L(s1)L(s2) . . .

Traces(TS) = {trace(π) : π ∈ Paths(TS)}
Traces(TS) sequence of sets of atomic 

propositions that are valid in 
the states along the path

13



Traces of a finite transition system
Equivalent FSMs w/ and w/o terminal stateConsider a finite transition system                                        

with no terminal states (wlog).
TS = (S, Act,→, I, AP,L)

The trace of an infinite path fragment                       is defined by

The set,                   , of traces of TS is defined by
                                                                               .
 

π = s0s1s2 . . .

trace(π) = L(s0)L(s1)L(s2) . . .

Traces(TS) = {trace(π) : π ∈ Paths(TS)}
Traces(TS) sequence of sets of atomic 

propositions that are valid in 
the states along the path

13

q0 q1

rear, both, neither front, rear, both
front

neither
{door is open}{door is not open}

Actions: f, f, n, b, f, f, b, . . .
Path: q0q1q1q0q0q1q1q1 . . .
Trace: ¬o, o, o,¬o,¬o, o, o, o, . . .

(with some abuse of notation)



Linear-time properties

Let P be an LT property over AP and TS = (S, Act,→, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

14



Linear-time properties

Let P be an LT property over AP and TS = (S, Act,→, I, AP,L) be a
transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

14

traces of TS
admissible, desired, undesired, etc. behavior
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transition system.
TS satisfies P , denoted as TS |= P, iff Traces(TS) ⊆ P.

A linear-time (LT) property P over atomic propositions in AP
is a set of infinite sequences over 2AP .

P1 = “The first light is infinitely often green.”

[A0A1A2 . . . with green1 ∈ Ai ⊆ 2AP holds
for infinitely many i]

AP = {red1, green1, red2, green2}Example:

{r1, g2}{g1, r2}{r1, g2}{g1, r2} . . .
∅{g1}∅{g1}∅{g1}∅ . . .
{g1, g2}{g1, g2}{g1, g2} . . .
{r1, g2}{r1g1}∅∅ . . .

√
√
√

×

P2 = “The lights are never both green simultaneously.”
[A0A1A2 . . . with green1 /∈ Ai or green2 /∈ Ai,
for all i ≥ 0]

14

traces of TS
admissible, desired, undesired, etc. behavior
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The transition system 
satisfies P2, but it does 
not satisfy P1.
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Invariants

PΦ = {A0A1A2 . . . ∈ (2AP )ω : Aj |= Φ ∀j ≥ 0}.

15

An LT property PΦ over AP is an invariant with
respect to a propositional logic formula Φ over AP if



Notation: repeat 
infinitely many times

For A ⊆ AP , let the
evaluation µA be the
characteristic function
of A.

A |= Φ iff µA(Φ) = 1
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An LT property PΦ over AP is an invariant with
respect to a propositional logic formula Φ over AP if

Given TS, Φ, and PΦ, TS |= PΦ?

The following four statements are 
equivalent.
1. 
2. 
3. 
4. 

TS |= PΦ

trace(π) ∈ PΦ, ∀π ∈ Path(TS)
L(s) |= Φ, ∀s ∈ S on a path of TS

L(s) |= Φ, ∀s ∈ Reach(TS)

A state s is reachable if there exists an 
execution fragment s.t.            and

                  : set of reachable states in TS

 

s0 ∈ I

s0
a1−→ s1

a2−→ · · · an−−→ sn = s

Reach(TS)

Invariants are state properties. 
That is, for verification, find the 
reachable states and check    .Φ



Safety properties

Psafe ∩ {σ� ∈ (2AP )ω : σ̂ is a finite prefix of σ�} = ∅.

An LT property Psafe is a safety property if for all words
σ ∈ (2AP )ω\Psafe there exists a finite prefix σ̂ of σ s.t.

Bad things have happened in the bad prefix    . Hence, no infinite word that
starts with    satisfies          .      

σ̂
σ̂ Psafe
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Example:   AP = {red, green, yellow}

• “At least one of the lights is always on” 
is a safety property.

{σ = A0A1 . . . : Aj ⊆ AP ∧Aj �= ∅}
Bad prefixes: finite words that contain   . ∅

• “Two lights are never on at the same 
time” is a safety property.

{σ = A0A1 . . . : Aj ⊆ AP ∧ card(Aj) ≤ 1}

Bad prefixes: finite words that contain 
{red,green}, {red,yellow}, and so on.
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Any invariant is a safety 
property. There are safety 
properties that are not invariant.

Example:   AP = {red, yellow}

“Each red is immediately preceded 
by a yellow” is a safety property, 
but not invariant (because it is not 
a state property). 

Sample bad prefixes: 
∅∅{r}
{y}{y}{r}{r}∅{r}



Example: Two traffic lights with 
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties

17

An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word σ ∈ (2AP )ω

satisfying wσ ∈ P.

AP = {red1, green1, red2, green2}
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satisfying wσ ∈ P.

AP = {red1, green1, red2, green2}

Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous 
execution, every process is activate infinitely often.
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An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word σ ∈ (2AP )ω

satisfying wσ ∈ P.
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Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous 
execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

“the first light is eventually green 
after it is initially red three time instances in a row”



Example: Two traffic lights with 
• First light will eventually turn green
• First light will turn green infinitely often

Liveness properties

17

An LT property P is a liveness property if and only if for each
finite word w of 2AP there exists an infinite word σ ∈ (2AP )ω

satisfying wσ ∈ P.

AP = {red1, green1, red2, green2}

Use of liveness properties:
• specify the absence of (undesired) infinite loops or progress toward a goal.
• rule out executions that cannot realistically occur (fairness), e.g., in an asynchronous 
execution, every process is activate infinitely often.

Example: Is the following a safety or liveness property?

“the first light is eventually green 
after it is initially red three time instances in a row”

green1 ∈ Aj j ≥ 0
A0A1A2

Answer: It is a combination of a safety and a liveness property.
• Liveness: any finite word can be extended by an infinite word                    with                      
                        for some           . 
• Safety: any finite word                with                 for any                   is a bad prefix.                                          

A0A1A2 . . .

red1 /∈ Ai i ∈ {0, 1, 2}

(2AP )∗g1(2AP )ωr1r1r1(2AP )ω

safety liveness
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SafetyInvariant Liveness

state condition something bad 
never happens

something good 
will happen 
eventually

violated at 
individual states

any infinite run 
violating the property 

has a finite prefix

violated only by infinite 
runs

verification: find the 
reachable states and check 

the invariant condition

verification: verification:

? ?


