Lecture 11 TuLiP: A Software Toolbox for Receding Horizon Temporal Logic Planning

Nok Wongpiromsarn

Singapore-MIT Alliance for Research and Technology

Richard M. Murray and Ufuk Topcu California Institute of Technology

EECI, 17 May 2012

Outline

- Key Features of TuLiP
 - Embedded control software synthesis
 - Receding horizon temporal logic planning
- Computer Lab

Problem Description

Problem: Given a plant model and an LTL specification φ , design a controller to ensure that any execution of the system satisfies φ

- The evolution of the system is described by differential/difference equations

$$s(t+1) = As(t) + Bu(t) + Ed(t))$$
$$u(t) \in U$$
$$d(t) \in D$$

where $s \in \mathbb{R}^n, U \subseteq \mathbb{R}^m, D \subseteq \mathbb{R}^p$

- φ must be satisfied regardless of the environment in which the system operates
- Assume that φ is of the form

$$\varphi = \left(\underbrace{\psi_{init}^{e}}_{\text{init}} \land \Box \psi_{s}^{e} \land \bigwedge_{i \in I_{f}} \Box \Diamond \psi_{f,i}^{e} \right) \implies \left(\underbrace{\psi_{init}^{s} \land \Box \psi_{s}^{s} \land \bigwedge_{i \in I_{g}} \Box \Diamond \psi_{g,i}^{s} }_{\text{desired}} \right)$$
assumptions on environment desired behavior

TuLiP for Hierarchical Control

Input:

- discrete system state
- continuous system state
- (discrete) environment state
- specification

Output:

- "strategy" to be implemented in each layer

Main Steps

- Generate a proposition preserving partition of the continuous state space
 - cont_partition = **prop&part&**(state_space, cont_props)
- Discretize the continuous state space based on the evolution of the continuous state
 - disc_dynamics = **discretize**(cont_partition, ssys, N=10)
- Digital design synthesis
 - prob = **generateJTLVInput**(env_vars, sys_disc_vars, spec, disc_props, disc_dynamics, smv_file, spc_file)
 - realizability = **checkRealizability**(smv_file, spc_file, aut_file, heap_size)
 - realizability = **computeStrategy**(smv_file, spc_file, aut_file, heap_size)
 - aut = **Automaton**(aut_file)

Example: robot_simple.py

C₃

C

C4

C

C₅

 C_2

Dynamics
$$\dot{x} = u_x, \dot{y} = u_y$$
 where $u_x, u_y \in [-1, 1]$

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK signal is received

Assumption

- Infinitely often, PARK signal is not received

$$\varphi = \Box \diamondsuit (\neg park) \implies (\Box \diamondsuit (s \in C_5) \land \Box (park \implies \diamondsuit (s \in C_0)))$$

This spec is not a GR[1] formula

- Introduce an auxiliary variable X0reach that starts with True
- $\Box(\bigcirc X0reach = (s \in C_0 \lor (X0reach \land \neg park)))$
- $\Box \Diamond X0reach$

Manually Constructing disc_dynamics: robot_discrete_simple.py

System Model: Robot can move to the cells that share a face with the current cell

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK signal is received

Assumption

- Infinitely often, PARK signal is not received

$$\varphi = \Box \diamondsuit (\neg park) \implies (\Box \diamondsuit (s \in C_5) \land \Box (park \implies \diamondsuit (s \in C_0)))$$

This spec is not a GR[1] formula

- Introduce an auxiliary variable X0reach that starts with True
- $\Box(\bigcirc X0reach = (s \in C_0 \lor (X0reach \land \neg park)))$
- $\Box \Diamond X0reach$

Defining a Synthesis Problem: SynthesisProb Class

Self-contained structure for defining an embedded control software synthesis problem System Continuous

Continuous

State Space

Partition

model

System

SDec

- Fields of SynthesisProb
 - env_vars
 - sys_vars
 - spec
 - disc_cont_var
 - disc_dynamics
- Useful methods
- Design Planner **Synthesis checkRealizability**(heap_size='-Xmx128m', pick_sys_init=True, verbose=0): check whether this problem is realizable

Proposition

preserving

partition

controller

Discrete

Continuous

State Space Discretization

Finite

transition

system

Digital

getCounterExamples(recompute=False, heap_size='-Xmx128m', _ pick_sys_init=True, verbose=0):

return the set of initial states starting from which the system cannot satisfy the spec

synthesizePlannerAut(heap_size='-Xmx128m', priority_kind=3, init_option=1, verbose=0):

synthesize the planner that ensures system correctness

Example: robot_simple2.py

Dynamics
$$\dot{x} = u_x, \dot{y} = u_y$$
 where $u_x, u_y \in [-1, 1]$

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK signal is received

Assumption

- Infinitely often, PARK signal is not received

$$\varphi = \Box \diamondsuit (\neg park) \implies (\Box \diamondsuit (s \in C_5) \land \Box(park \implies \diamondsuit (s \in C_0)))$$

This spec is not a GR[1] formula

- Introduce an auxiliary variable X0reach that starts with True
- $\Box(\bigcirc X0reach = (s \in C_0 \lor (X0reach \land \neg park)))$
- $\Box \Diamond X0reach$

C₃	C₄	C₅
C ₀	Cı	C ₂

Computer Lab

Synthesize a reactive planner for the robot with the following specification

Desired Properties

- Visit the blue cell (C_8) infinitely often
- Eventually go to the green cell (C₀) when a PARK signal is received
- Avoid an obstacle (red cell) which can be one of the C₁, C₄, C₇ cells and can move arbitrarily

Assumption

- Infinitely often, PARK signal is not received
- The obstacle always moves to an adjacent cell

Constraint

- The robot can only move forward to an adjacent cell, i.e., a cell that shares an edge with the current cell

Computer Lab

Synthesize intersection logic for the car with the following specification

Desired Properties

- Eventually go to C₆
- If there is a car at one of the
 C₃, C₄, C₇ cells at initial state,
 need to wait until it disappears
 before going through the intersection
- Go through the intersection only when C_2 and C_5 are clear
- No collision with other cars

Assumption

- ??

Constraint

- The robot can only move forward to an adjacent cell, i.e., a cell that shares an edge with the current cell

