
Lecture 11
TuLiP: A Software Toolbox for Receding

Horizon Temporal Logic Planning

Nok Wongpiromsarn
Singapore-MIT Alliance for Research and Technology

Richard M. Murray and Ufuk Topcu
California Institute of Technology

EECI, 17 May 2012
Outline

• Key Features of TuLiP
- Embedded control software synthesis
- Receding horizon temporal logic planning

• Computer Lab

Problem Description

Problem: Given a plant model and an LTL specification , design a controller to
ensure that any execution of the system satisfies

- The evolution of the system is described by differential/difference equations

where
- must be satisfied regardless of the environment in which the system

operates
- Assume that is of the form

ϕ

ϕ

ϕ

ϕ

s ∈ Rn, U ⊆ Rm, D ⊆ Rp

2

s(t + 1) = As(t) + Bu(t) + Ed(t))
u(t) ∈ U

d(t) ∈ D

ϕ =
�

ψe
init����

assumptions on
initial condition

∧ �ψe
s ∧

�

i∈If

�♦ψe
f,i

� �� �
assumptions on
environment

�
=⇒

�
ψs

init ∧�ψs
s ∧

�

i∈Ig

�♦ψs
g,i

� �� �
desired

behavior

�

3

Hierarchical control
architecture

Preview

TuLiP: Temporal logic planning toolbox
 (Open source at http://tulip-control.sf.net)

[Coming up in the next lecture]

Different views

“short-horizon
specification”

“long-horizon
specification”

continuous
dynamics&
constraints

W0 ≺ . . . ≺WL−1 ≺WL

W0WL WL−1

min

� T

t0

L(x, u)dt

s.t. ẋ = f(x, u)

g(x, u) ≤ 0

Multi-scale modelsAlice’s navigation
stack

Mission
Planner

Traffic
Planner

Path
Planner

Vehicle
Actuation

TuLiP for Hierarchical Control

Input:
- discrete system state
- continuous system state
- (discrete) environment state
- specification

3

Output:
- “strategy” to be implemented

in each layer

Finite
transition
system

System
spec

Continuous
State Space

Discretization

System
model

Proposition
preserving
partition

Continuous
controller

Digital
Design

Synthesis

Continuous
State Space
Partition

Discrete
Planner

• Generate a proposition preserving partition of the continuous state space

• cont_partition = prop2part2(state_space, cont_props)

• Discretize the continuous state space based on the evolution of the continuous state

• disc_dynamics = discretize(cont_partition, ssys, N=10)

• Digital design synthesis

• prob = generateJTLVInput(env_vars, sys_disc_vars, spec, disc_props,
disc_dynamics, smv_file, spc_file)

• realizability = checkRealizability(smv_file, spc_file, aut_file, heap_size)

• realizability = computeStrategy(smv_file, spc_file, aut_file, heap_size)

• aut = Automaton(aut_file)

Main Steps

4

https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-prop-part
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-prop-part
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-disc
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-disc
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-syn
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-syn

Dynamics

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK

signal is received

Assumption

- Infinitely often, PARK signal is not received

This spec is not a GR[1] formula
- Introduce an auxiliary variable X0reach that starts with True

-
-

Example: robot_simple.py

�♦X0reach
5

ẋ = ux, ẏ = uy where ux, uy ∈ [−1, 1]

ϕ = ��(¬park) �⇒ (��(s ∈ C5) ∧�(park �⇒ �(s ∈ C0)))

�(�X0reach = (s ∈ C0 ∨ (X0reach ∧ ¬park)))

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK

signal is received

Assumption

- Infinitely often, PARK signal is not received

This spec is not a GR[1] formula
- Introduce an auxiliary variable X0reach that starts with True

-
-

Manually Constructing disc_dynamics:
robot_discrete_simple.py

�♦X0reach
6

ϕ = ��(¬park) �⇒ (��(s ∈ C5) ∧�(park �⇒ �(s ∈ C0)))

�(�X0reach = (s ∈ C0 ∨ (X0reach ∧ ¬park)))

System Model: Robot can move to the cells that share a face with the current cell

Finite
transition
system

System
spec

Continuous
State Space

Discretization

System
model

Proposition
preserving
partition

Continuous
controller

Digital
Design

Synthesis

Continuous
State Space
Partition

Discrete
Planner

• Self-contained structure for defining an embedded control software synthesis
problem

• Fields of SynthesisProb
- env_vars
- sys_vars
- spec
- disc_cont_var
- disc_dynamics

• Useful methods
- checkRealizability(heap_size='-Xmx128m', pick_sys_init=True, verbose=0):

check whether this problem is realizable
- getCounterExamples(recompute=False, heap_size='-Xmx128m',

pick_sys_init=True, verbose=0):
return the set of initial states starting from which the system cannot satisfy
the spec
- synthesizePlannerAut(heap_size='-Xmx128m', priority_kind=3,

init_option=1, verbose=0):
synthesize the planner that ensures system correctness

Defining a Synthesis Problem:
SynthesisProb Class

Dynamics

Desired Properties

- Visit the blue cell infinitely often
- Eventually go to the red cell when a PARK

signal is received

Assumption

- Infinitely often, PARK signal is not received

This spec is not a GR[1] formula
- Introduce an auxiliary variable X0reach that starts with True

-
-

Example: robot_simple2.py

�♦X0reach
8

ẋ = ux, ẏ = uy where ux, uy ∈ [−1, 1]

ϕ = ��(¬park) �⇒ (��(s ∈ C5) ∧�(park �⇒ �(s ∈ C0)))

�(�X0reach = (s ∈ C0 ∨ (X0reach ∧ ¬park)))

Computer Lab

9

Synthesize a reactive planner for the robot with the
following specification

Desired Properties

- Visit the blue cell (C8) infinitely often
- Eventually go to the green cell (C0) when a

PARK signal is received
- Avoid an obstacle (red cell) which can be

one of the C1, C4, C7 cells and can move arbitrarily

Assumption

- Infinitely often, PARK signal is not received
- The obstacle always moves to an adjacent cell

Constraint

- The robot can only move forward to an adjacent cell, i.e., a cell that shares an
edge with the current cell

C0 C1 C2

C3 C4 C5

C6 C7 C8

Synthesize intersection logic for the car with the
following specification

Desired Properties

- Eventually go to C6

- If there is a car at one of the
C3, C4, C7 cells at initial state,
need to wait until it disappears
before going through the intersection

- Go through the intersection only when C2 and C5 are clear
- No collision with other cars

Assumption

- ??

Constraint

- The robot can only move forward to an adjacent cell, i.e., a cell that shares an
edge with the current cell

Computer Lab

10

C2 C5

C3

C1

C6

C4

C7

