Lecture 11
TuLiP: A Software Toolbox for Receding
Horizon Temporal Logic Planning

Nok Wongpiromsarn
Singapore-MIT Alliance for Research and Technology

Richard M. Murray and Ufuk Topcu
California Institute of Technology

EECI, 17 May 2012

Outline
® Key Features of TuLiP
- Embedded control software synthesis
- Receding horizon temporal logic planning
e Computer Lab

Problem Description

Problem: Given a plant model and an LTL specification ¢, design a controller to|
ensure that any execution of the system satisfies ¢

- The evolution of the system is described by differential/difference equations

s(t+1) = As(t)+ Bu(t)+ Fd(t))
u(t) € U
d(t) € D

where s ¢ R", U C R™, D C RP

- (must be satisfied regardless of the environment in which the system
operates

- Assume that ¢ is of the form

o= Vit A Ops A N\ DO0vs,) = (U AOvEA N\ OO0y,
: i€ly icl,
assumptions on N y N _

initial condition assumptions on desired
environment behayvior

2

TuLiP for Hierarchical Control

Alice’s navigation e\ iave Multi-scale models Hierarchical control
stack architecture

v I

Traffic “short-horizon -»[T;?Jectory
Planner specification” ki

l T response

Path continuous i : Continuous
Planner dynamics& , Controller
l constraints ’

1

Vehicle
Actuation

Input: Output:
- discrete system state - “strategy”’ to be implemented
- continuous system state in each layer
- (discrete) environment state
- specification

o
Main Steps
LR LR ER LR EE A LLLL UL UL UL LR EELLEREEE
»
model controller

Continuous

State Space

i . Discretization . .
System Continuous Proposition Finite .
)Sl ac State Space preserving transition)=
P Partition partition system /
Digital)= ,
& = [Discrete
Design
. |» \ Planner
Synthesis):
-

® (Generate a proposition preserving partition of the continuous state space
e cont_partition = proppart(state_space, cont_props)

® Discretize the continuous state space based on the evolution of the continuous state
e disc_dynamics = discretize(cont_partition, ssys, N=10)

® Digital design synthesis

prob = generated TLVInput(env_vars, sys_disc_vars, spec, disc_props,
disc_dynamics, smv_{file, spc_file)

realizability = checkRealizability(smv_f{ile, spc_file, aut_file, heap_size)
realizability = computeStrategy(smv_file, spc_file, aut_f{file, heap_size)

aut = Automaton(aut_file) 4

https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-prop-part
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-prop-part
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-disc
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-disc
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-syn
https://www.cds.caltech.edu/subversion/nok/rhtlp/trunk/doc/build/html/tutorial.html#ssec-syn

Example: robot_simple.py

Dynamics & = u,,y = u, where u,,u, € [—1,1]

Desired Properties
- Visit the blue cell infinitely often

- Eventually go to the red cell when a PARK
signal is received

Assumption
- Infinitely often, PARK signal is not received

©=00(—park) — (OC(seCy) A
(park =—> O(s€Cp)))

This spec is not a GR[1] formula
ntroduce an auxiliary variable X0Oreach that starts with True

(OXO0reach = (s € Cy V (X0reach A =park)))
OXO0reach

Manually Constructing disc_dynamics:
robot_discrete_simple.py

System Model: Robot can move to the cells that share a face with the current cell

Desired Properties
- Visit the blue cell infinitely often Cs C4

- Eventually go to the red cell when a PARK
signal is received

C,

Assumption
- Infinitely often, PARK signal is not received

©=00(—park) — (OC(seCy) A
(park =—> O(s€Cp)))

This spec is not a GR[1] formula
ntroduce an auxiliary variable X0Oreach that starts with True

(OXO0reach = (s € Cy V (X0reach A =park)))
OXO0reach

Defining a Synthesis Problem:
SynthesisProb Class

Self-contained structure for defining an embedded control software synthesis

problem :
System "\ }
Fields of SynthesisProb : -

€nv_vars State Space

SyS_VGr S Systermn E Continuous Proposition Discretization Finite E
Z ac =>{ State Space preserving transition)=
SPeC P = | Partition partition ~ o system / 1

disc_cont_var

disc_dynamics P e
-) * \ Planner
= Synth .
Useful methods . ynthesis

- checkRealizability(heap_size=-Xmx|28m’, pick_sys_init=True, verbose=0):
check whether this problem is realizable

- getCounterExamples(recompute=False, heap_size="-Xmx[28m),
pick_sys_init=True, verbose=0):
return the set of initial states starting from which the system cannot satisfy
the spec
synthesizePlannerAut(heap_size="-Xmx| 28m’, priority_kind=3,
init_option=1, verbose=0):

synthesize the planner that ensures system correctness

Example: robot_simple2.py

Dynamics & = u,,y = u, where u,,u, € [—1,1]

Desired Properties
- Visit the blue cell infinitely often

- Eventually go to the red cell when a PARK
signal is received

Assumption
- Infinitely often, PARK signal is not received

©=00(—park) — (OC(seCy) A
(park =—> O(s€Cp)))

This spec is not a GR[1] formula
ntroduce an auxiliary variable X0Oreach that starts with True

(OXO0reach = (s € Cy V (X0reach A =park)))
OXO0reach

Computer Lab

Synthesize a reactive planner for the robot with the
following specification

Desired Properties
- Visit the blue cell (Csg) infinitely often

- Eventually go to the green cell (Co) when a
PARK signal is received

Avoid an obstacle (red cell) which can be
one of the Cj, C4, C7 cells and can move arbitrarily

Assumption
- Infinitely often, PARK signal is not received
- The obstacle always moves to an adjacent cell

Constraint
- The robot can only move forward to an adjacent cell, i.e., a cell that shares an
edge with the current cell

Computer Lab

Synthesize intersection logic for the car with the
following specification
Desired Properties
- Eventually go to C¢
- If there is a car at one of the
Cs, C4, C7 cells at initial state,
need to wait until it disappears
before going through the intersection
- Go through the intersection only when C; and Cs are clear
- No collision with other cars

Assumption
- N

Constraint

- The robot can only move forward to an adjacent cell, i.e., a cell that shares an
edge with the current cell

