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Outline

• Spin model checker: modeling 
concurrent systems and descr-
ibing system requirements in 
Promela

• Model-checking with Spin
• Logic synthesis with Spin

The Spin Model 
Checker
Gerard J. Holzmann
Addison-Wesley, 2003
http://spinroot.com
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The process flow of model checking

Efficient model checking tools automate the process: SPIN, nuSMV, TLC,...
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System design (behavior specification)
• Promela (Process Meta Language) is a non-

deterministic, guarded command language for 
specifying possible system behavior of a 
distributed system in Spin

• There are 3 types of objects in Spin verification 
model

- asynchronous processes
- global and local data objects  
- message channels 

System requirements (correctness claims)
• default properties

- absence of system deadlock
- absence of unreachable code

• assertions                         
• end-state labels
• acceptance
• progress

• fairness
• never claim
• LTL formulas 
• trace assertions

A
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q1

true

q2 ¬g1

¬g1

¬g2

¬g2

� = ⇤⌃g1 ^⇤⌃g2

process 1

s0: red s1: green

; TS 1{g1}

process 2

s0: red s1: green

; TS 2{g2}
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Spin Verification Models
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Spin

pan.c
(model 

checking 
code)

gcc 
compiler

pan
(executable 

verifier)

system 
design

system 
requirements

model.pml

model.trail
(counter-
example)

-i

interactive
simulation

-a

random
simulation

-t

guided
simulation

correctness
proof

negative
result

Running Spin

Typical sequence of commands

Note:                 and                 list available command-line and un-time options, resp.spin -- ./pan --

4

$ spin -u100 model!# non-verbose simulation for 100 steps
$ spin -a model!! # generate C code for analysis (pan.c)
$ gcc -o pan pan.c!# generate executable verifier from pan.c
$ ./pan -a -N P1! # perform verification of specification P1
$ spin -t -p model!# show error trail
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Example 1: traffic lights (property verified)

TS � P1
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System TS: composition of two traffic lights 
and a controller

↵

q1

q2

↵

�

{g1} s2

s1

� �

�

{g2} � �

↵ ↵

�

�

�
c1

c2

c3

� � =
q2, s1, c2

q1, s1, c1

q1, s2, c3

↵↵

��

{g1}

{g2}

�

traffic 
light 1

traffic 
light 2 controller

Specification      : 
“The light are never green 
simultaneously.”

P1

A¬P1

SPIN code:

Property verified:

[](!(g1 && g2))

lig
ht

s_
si

m
pl

e.
pm

l
ltl P1 { [] (! (g1 && g2)) }
ltl P2 { [] <> g1 }
ltl P3 { 
  (always (!(g1&&g2))) && 
  (always eventually g1) 
} 

spin -a lights_simple.pml
gcc -o pan pan.c
./pan -a -N P1 lights_simple.pml
./pan -a -N P2 lights_simple.pml
spin -t -p lights_simple.pml
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Promela: Process Modeling Language
Declarations
• Declare global variables (+ initialize)
• Types: bit, int, char, etc + arrays

Processes
• Each process runs independently
• ‘active’ => process starts immediately

- Otherwise use ‘run’ command
• Process = sequence of statements
• Statements = guard or assignment

Control flow
• ‘do’ loops: non-deterministic execution
• ‘goto’ statements: jump to location
• guarded commands: ‘guard -> rule’

Specifications
• LTL statement to be checked

- These generate ‘never’ claims 
internally to spin (will see later)

6

bit g1, g2;! ! ! /* light status */
bit alpha1, alpha2, beta1, beta2;
int c = 1;! ! ! /* control state */

active proctype TL1() {
  do
  :: alpha1 -> g1 = 1
  :: beta1 -> g1 = 0
  od
}

active proctype TL2() {
loop2:
  alpha2 -> g2 = 1
  beta2 -> g2 = 0
  goto loop2
}

active proctype control() {
  do
  :: c == 1 -> alpha1=1; beta1=0; c = 2;
  :: c == 2 -> alpha1=0; beta1=1; c = 3;
  :: c == 3 -> alpha2=1; beta2=0; c = 4; 
  :: c == 4 -> alpha2=0; beta2=1; c = 1; 
  od
}

ltl P1 { [] <> g1 }
ltl P2 { [] ! (g1 && g2) }
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• A keyword                  is used to declare process behavior
• 2 ways to instantiate a process

- Add the prefix               to a                  declaration. The process will be 
instantiated in the initial system state.

- Use        operator to instantiate a process in any reachable system state

proctype

Promela Objects: Processes

active proctype

run

active [2] proctype main()
{

prinf("hello world\n")
}

# of processes to be instantiated 
in the initial system state

keyword for initial process
declaration and instantiation

Extra process          needs to be createdinit

proctype you run(byte x)

{
printf("x = %d\n", x)

}
init

{
run you run(0);

run you run(1)

}

7
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• 2 levels of scope: global and process local
• No intermediate levels of scope
• The default initial value of all data objects is zero
• All objects must be declared before they can first be referenced
• User-defined type can be declared using keyword

Promela Objects: Data Objects

Type Typical Range Sample Declaration

bit 0,1 bit turn = 1

bool false, true bool flag = true

byte 0 . . . 255 byte a[12]

chan 1 . . . 255 chan m

mtype 1 . . . 255 mtype n

pid 0 . . . 255 pid p

short �2

15 . . . 215 � 1 short b[4] = 89

int �2

31 . . . 231 � 1 int cnt = 67

unsigned 0 . . . 2n � 1 unsigned w : 3 = 5

unsigned stored in
3 bits (range 0...7)

all elements 
initialized to 0

all elements 
initialized to 89

typedef

8
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• Assignment
- valid assignment: 
- invalid assignment: 

• Expressions
- must be side effect free
- the only exception is the run operator, which can have a side effect

• Print:   
• Assertion:

- always executable and has no effect on the state of the system when executed
- can be used to check safety property: Spin reports a error if the expression can 

evaluate to zero (false)

• send
• receive

Basic Statements

c++, c--, c = c+1, c = c-1
++c, --c

if the right-hand side yields a value outside 
the range of c, truncation can result

printf("x = %d\n", x)

assert(x+y == z), assert(x <= y)

int n;

active proctype invariant()
{

assert(n <= 3)

}

The assertion statement can be executed at 
any time. This can be used to check a 
system invariant condition: it should hold no 
matter when the assertion is checked.

9

} message passing between processes (later, if time)
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A statement in a Spin model is either executable or blocked
• A statement is executable iff it evaluates to true or non-zero integer value

• print statements and assignments are always unconditionally executable
• If a process reaches a point where there is no executable statements left to execute, 

it simply blocks

Rules for Executability

a == b;

do nothing while
waiting for a==b

block until a==b

2 < 3 is always executable

x < 27 executable i↵ x < 27

3 + x executable i↵ x 6= 3

while (a != b)
{

skip;
}

do

:: (a == b) -> break

:: else -> skip

od

L: if

:: (a == b) -> skip

:: else -> goto L

fi

10
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2 levels of nondeterminism
• System level: processes execute concurrently and asynchronously

- Process scheduling decisions are non-deterministic
- Statement executions from different processes are arbitrarily interleaved in time

- Basic statements execute atomically
• Process level: local choice within processes can also be non-deterministic

Nondeterminism

byte x = 2, y = 2;

active proctype A() {
do

:: x = 3-x

:: y = 3-y

od

}
active proctype B() {

do

:: x = 3-y

:: y = 3-x

od

}

At any point in an execution, any of these 
statements can be executed

11
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• Semicolons, gotos and labels
• Atomic sequences:

- Define an indivisible sequence of actions
- No other process can execute statements from the moment 

that the first statement of this sequence begins to execute 
until the last one has completed

• Deterministic steps: 
- Similar to atomic sequence but more restrictive, e.g., no 

nondeterminism, goto jumps, or unexecutable statements is 
allowed

• Nondeterministic selection:

• Nondeterministic repetition:

• Escape sequences: 
• Inline definitions:

Control Flow

atomic {
tmp = b;

b = a;

a = tmp

}

swap the values of a and b
d step {

tmp = b;
b = a;
a = tmp

}

the else guard is executable 
iff none of the other guards 
is executable.

without the else clause, the if- 
statement would block until 
other guards becomes true.

transfers control to the end of 
the loop

atomic{ . . . }

d step{ . . . }

if
:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
fi

do

:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
do

{ P } unless { E }

if
:: (n % 2 != 0) -> n = 1
:: (n >= 0) -> n = n-2
:: (n % 3 == 0) -> n = 3
:: else /* -> skip */
fi

do

:: x++

:: x--

:: break

od

inline{ . . . }
12
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• If at least one guard is executable, the if/do statement is executable
• If more than one guard is executable, one is selected non-deterministically
• If none of the guard statements is executable, the if/do statement blocks
• Any type of basic or compound statement can be used as a guard
• ‘if’ statement checks once and continues; ‘do’ statement re-executes code 

until a break is reached

Nondeterministic Selection and 
Repetition

if
:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
fi

do

:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
do

13
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• default properties
- absence of system deadlock
- absence of unreachable code

• assertions

- local process assertions

- system invariants

• end-state labels

- define proper termination points of processes

• accept-state labels

- when looking for acceptance cycles

• progress-state labels

- when looking for non-progress cycles

• fairness

• never claims

• LTL formulas 

• trace assertions

Defining Correctness Claims

safety
• “nothing bad ever happens”
• properties of reachable 

states

liveness
• “ something good 

eventually happens”
• properties of infinite 

sequences of states

14
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Progress and Acceptance
Progress

• Search for reachable non-progress cycles (infinite executions that do not pass 
through any progress state)

• Progress states are specified using                  label 
• Enforced by                  and

Acceptance
• Search for acceptance cycles (infinite executions that do pass through a specially 

marked state)
• Acceptance states are specified using              label 
• Enforced by

progress

pan -lgcc -DNP

accept

pan -a

byte x = 2, y = 2;

active proctype A()

{
do

:: x = 3-x

:: y = 3-y; progress: skip

od

}

A P
x = 3-x

y = 3-y

skip

a non-progress cycle is an infinite 
execution sequence that does not 
pass through any progress state

15
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Fairness

pan -f

byte x = 2, y = 2;

active proctype A() {
do

:: x = 3-x

od

}
active proctype B() {

do

:: y = 3-y; progress: skip

od

}

Weak fairness
• If a statement is executable infinitely long, it 

will eventually be executed
• Process-level weak-fairness can be enforced 

by run-time option
- if a process contains at least one 

statement that remains executable 
infinitely long, that process will 
eventually execute a step

- does not apply to non-deterministic 
transition choices within a process

Strong fairness
• If a statement is executable infinitely often, it 

will eventually be executed

Enforcing fairness increases the cost of 
verification

• Weak fairness: complexity is linear in the 
number of active processes

• Strong fairness: complexity is quadratic in 
the number of active processes

$ spin -a progress.pml

$ gcc -DNP -o pan pan.c

$ ./pan -l

16

$ spin -a progress.pml

$ gcc -DNP -o pan pan.c

$ ./pan -l -f
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Never Claims

17

Define an observer process that executes synchronously with the system
• Intended to monitor system behavior; do not contribute to system behavior
• Can be either deterministic or non-deterministic
• Contain only side-effect free expressions
• Abort when they block
• Reports a violation when

- closing curly brace of never claim is reached
- an acceptance cycle is found (infinite execution 

passing through accept label)

Typically used to enforce LTL property
• Old style: spin -f ‘!spec’ generates 

never claim

• New style: use ltl label { spec }

• Make sure to run pan -a when you have 
never claims

Example: []<>g1
• To make sure this is always true, need to make 

sure that !spec is never true (same inversion as usual)

never  {    /* ! []<>g1 */
T0_init:
  if
  :: (! ((g1))) -> goto accept_S4
  :: (1) -> goto T0_init
  fi;
accept_S4:
  if
  :: (! ((g1))) -> goto accept_S4
  fi;
}

spin -f '! []<>g1'
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Note:               and               
list available command-line 
and run-time options, resp 

spin -- ./pan --

model.pml

Spin
pan.c
(model 

checking 
code)

gcc 
compiler

pan
(executable 

verifier)

system 
design

system 
requirements

model.trail
(counter-
example)

-i

interactive
simulation

-a

random
simulation

-t

guided
simulation

correctness
proof

negative
result

Spin Commands

Generate model-specific ANSI C code pan.c

Generate verifier from pan.c
• Typical command

• Enforcing progress

Perform verification
• Typical command

• Enforcing progress: add  
• Enforcing acceptance: add
• Enforcing fairness: add 

$ spin -a model.pml

$ gcc -o pan pan.c

$ gcc -DNP -o pan pan.c

$ ./pan
-l
-a

-f

Relay error trail 
$ spin -t -p -g model.pml

follow 
error trail

print all 
statements

print all 
global variables

18

-a -N P1 model.pml
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TS � P1

19

System TS: composition of two traffic lights 
and a controller

↵

q1

q2

↵

�

{g1} s2

s1

� �

�

{g2} � �

↵ ↵

�

�

�
c1

c2

c3

� � =
q2, s1, c2

q1, s1, c1

q1, s2, c3

↵↵

��

{g1}

{g2}

�

traffic 
light 1

traffic 
light 2 controller

Specification      : 
“The light are never green 
simultaneously.”

P1

A¬P1

SPIN code:

Property verified:

[](!(g1 && g2))

lig
ht

s_
si

m
pl

e.
pm

l
ltl P1 { [] (! (g1 && g2)) }
ltl P2 { [] <> g1 }
ltl P3 { 
  (always (!(g1&&g2))) && 
  (always eventually g1) 
} 

spin -a lights_simple.pml
gcc -o pan pan.c
./pan -a -N P1 lights_simple.pml
./pan -a -N P2 lights_simple.pml
spin -t -p lights_simple.pml

Exercise 1: traffic lights
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↵

q1

q2

↵

�

{g1} s2

s1

� �

�

{g2}
� � c1 c2

c3c4

↵

↵

�

�

� �

��

= q2, s1, c2q1, s1, c1

q1, s1, c3q1, s2, c4{g2}

{g1}�

�

↵

↵
�

�

TS � P2

System TS: composition of two traffic lights 
and a modified controller

A¬P2

Specification      : 
“The first light is 
infinitely often green.”

P2

Property verified:

Construct a new Promela model 
and verify P1, P2, P3

ltl P1 { [] (! (g1 && g2)) }
ltl P2 { [] <> g1 }
ltl P3 { 
  (always (!(g1&&g2))) && 
  (always eventually g1) 
} 

Exercise 2: modified traffic lights 
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Exercise 3: Traffic Light Controller
Distributed traffic controller
• TL1: traffic light one, 

accepts on/off commands
• TL2: same for second light
• Control: send a sequence 

of commands

Approach
• Model commands to lights 

using global variables
• Use a finite state machine 

to implement controller

Check multiple properties
• Both lights turn green 

infinitely often
• It is never true that both 

lights are green at the 
same time

21
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s0: red

s1: green

;

{g2}

TS 2

↵2 �2

s0: red

s1: green

;

{g1}

TS 1

↵1 �1 kP =

� = ⇤¬(g1 ^ g2) ^⇤⌃g1 ^⇤⌃g2

A
q0

q1 q2

¬(g1 ^ g2)

¬(g1 ^ g2)

g1 ^ ¬g2

¬g1 ^ g2

g1 ^ ¬g2

¬(g1 ^ g2)

L!(A) = Words(�)

bool g1 = 0, g2 = 0;

active proctype TL1() {
do

:: atomic{ g1 == 0 -> g1 = 1}
:: atomic{ g1 == 1 -> g1 = 0 }
od

}
active proctype TL2() {

do

:: atomic{ g2 == 0 -> g2 = 1}
:: atomic{ g2 == 1 -> g2 = 0 }
od

}

never {
T0 init:

if

:: (!g1) || (!g2) -> goto T0 init

:: (g1 && !g2) -> goto T1 S1

fi;
T1 S1:

if

:: (!g1) || (!g2) -> goto T1 S1

:: (!g1 && g2) -> goto accept S1

fi;
accept S1:

if

:: (!g1) || (!g2) -> goto T0 init

:: (g1 && !g2) -> goto T1 S1

fi;
}

22

Exercise 4: Controller Synthesis
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A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.
Constraints:

• The boat is only big enough to carry the farmer plus one other animal or object. 
• The wolf will eat the goat if the farmer is not present. 
• The goat will eat the cabbage if the farmer is not present.

How can the farmer get all both animals and the cabbage safely across the river?

f0,w0
g0,c0

f1,w0
g0,c0

f1,w1
g0,c0

f1,w0
g1,c0

f1,w0
g0,c1

f0,w1
g0,c0

f0,w0
g1,c0

f0,w0
g0,c1

f1,w1
g1,c0

f1,w1
g0,c1

f1,w0
g1,c1

f0,w1
g1,c0

f0,w1
g0,c1

f0,w0
g1,c1

f1,w1
g1,c1

f0,w1
g1,c1

P

pi , p = i

p 2 {f, w, g, c},
i 2 {0, 1}

L!(A) = Words(�)

� = ⌃(f = w = g = c = 1) ^
⇤(w 6= g _ f = g) ^
⇤(g 6= c _ f = g)

A
q0

q1

(w 6= g ^ g 6= c) _ f = g

(f = w = g = c = 1) ^
�
(w 6= g ^ g 6= c) _ f = g

�

(w 6= g ^ g 6= c) _ f = g

23

Exercise 5: Farmer Puzzle
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Exercise 6: Alice Actuation Interface (adrive) Logic

Desired properties
• If Estop Disable is received, gcdrive state will be Disabled and 

acceleration will be ‘full brake’ forever
• Estop Paused: if not disabled, gcdrive will eventually enter 

Paused state and acceleration will be ‘full brake’ (not forever)
• Estop Run: if not Disabled, gcdrive will eventually be Running or Resuming (or 

receive another pause or disable command)
• If Resuming, eventually Running (or receive another pause or disable)
• If current mode is Disabled, Paused, Resuming or Shifting, full brake is commanded
• After receiving an Estop Pause, vehicle may resume operation 5 seconds after run is 

received (suffices to show that we transition from Resuming to Running via Timeout)
• ...

24

Computer Lab
Gcdrive Verification 

Gcdrive is the overall driving software for Alice. It takes independent commands from Path Follower and DARPA and 
sends appropriate commands to the actuators.

• Commands from Path Follower include control signals to throttle, brake and transmission. 

• Commands from DARPA include estop pause, estop run and estop disable. 

- An estop pause command should cause the vehicle to be brought quickly and safely to a rolling stop. 
- An estop run command resumes the operation of the vehicle. 
- An estop disable command is used to stop the vehicle and put it in the disable mode.  A vehicle that is in 

the disable mode may not restart in response to an estop run command.
 Disabled (D)

- depress brakes

- send trans disable

- reject all directives

 Paused (P)

- depress brakes

- reject all directives

   except steering

 Resuming (Re)

- start timer on entry

- transition after 5

   sec

 Shifting (S)

- reject all directives

- transition when shift

   is completed

Estop Disable

Estop

Run

Estop Paused

 Running (Ru)

- normal operating

   state

- process all directives

Timeout

Estop Disable

Shift cmd

Shift done

 Unknown (U)

- initial state on start
The finite state machine to handle these concurrent 
commands is shown below. Use Spin to verify that 
the following properties hold.

• If DARPA sends an estop disable command, 
Gcdrive state will eventually stay at 
DISABLED and Acceleration Module will 
eventually command full brake forever.

• If DARPA sends an estop pause command while the vehicle is not disabled, eventually Gcdrive state will be 
PAUSED.

• If DARPA sends an estop run command while the vehicle is not disabled, eventually Gcdrive state will be 
RUNNING or RESUMING or DARPA will send an estop disable or estop pause command.

• If the current state is RESUMING, eventually the state will be RUNNING or DARPA will send an estop disable 
or pause command.

• The vehicle is disabled only after it receives an estop disable command.

• Actuation Interface sends a full brake command to the Acceleration Module if the current state is DISABLED, 
PAUSED, RESUMING or SHIFTING. In addition, if the vehicle is disabled, then the gear is shifted to 0.

• After receiving an estop pause command, the vehicle may resume the operation 5 seconds after an estop run 
command is received.

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Project: verify correctness using SPIN model checker and message channels
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C1 C2 C3 C4 C5

C6

C11

C16

C21 C22 C23 C24 C25

C17 C18 C19 C20

C12 C13 C14 C15

C7 C8 C9 C10

The robot starts from cell C21.

Compute a trajectory for a robot to visit cell C8, then 
C1 and then cover C10, C17 and C25 while avoiding 
obstacles C2, C14, C18.

Physical constraints:

•  The robot can only move to an adjacent cell

C1 C2 C3 C4 C5

C10C9

C14

C19

C24

C8

C13

C18

C23

C7

C12

C17

C22

C6

C11

C16

C21

C15

C20

C25

P

� = ⌃
�
C8 ^ ⌃(C1 ^ ⌃C10 ^ ⌃C17 ^ ⌃C25)

�
^

⇤¬(C2 _ C14 _ C18)

25

Exercise 7: Robot Motion Planning
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Example: frog puzzle

Find a way to send all the yellow frogs to the right hand side of the pond and send 
all the red frogs to the left hand side.

Constraints:
• Frogs can only jump in the direction they are facing. 
• Frogs can either jump one rock forward if the next rock is empty or they can 
jump over a frog if the next rock has a frog on it and the rock after it is empty.

http://www.hellam.net/maths2000/frogs.html

26
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Solving the frog puzzle as logic synthesis

27

r1r0 r2 r3 r4 r5 r6ri � {0, 1}

P = F1 � F2 � · · · � F6

• Rock i is not occupied or occupied
• State of frog i: 
• Transition system of frog i:
• Overall system model:

s(Fi) � {s0, s1 . . . , s6}
Fi s0 s1 s2 s3 s4 s5 s6

s0

s1 s2

s3 s4

s5 s6

¬r1 r1 ^ ¬r2

¬r2

¬r4

¬r6

r2 ^ ¬r3 r3 ^ ¬r4

r4 ^ ¬r5 r5 ^ ¬r6

F1

s1 s2

s3 s4

s5 s6

¬r2

¬r4

¬r6

r2 ^ ¬r3 r3 ^ ¬r4

r4 ^ ¬r5 r5 ^ ¬r6

F2
s2

s3 s4

s5 s6

¬r4

¬r6

r2 ^ ¬r3 r3 ^ ¬r4

r4 ^ ¬r5 r5 ^ ¬r6

F3

� = ⌃
�
s(F1), s(F2), s(F3) 2 {s4, s5, s6} ^ s(F4), s(F5), s(F6) 2 {s0, s1, s2}

�

A
q0 q1

ptrue true
p ,

�
s(F1), s(F2), s(F3) 2 {s4, s5, s6} ^

s(F4), s(F5), s(F6) 2 {s0, s1, s2}
�

1 2 3 0 4 5 61 2 3 4 0 5 61 2 0 4 3 5 61 0 2 4 3 5 61 4 2 5 3 0 61 4 2 5 3 6 01 4 2 5 0 6 31 4 2 0 3 5 61 4 0 5 2 6 30 4 1 5 2 6 34 0 1 5 2 6 34 5 1 0 2 6 34 5 1 6 2 0 34 5 1 6 0 2 34 5 0 6 1 2 34 5 6 0 1 2 3


