
Computer Lab 1:
Model Checking and Logic
Synthesis using Spin (lab)

Richard M. Murray
Nok Wongpiromsarn Ufuk Topcu
California Institute of Technology

EECI 15 May 2012
Outline

• Spin model checker: modeling
concurrent systems and descr-
ibing system requirements in
Promela

• Model-checking with Spin
• Logic synthesis with Spin

The Spin Model
Checker
Gerard J. Holzmann
Addison-Wesley, 2003
http://spinroot.com

Richard M. Murray, Caltech CDSEECI, May 2012 2

The process flow of model checking

Efficient model checking tools automate the process: SPIN, nuSMV, TLC,...

Richard M. Murray, Caltech CDSEECI, May 2012

System design (behavior specification)
• Promela (Process Meta Language) is a non-

deterministic, guarded command language for
specifying possible system behavior of a
distributed system in Spin

• There are 3 types of objects in Spin verification
model

- asynchronous processes
- global and local data objects
- message channels

System requirements (correctness claims)
• default properties

- absence of system deadlock
- absence of unreachable code

• assertions
• end-state labels
• acceptance
• progress

• fairness
• never claim
• LTL formulas
• trace assertions

A
q0

q1

true

q2 ¬g1

¬g1

¬g2

¬g2

� = ⇤⌃g1 ^⇤⌃g2

process 1

s0: red s1: green

; TS 1{g1}

process 2

s0: red s1: green

; TS 2{g2}

3

Spin Verification Models

Richard M. Murray, Caltech CDSEECI, May 2012

Spin

pan.c
(model

checking
code)

gcc
compiler

pan
(executable

verifier)

system
design

system
requirements

model.pml

model.trail
(counter-
example)

-i

interactive
simulation

-a

random
simulation

-t

guided
simulation

correctness
proof

negative
result

Running Spin

Typical sequence of commands

Note: and list available command-line and un-time options, resp.spin -- ./pan --

4

$ spin -u100 model!# non-verbose simulation for 100 steps
$ spin -a model!! # generate C code for analysis (pan.c)
$ gcc -o pan pan.c!# generate executable verifier from pan.c
$./pan -a -N P1! # perform verification of specification P1
$ spin -t -p model!# show error trail

Richard M. Murray, Caltech CDSEECI, May 2012

Example 1: traffic lights (property verified)

TS � P1

5

System TS: composition of two traffic lights
and a controller

↵

q1

q2

↵

�

{g1} s2

s1

� �

�

{g2} � �

↵ ↵

�

�

�
c1

c2

c3

� � =
q2, s1, c2

q1, s1, c1

q1, s2, c3

↵↵

��

{g1}

{g2}

�

traffic
light 1

traffic
light 2 controller

Specification :
“The light are never green
simultaneously.”

P1

A¬P1

SPIN code:

Property verified:

[](!(g1 && g2))

lig
ht

s_
si

m
pl

e.
pm

l
ltl P1 { [] (! (g1 && g2)) }
ltl P2 { [] <> g1 }
ltl P3 {
 (always (!(g1&&g2))) &&
 (always eventually g1)
}

spin -a lights_simple.pml
gcc -o pan pan.c
./pan -a -N P1 lights_simple.pml
./pan -a -N P2 lights_simple.pml
spin -t -p lights_simple.pml

Richard M. Murray, Caltech CDSEECI, May 2012

Promela: Process Modeling Language
Declarations
• Declare global variables (+ initialize)
• Types: bit, int, char, etc + arrays

Processes
• Each process runs independently
• ‘active’ => process starts immediately

- Otherwise use ‘run’ command
• Process = sequence of statements
• Statements = guard or assignment

Control flow
• ‘do’ loops: non-deterministic execution
• ‘goto’ statements: jump to location
• guarded commands: ‘guard -> rule’

Specifications
• LTL statement to be checked

- These generate ‘never’ claims
internally to spin (will see later)

6

bit g1, g2;! ! ! /* light status */
bit alpha1, alpha2, beta1, beta2;
int c = 1;! ! ! /* control state */

active proctype TL1() {
 do
 :: alpha1 -> g1 = 1
 :: beta1 -> g1 = 0
 od
}

active proctype TL2() {
loop2:
 alpha2 -> g2 = 1
 beta2 -> g2 = 0
 goto loop2
}

active proctype control() {
 do
 :: c == 1 -> alpha1=1; beta1=0; c = 2;
 :: c == 2 -> alpha1=0; beta1=1; c = 3;
 :: c == 3 -> alpha2=1; beta2=0; c = 4;
 :: c == 4 -> alpha2=0; beta2=1; c = 1;
 od
}

ltl P1 { [] <> g1 }
ltl P2 { [] ! (g1 && g2) }

Richard M. Murray, Caltech CDSEECI, May 2012

• A keyword is used to declare process behavior
• 2 ways to instantiate a process

- Add the prefix to a declaration. The process will be
instantiated in the initial system state.

- Use operator to instantiate a process in any reachable system state

proctype

Promela Objects: Processes

active proctype

run

active [2] proctype main()
{

prinf("hello world\n")
}

of processes to be instantiated
in the initial system state

keyword for initial process
declaration and instantiation

Extra process needs to be createdinit

proctype you run(byte x)

{
printf("x = %d\n", x)

}
init

{
run you run(0);

run you run(1)

}

7

Richard M. Murray, Caltech CDSEECI, May 2012

• 2 levels of scope: global and process local
• No intermediate levels of scope
• The default initial value of all data objects is zero
• All objects must be declared before they can first be referenced
• User-defined type can be declared using keyword

Promela Objects: Data Objects

Type Typical Range Sample Declaration

bit 0,1 bit turn = 1

bool false, true bool flag = true

byte 0 . . . 255 byte a[12]

chan 1 . . . 255 chan m

mtype 1 . . . 255 mtype n

pid 0 . . . 255 pid p

short �2

15 . . . 215 � 1 short b[4] = 89

int �2

31 . . . 231 � 1 int cnt = 67

unsigned 0 . . . 2n � 1 unsigned w : 3 = 5

unsigned stored in
3 bits (range 0...7)

all elements
initialized to 0

all elements
initialized to 89

typedef

8

Richard M. Murray, Caltech CDSEECI, May 2012

• Assignment
- valid assignment:
- invalid assignment:

• Expressions
- must be side effect free
- the only exception is the run operator, which can have a side effect

• Print:
• Assertion:

- always executable and has no effect on the state of the system when executed
- can be used to check safety property: Spin reports a error if the expression can

evaluate to zero (false)

• send
• receive

Basic Statements

c++, c--, c = c+1, c = c-1
++c, --c

if the right-hand side yields a value outside
the range of c, truncation can result

printf("x = %d\n", x)

assert(x+y == z), assert(x <= y)

int n;

active proctype invariant()
{

assert(n <= 3)

}

The assertion statement can be executed at
any time. This can be used to check a
system invariant condition: it should hold no
matter when the assertion is checked.

9

} message passing between processes (later, if time)

Richard M. Murray, Caltech CDSEECI, May 2012

A statement in a Spin model is either executable or blocked
• A statement is executable iff it evaluates to true or non-zero integer value

• print statements and assignments are always unconditionally executable
• If a process reaches a point where there is no executable statements left to execute,

it simply blocks

Rules for Executability

a == b;

do nothing while
waiting for a==b

block until a==b

2 < 3 is always executable

x < 27 executable i↵ x < 27

3 + x executable i↵ x 6= 3

while (a != b)
{

skip;
}

do

:: (a == b) -> break

:: else -> skip

od

L: if

:: (a == b) -> skip

:: else -> goto L

fi

10

Richard M. Murray, Caltech CDSEECI, May 2012

2 levels of nondeterminism
• System level: processes execute concurrently and asynchronously

- Process scheduling decisions are non-deterministic
- Statement executions from different processes are arbitrarily interleaved in time

- Basic statements execute atomically
• Process level: local choice within processes can also be non-deterministic

Nondeterminism

byte x = 2, y = 2;

active proctype A() {
do

:: x = 3-x

:: y = 3-y

od

}
active proctype B() {

do

:: x = 3-y

:: y = 3-x

od

}

At any point in an execution, any of these
statements can be executed

11

Richard M. Murray, Caltech CDSEECI, May 2012

• Semicolons, gotos and labels
• Atomic sequences:

- Define an indivisible sequence of actions
- No other process can execute statements from the moment

that the first statement of this sequence begins to execute
until the last one has completed

• Deterministic steps:
- Similar to atomic sequence but more restrictive, e.g., no

nondeterminism, goto jumps, or unexecutable statements is
allowed

• Nondeterministic selection:

• Nondeterministic repetition:

• Escape sequences:
• Inline definitions:

Control Flow

atomic {
tmp = b;

b = a;

a = tmp

}

swap the values of a and b
d step {

tmp = b;
b = a;
a = tmp

}

the else guard is executable
iff none of the other guards
is executable.

without the else clause, the if-
statement would block until
other guards becomes true.

transfers control to the end of
the loop

atomic{ . . . }

d step{ . . . }

if
:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
fi

do

:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
do

{ P } unless { E }

if
:: (n % 2 != 0) -> n = 1
:: (n >= 0) -> n = n-2
:: (n % 3 == 0) -> n = 3
:: else /* -> skip */
fi

do

:: x++

:: x--

:: break

od

inline{ . . . }
12

Richard M. Murray, Caltech CDSEECI, May 2012

• If at least one guard is executable, the if/do statement is executable
• If more than one guard is executable, one is selected non-deterministically
• If none of the guard statements is executable, the if/do statement blocks
• Any type of basic or compound statement can be used as a guard
• ‘if’ statement checks once and continues; ‘do’ statement re-executes code

until a break is reached

Nondeterministic Selection and
Repetition

if
:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
fi

do

:: guard1 -> stmnt11; stmnt12; . . .
:: guard2 -> stmnt21; stmnt22; . . .
:: . . .
do

13

Richard M. Murray, Caltech CDSEECI, May 2012

• default properties
- absence of system deadlock
- absence of unreachable code

• assertions

- local process assertions

- system invariants

• end-state labels

- define proper termination points of processes

• accept-state labels

- when looking for acceptance cycles

• progress-state labels

- when looking for non-progress cycles

• fairness

• never claims

• LTL formulas

• trace assertions

Defining Correctness Claims

safety
• “nothing bad ever happens”
• properties of reachable

states

liveness
• “ something good

eventually happens”
• properties of infinite

sequences of states

14

Richard M. Murray, Caltech CDSEECI, May 2012

Progress and Acceptance
Progress

• Search for reachable non-progress cycles (infinite executions that do not pass
through any progress state)

• Progress states are specified using label
• Enforced by and

Acceptance
• Search for acceptance cycles (infinite executions that do pass through a specially

marked state)
• Acceptance states are specified using label
• Enforced by

progress

pan -lgcc -DNP

accept

pan -a

byte x = 2, y = 2;

active proctype A()

{
do

:: x = 3-x

:: y = 3-y; progress: skip

od

}

A P
x = 3-x

y = 3-y

skip

a non-progress cycle is an infinite
execution sequence that does not
pass through any progress state

15

Richard M. Murray, Caltech CDSEECI, May 2012

Fairness

pan -f

byte x = 2, y = 2;

active proctype A() {
do

:: x = 3-x

od

}
active proctype B() {

do

:: y = 3-y; progress: skip

od

}

Weak fairness
• If a statement is executable infinitely long, it

will eventually be executed
• Process-level weak-fairness can be enforced

by run-time option
- if a process contains at least one

statement that remains executable
infinitely long, that process will
eventually execute a step

- does not apply to non-deterministic
transition choices within a process

Strong fairness
• If a statement is executable infinitely often, it

will eventually be executed

Enforcing fairness increases the cost of
verification

• Weak fairness: complexity is linear in the
number of active processes

• Strong fairness: complexity is quadratic in
the number of active processes

$ spin -a progress.pml

$ gcc -DNP -o pan pan.c

$./pan -l

16

$ spin -a progress.pml

$ gcc -DNP -o pan pan.c

$./pan -l -f

Richard M. Murray, Caltech CDSEECI, May 2012

Never Claims

17

Define an observer process that executes synchronously with the system
• Intended to monitor system behavior; do not contribute to system behavior
• Can be either deterministic or non-deterministic
• Contain only side-effect free expressions
• Abort when they block
• Reports a violation when

- closing curly brace of never claim is reached
- an acceptance cycle is found (infinite execution

passing through accept label)

Typically used to enforce LTL property
• Old style: spin -f ‘!spec’ generates

never claim

• New style: use ltl label { spec }

• Make sure to run pan -a when you have
never claims

Example: []<>g1
• To make sure this is always true, need to make

sure that !spec is never true (same inversion as usual)

never { /* ! []<>g1 */
T0_init:
 if
 :: (! ((g1))) -> goto accept_S4
 :: (1) -> goto T0_init
 fi;
accept_S4:
 if
 :: (! ((g1))) -> goto accept_S4
 fi;
}

spin -f '! []<>g1'

Richard M. Murray, Caltech CDSEECI, May 2012

Note: and
list available command-line
and run-time options, resp

spin -- ./pan --

model.pml

Spin
pan.c
(model

checking
code)

gcc
compiler

pan
(executable

verifier)

system
design

system
requirements

model.trail
(counter-
example)

-i

interactive
simulation

-a

random
simulation

-t

guided
simulation

correctness
proof

negative
result

Spin Commands

Generate model-specific ANSI C code pan.c

Generate verifier from pan.c
• Typical command

• Enforcing progress

Perform verification
• Typical command

• Enforcing progress: add
• Enforcing acceptance: add
• Enforcing fairness: add

$ spin -a model.pml

$ gcc -o pan pan.c

$ gcc -DNP -o pan pan.c

$./pan
-l
-a

-f

Relay error trail
$ spin -t -p -g model.pml

follow
error trail

print all
statements

print all
global variables

18

-a -N P1 model.pml

Richard M. Murray, Caltech CDSEECI, May 2012

TS � P1

19

System TS: composition of two traffic lights
and a controller

↵

q1

q2

↵

�

{g1} s2

s1

� �

�

{g2} � �

↵ ↵

�

�

�
c1

c2

c3

� � =
q2, s1, c2

q1, s1, c1

q1, s2, c3

↵↵

��

{g1}

{g2}

�

traffic
light 1

traffic
light 2 controller

Specification :
“The light are never green
simultaneously.”

P1

A¬P1

SPIN code:

Property verified:

[](!(g1 && g2))

lig
ht

s_
si

m
pl

e.
pm

l
ltl P1 { [] (! (g1 && g2)) }
ltl P2 { [] <> g1 }
ltl P3 {
 (always (!(g1&&g2))) &&
 (always eventually g1)
}

spin -a lights_simple.pml
gcc -o pan pan.c
./pan -a -N P1 lights_simple.pml
./pan -a -N P2 lights_simple.pml
spin -t -p lights_simple.pml

Exercise 1: traffic lights

Richard M. Murray, Caltech CDSEECI, May 2012 20

↵

q1

q2

↵

�

{g1} s2

s1

� �

�

{g2}
� � c1 c2

c3c4

↵

↵

�

�

� �

��

= q2, s1, c2q1, s1, c1

q1, s1, c3q1, s2, c4{g2}

{g1}�

�

↵

↵
�

�

TS � P2

System TS: composition of two traffic lights
and a modified controller

A¬P2

Specification :
“The first light is
infinitely often green.”

P2

Property verified:

Construct a new Promela model
and verify P1, P2, P3

ltl P1 { [] (! (g1 && g2)) }
ltl P2 { [] <> g1 }
ltl P3 {
 (always (!(g1&&g2))) &&
 (always eventually g1)
}

Exercise 2: modified traffic lights

Richard M. Murray, Caltech CDSEECI, May 2012

Exercise 3: Traffic Light Controller
Distributed traffic controller
• TL1: traffic light one,

accepts on/off commands
• TL2: same for second light
• Control: send a sequence

of commands

Approach
• Model commands to lights

using global variables
• Use a finite state machine

to implement controller

Check multiple properties
• Both lights turn green

infinitely often
• It is never true that both

lights are green at the
same time

21

Richard M. Murray, Caltech CDSEECI, May 2012

s0: red

s1: green

;

{g2}

TS 2

↵2 �2

s0: red

s1: green

;

{g1}

TS 1

↵1 �1 kP =

� = ⇤¬(g1 ^ g2) ^⇤⌃g1 ^⇤⌃g2

A
q0

q1 q2

¬(g1 ^ g2)

¬(g1 ^ g2)

g1 ^ ¬g2

¬g1 ^ g2

g1 ^ ¬g2

¬(g1 ^ g2)

L!(A) = Words(�)

bool g1 = 0, g2 = 0;

active proctype TL1() {
do

:: atomic{ g1 == 0 -> g1 = 1}
:: atomic{ g1 == 1 -> g1 = 0 }
od

}
active proctype TL2() {

do

:: atomic{ g2 == 0 -> g2 = 1}
:: atomic{ g2 == 1 -> g2 = 0 }
od

}

never {
T0 init:

if

:: (!g1) || (!g2) -> goto T0 init

:: (g1 && !g2) -> goto T1 S1

fi;
T1 S1:

if

:: (!g1) || (!g2) -> goto T1 S1

:: (!g1 && g2) -> goto accept S1

fi;
accept S1:

if

:: (!g1) || (!g2) -> goto T0 init

:: (g1 && !g2) -> goto T1 S1

fi;
}

22

Exercise 4: Controller Synthesis

Richard M. Murray, Caltech CDSEECI, May 2012

A farmer wants to cross a river in a little boat with a wolf, a goat and a cabbage.
Constraints:

• The boat is only big enough to carry the farmer plus one other animal or object.
• The wolf will eat the goat if the farmer is not present.
• The goat will eat the cabbage if the farmer is not present.

How can the farmer get all both animals and the cabbage safely across the river?

f0,w0
g0,c0

f1,w0
g0,c0

f1,w1
g0,c0

f1,w0
g1,c0

f1,w0
g0,c1

f0,w1
g0,c0

f0,w0
g1,c0

f0,w0
g0,c1

f1,w1
g1,c0

f1,w1
g0,c1

f1,w0
g1,c1

f0,w1
g1,c0

f0,w1
g0,c1

f0,w0
g1,c1

f1,w1
g1,c1

f0,w1
g1,c1

P

pi , p = i

p 2 {f, w, g, c},
i 2 {0, 1}

L!(A) = Words(�)

� = ⌃(f = w = g = c = 1) ^
⇤(w 6= g _ f = g) ^
⇤(g 6= c _ f = g)

A
q0

q1

(w 6= g ^ g 6= c) _ f = g

(f = w = g = c = 1) ^
�
(w 6= g ^ g 6= c) _ f = g

�

(w 6= g ^ g 6= c) _ f = g

23

Exercise 5: Farmer Puzzle

Richard M. Murray, Caltech CDSEECI, May 2012

Exercise 6: Alice Actuation Interface (adrive) Logic

Desired properties
• If Estop Disable is received, gcdrive state will be Disabled and

acceleration will be ‘full brake’ forever
• Estop Paused: if not disabled, gcdrive will eventually enter

Paused state and acceleration will be ‘full brake’ (not forever)
• Estop Run: if not Disabled, gcdrive will eventually be Running or Resuming (or

receive another pause or disable command)
• If Resuming, eventually Running (or receive another pause or disable)
• If current mode is Disabled, Paused, Resuming or Shifting, full brake is commanded
• After receiving an Estop Pause, vehicle may resume operation 5 seconds after run is

received (suffices to show that we transition from Resuming to Running via Timeout)
• ...

24

Computer Lab
Gcdrive Verification

Gcdrive is the overall driving software for Alice. It takes independent commands from Path Follower and DARPA and
sends appropriate commands to the actuators.

• Commands from Path Follower include control signals to throttle, brake and transmission.

• Commands from DARPA include estop pause, estop run and estop disable.

- An estop pause command should cause the vehicle to be brought quickly and safely to a rolling stop.
- An estop run command resumes the operation of the vehicle.
- An estop disable command is used to stop the vehicle and put it in the disable mode. A vehicle that is in

the disable mode may not restart in response to an estop run command.
 Disabled (D)

- depress brakes

- send trans disable

- reject all directives

 Paused (P)

- depress brakes

- reject all directives

 except steering

 Resuming (Re)

- start timer on entry

- transition after 5

 sec

 Shifting (S)

- reject all directives

- transition when shift

 is completed

Estop Disable

Estop

Run

Estop Paused

 Running (Ru)

- normal operating

 state

- process all directives

Timeout

Estop Disable

Shift cmd

Shift done

 Unknown (U)

- initial state on start
The finite state machine to handle these concurrent
commands is shown below. Use Spin to verify that
the following properties hold.

• If DARPA sends an estop disable command,
Gcdrive state will eventually stay at
DISABLED and Acceleration Module will
eventually command full brake forever.

• If DARPA sends an estop pause command while the vehicle is not disabled, eventually Gcdrive state will be
PAUSED.

• If DARPA sends an estop run command while the vehicle is not disabled, eventually Gcdrive state will be
RUNNING or RESUMING or DARPA will send an estop disable or estop pause command.

• If the current state is RESUMING, eventually the state will be RUNNING or DARPA will send an estop disable
or pause command.

• The vehicle is disabled only after it receives an estop disable command.

• Actuation Interface sends a full brake command to the Acceleration Module if the current state is DISABLED,
PAUSED, RESUMING or SHIFTING. In addition, if the vehicle is disabled, then the gear is shifted to 0.

• After receiving an estop pause command, the vehicle may resume the operation 5 seconds after an estop run
command is received.

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Project: verify correctness using SPIN model checker and message channels

Richard M. Murray, Caltech CDSEECI, May 2012

C1 C2 C3 C4 C5

C6

C11

C16

C21 C22 C23 C24 C25

C17 C18 C19 C20

C12 C13 C14 C15

C7 C8 C9 C10

The robot starts from cell C21.

Compute a trajectory for a robot to visit cell C8, then
C1 and then cover C10, C17 and C25 while avoiding
obstacles C2, C14, C18.

Physical constraints:

• The robot can only move to an adjacent cell

C1 C2 C3 C4 C5

C10C9

C14

C19

C24

C8

C13

C18

C23

C7

C12

C17

C22

C6

C11

C16

C21

C15

C20

C25

P

� = ⌃
�
C8 ^ ⌃(C1 ^ ⌃C10 ^ ⌃C17 ^ ⌃C25)

�
^

⇤¬(C2 _ C14 _ C18)

25

Exercise 7: Robot Motion Planning

Richard M. Murray, Caltech CDSEECI, May 2012

Example: frog puzzle

Find a way to send all the yellow frogs to the right hand side of the pond and send
all the red frogs to the left hand side.

Constraints:
• Frogs can only jump in the direction they are facing.
• Frogs can either jump one rock forward if the next rock is empty or they can
jump over a frog if the next rock has a frog on it and the rock after it is empty.

http://www.hellam.net/maths2000/frogs.html

26

Richard M. Murray, Caltech CDSEECI, May 2012

Solving the frog puzzle as logic synthesis

27

r1r0 r2 r3 r4 r5 r6ri � {0, 1}

P = F1 � F2 � · · · � F6

• Rock i is not occupied or occupied
• State of frog i:
• Transition system of frog i:
• Overall system model:

s(Fi) � {s0, s1 . . . , s6}
Fi s0 s1 s2 s3 s4 s5 s6

s0

s1 s2

s3 s4

s5 s6

¬r1 r1 ^ ¬r2

¬r2

¬r4

¬r6

r2 ^ ¬r3 r3 ^ ¬r4

r4 ^ ¬r5 r5 ^ ¬r6

F1

s1 s2

s3 s4

s5 s6

¬r2

¬r4

¬r6

r2 ^ ¬r3 r3 ^ ¬r4

r4 ^ ¬r5 r5 ^ ¬r6

F2
s2

s3 s4

s5 s6

¬r4

¬r6

r2 ^ ¬r3 r3 ^ ¬r4

r4 ^ ¬r5 r5 ^ ¬r6

F3

� = ⌃
�
s(F1), s(F2), s(F3) 2 {s4, s5, s6} ^ s(F4), s(F5), s(F6) 2 {s0, s1, s2}

�

A
q0 q1

ptrue true
p ,

�
s(F1), s(F2), s(F3) 2 {s4, s5, s6} ^

s(F4), s(F5), s(F6) 2 {s0, s1, s2}
�

1 2 3 0 4 5 61 2 3 4 0 5 61 2 0 4 3 5 61 0 2 4 3 5 61 4 2 5 3 0 61 4 2 5 3 6 01 4 2 5 0 6 31 4 2 0 3 5 61 4 0 5 2 6 30 4 1 5 2 6 34 0 1 5 2 6 34 5 1 0 2 6 34 5 1 6 2 0 34 5 1 6 0 2 34 5 0 6 1 2 34 5 6 0 1 2 3

