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Abstract

In this lecture, we will take a look at the fundamentals of distributed estimation. We will
consider a random variable being observed by N sensors. Under the assumptions of Gaussian
noises and linear measurements, we will derive the weighted covariance combination of estima-
tors. We will then touch upon the issues of distributed static sensor fusion and estimation of
a dynamic random variable. Towards the end, we will look at the problem of dynamic sensor
fusion, i.e., distributing a Kalman filter so that multiple sensors can estimate a dynamic random
variable.
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1 Preliminaries

1.1 Matrix Inversion Formula

Proposition 1. For compatible matrices A, B, C and D,

(A + BCD)−1 = A−1 − A−1B
(

C−1 + DA−1B
)−1

DA−1,

assuming the inverses exist.
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Proof. Begin by considering the block matrix

M =

[

A B

C D

]

.

By doing the LDU and UDL decomposition of M and equating them, we obtain

[

I 0
CA−1 0

] [

A 0
0 D − CA−1B

] [

I A−1B

0 I

]

=

[

I BD−1

0 I

] [

A − BD−1C 0
0 D

] [

I 0
D−1C I

]

.

Thus inverting both sides yields

[

I −A−1B

0 I

] [

A−1 0

0
(

D − CA−1B
)−1

] [

I 0
−CA−1 0

]

=

[

I 0
−D−1C I

] [
(

A − BD−1C
)−1

0
0 D−1

] [

I −BD−1

0 I

]

.

Equating the (1, 1) block shows

(

A − BD−1C
)−1

= A−1 + A−1B
(

D − CA−1B
)−1

CA−1.

Finally substituting C → −D and D → C−1, we obtain

(A + BCD)−1 = A−1 − A−1B
(

C−1 + DA−1B
)−1

DA−1.

1.2 Optimal mean square estimate of a random variable

We will be interested in minimum mean square error estimates. Given a random variable Y that
depends on another random variable X, obtain the estimate X̂ such that the mean square error

given by E
[

X − X̂
]2

is minimized. The expectation is taken over the random variables X and Y .

Proposition 2. (Lemma 1 in Henrik’s Kalman Filtering Lecture [1]): The minimum mean square
error estimate is given by the conditional expectation E [X|Y = y].

Proof. The arguments are standard. Consider the functional form of the estimator as g(Y ). Let
fX,Y (x, y) denote the joint probability density function of X and Y . Then the cost function C is
given by

E
[

X − X̂
]2

=

∫

x

∫

y

(x − g(y))2fX,Y (x, y)dxdy

=

∫

y

dyfY (y)

∫

x

(x − g(y))2fX|Y (x|y)dx.
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Now consider the derivative of the cost function with respect to the function g(y).

∂C

∂g(y)
=

∫

y

dyfY (y)

∫

x

2(x − g(y))fX|Y (x|y)dx

= 2

∫

y

dyfY (y)(g(y) −

∫

x

xfX|Y (x|y)dx)

= 2

∫

y

dyfY (y)(g(y) − E [X|Y = y]).

Thus the only stationary point is g(y) = E [X|Y = y] . Moreover it is easy to see that it is a
minimum.

The result holds for vector random variables as well.
MMSE estimates are important because for Gaussian variables, they coincide with the Maxi-

mum Likelihood (ML) estimates. Of course, for non-Gaussian random variables, other notions of
optimality may be better. (Recall Moving Horizon Estimation [1]).

It is also a standard result that for Gaussian variables, the MMSE estimate is linear in the state
value. Proof was given in the lecture on Kalman filtering. So we will restrict our attention to linear
estimates now. Also, from now on we will assume zero mean values for all the random variables.
All the results can however be generalized. The covariance of X will be denoted by RX and the
cross-covariance between X and Y by RXY .

Proposition 3. The best linear MMSE estimate of X given Y = y is

x̂ = RXY R−1
Y y,

with the error covariance
P = RX − RXY R−1

Y RY X .

Proof. Let the estimate be x̂ = Ky. Then the error covariance is

C = E [(x − Ky)(x − Ky)∗]

= RX − KRY X − RXY K∗ + KRY K∗.

Differentiating C w.r.t. K and setting it equal to zero yields

−2RXY + 2KR−1
Y = 0.

The result follows immediately.

In the standard control formulations, we are also interested in measurements that are related
linearly to the variable being estimated (usually the state).

Proposition 4. Let y = Hx + v, where H is a matrix and v is a zero mean Gaussian noise with
covariance RV independent of X. Then the MMSE estimate of X given Y = y is

x̂ = RXH∗ (HRXH∗ + RV )−1
y,

with the corresponding error covariance

P = RX − RXH∗ (HRXH∗ + RV )−1
HRX .

Proof. Follows immediately by evaluating the terms RXY and RY and substituting in the result of
Proposition 3.
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2 Combining Estimators: Static Sensor Fusion

We can write the result for a linear measurement in an alternate form.

Proposition 5. Let y = Hx + v, where H is a matrix and v is a zero mean Gaussian noise with
covariance RV independent of X. Then the MMSE estimate of X given Y = y is

P−1x̂ = H∗R−1
V y,

with P is the corresponding error covariance given by

P−1 =
(

R−1
X + H∗R−1

V H
)

.

Proof. The expression for P follows by applying the matrix inversion lemma. For the estimate,
consider

P−1x̂ =
(

R−1
X + H∗R−1

V H
)

RXH∗ (HRXH∗ + RV )−1
y

= H∗ (HRXH∗ + RV )−1
y + H∗R−1

V HRXH∗ (HRXH∗ + RV )−1
y

= H∗R−1
V (HRXH∗ + RV ) (HRXH∗ + RV )−1

y

= H∗R−1
V y.

This alternate form is useful because we can use it to combine local estimates directly with-
out recourse to sending all the measurements to a central data processing unit that runs a giant
estimator. This is called static sensor fusion.

2.1 Static Sensor Fusion for Star Topology

Proposition 6. Consider a random variable X being observed by n sensors that generate measure-
ments of the form

yi = Hix + vi, i = 1, · · · , n,

where the noises vi are all uncorrelated with each other and with the variable X. Denote the estimate
of x based on all the n measurements by x̂ and the estimate of x based only on the measurement yi

by x̂i. Then x̂ can be calculated using

P−1x̂ =
n

∑

i=1

P−1
i x̂i,

where P is the estimate error covariance corresponding to x̂ and Pi is the error covariance corre-
sponding to x̂i. Further

P−1 =
n

∑

i=1

P−1
i − (n − 1)R−1

X .
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Proof. Denote y as the stacked vector of all the measurements yi’s, H the corresponding measure-
ment matrix obtained by stacking all the Hi’s and v the noise vector obtained by stacking all the
noises vi’s. The global estimate x̂ is given by

P−1x̂ = H∗R−1
V y.

But all the vi’s are uncorrelated with each other. Hence RV is a block diagonal matrix with blocks
RVi

. Thus the right hand side can be decomposed as

H∗R−1
V y =

n
∑

i=1

H∗
i R−1

Vi
yi.

But each of the terms H∗
i R−1

Vi
yi can be written in terms of the local estimates

P−1
i x̂i = H∗

i R−1
Vi

yi.

Thus

P−1x̂ =

n
∑

i=1

P−1
i x̂i.

The proof for the expression for the global error covariance is similar.

This result is useful since it allows the complexity of calculation at the fusion center to go
down considerably1. Of course it assumes that the sensors can do some computation, but that is
reasonable. The form of the global estimator shows that what we really want is a weighted mean of
the local estimates. Each estimate is weighted by the inverse of the error covariance matrix. Thus
more confidence we have in a particular sensor, more trust do we place in it.

2.2 Static Sensor Fusion for Arbitrary Graphs

The result above assumed the presence of a star topology in which one central node had access
to local estimates from every other node. It was essentially a two step procedure then: first all
the nodes transmit local estimates to the central node and then the central node calculates and
transmits the weighted sum of the local estimates back. Once we realize that what is really required
is a weighted average, we can generalize the approach to an arbitrary graph at the expense of more
time being required. The generalization is along the lines of average consensus algorithms that
have been recently considered by many people (see, e.g., [2, 3, 4]). The details of the algorithm will
be covered in a later lecture. For now, I will only cover the basics.

Consider N nodes each with access to a scalar value being connected according to an arbitrary
(but time-invariant) graph. Suppose we want each node to calculate the average of all the numbers.
One way to do that is if each node implements the dynamical system

xi(k + 1) = xi(k) + h
∑

j:j is connected to i

(xj(k) − xi(k)) ,

1As an exercise, compare the number of elementary operations (multiplications and additions) for the two algo-
rithms.
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where h is a small positive constant. On stacking the states of all the nodes, the entire system
evolves as

x(k + 1) = (I − hL)x(k),

where L is the Graph Laplacian matrix. If the underlying graph is connected, L has the following
properties:

1. It is a symmetric positive-definite matrix. Thus the dynamics is stable (assuming h is small
enough) and reaches a steady-state.

2. Each row sum is 0. Thus any vector with identical components is an equilibrium.

3. Each column sum is 0. Thus the sum of entries x(k) is conserved at every time step.

Because of these three properties, it is easy to see that each entry must converge to the average
of the sum of the initial conditions. This algorithm can then be readily extended for calculating
weighted averages of vectors [5, 6]. If the initial values are given by the vectors xi(0), each node
calculates the following:

xi(k + 1) = xi(k) + hW−1
i

∑

j:j is connected to i

(xj(k) − xi(k)) .

In our case, we let xi(0) to be the local estimate values and Wi to be inverse of the local estimation
error covariance, and obtain the required weighted sum.

2.3 Sequential Measurements from One Sensor

The same algorithm can be extended to the case when there are multiple measurements from one
sensor. Furthermore, the processing can be done in a sequential manner. Consider a random
variable evolving in time as

x(k + 1) = Ax(k) + w(k),

where w(k) is white zero mean Gaussian noise with covariance matrix Q. The sensor generates a
measurement at every time step according to the equation

y(k) = Cx(k) + v(k),

where v(k) is again white zero mean Gaussian noise with covariance matrix R. We wish to obtain
an estimate of x(k) given all the measurements {y(0), y(1), · · · , y(k)}. Suppose we divide the
measurements into two sets:

1. The measurement y(k).

2. The set Y of the remaining measurements y(0) through y(k − 1).

Now note that the two sets of measurements are related linearly to x(k) and further the measurement
noises are independent. Thus we can combine the local estimates to obtain a global estimate. First
we calculate the estimate of x(k) based on y(k). It is given by

M−1x̂ = CTR−1y(k),
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where M is the error covariance given by

M−1 = R−1
x(k) + CT R−1C.

Let x̂(k − 1|k − 1) be the estimate of x(k − 1) based on Y and P (k − 1|k − 1) be the corresponding
error covariance. Then the estimate of x(k) given Y is given by

x̂(k|k − 1) = Ax̂(k|k − 1),

with the error covariance
P (k|k − 1) = AP (k − 1|k − 1)AT + Q.

Thus the estimate of x(k) given all the measurements is given by the combination of local estimates
and can be seen to be

P (k|k)−1x̂(k|k) = P (k|k − 1)−1x̂(k|k − 1) + M−1x̂ = P (k|k − 1)−1x̂(k|k − 1) + CT R−1y(k).

The corresponding error covariance is given by

P (k|k)−1 = P (k|k − 1)−1 + M−1 − R−1
x(k) = P (k|k − 1)−1 + CT R−1C.

These equations form the time and measurement update steps of the Kalman filter. Thus the
Kalman filter can be seen to be a combination of estimators. This also forms an alternative
proof of the optimality of the Kalman filter in the minimum mean squared sense under the stated
assumptions.

3 Combining Sequential Measurements from Multiple Sensors:

Dynamic Sensor Fusion

Suppose there are multiple sensors present that generate measurements about a random variable
that is evolving in time. We can again ask the question about how to fuse data from all the sensors
for an estimate of the state x(k) at every time step k. This is the question of dynamic sensor fusion.
We will begin by seeing why this question is difficult.

To begin with, the problem can be solved if all the sensors transmit their measurements at
every time step. The central node in that case implements a Kalman filter (which we will refer to
from now as the centralized Kalman filter). However, there are two reasons why this may not be
the preferred implementation.

1. The central node needs to handle matrix operations that increase in size as the number of
sensors increases. We may want the sensors to shoulder some of the computational burden.

2. The sensors may not be able to transmit at every time step. Hence we may want to transmit
after some local processing, rather than transmit raw measurements.

We will initially assume that the sensors can transmit at every time step and concentrate on
reducing the computational burden at the central node.
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3.1 Transmitting Local Estimates

Our first guess would be to generate a local estimate at each sensor that extracts all the relevant
information out of the local measurements and then to combine the estimates using methods out-
lined above. However, in general, it is not possible to use above method. Consider n sensors being
present with the i-th sensor generating a measurement of the form

yi(k) = Cix(k) + vi(k).

Suppose we denote by Yi the set of all the measurements from the sensor i that can be used to
estimate the state x(k), i.e., the set {yi(0), yi(1), · · · , yi(k)}. We wish to see if the local estimates
formed by the sets Yi’s can be combined to yield the optimal global estimate of x(k). We can think
of two ways of doing this:

1. We see that the set Yi is linearly related to x(k) through an equation of the form











yi(k)
yi(k − 1)

...
yi(0)











=







Ci

CiA
−1

...






x(k) +







v(k)
v(k − 1) − CA−1w(k − 1)

...






.

However we note that the process noise w appears in the noise vector. Thus even though
the measurement noises vi(k)’s may be independent, the noise entering the sets Yi become
correlated and hence the estimates cannot be directly combined. Of course, if the process
noise is absent, the estimates can be combined in this fashion (see, e.g, [7] where the optimality
in this special case was established. For a general discussion about the effects introduced by
the process noise see, e.g. [8, 9, 10, 11, 12]).

2. We see that x(k) can be estimated once the variables x(0), w(0), · · · , w(k− 1) are estimated.
Now Yi is linearly related to these variables through











yi(k)
yi(k − 1)

...
yi(0)











=







CiA
k CiA

k−1 · · · C

CiA
k−1 · · · C 0

...

















w(k − 1)
w(k − 2)

...
x(0)











+











v(k)
v(k − 1)

...
v(0)











.

Now the measurement noises for different sensors are uncorrelated and the estimates can be
combined. However, the vector being transmitted from either of the sensors is increasing in
dimension as the time step k increases. Moreover the computation required is increasing since
a matrix of size growing with time needs to be inverted at every time step. Hence this is not
a practical solution.

Thus we see that it is not straight-forward to combine local estimates to obtain the global
estimate. We can ask the question if it is possible at all to obtain the global estimate from the
local estimates. Thus imagine that the local estimates x̂i(k) were being combined in the optimal
fashion. Is it possible to generate the global estimate x̂(k)? As noted above, for the special case
when there is no process noise, this is indeed true. However, in general, it is not possible.
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Proposition 7. (From [13]) Suppose two sets of measurements Y1 and Y2 are used to obtain local
estimates x̂1 and x̂2. Let

[

x̂1

x̂2

]

= L

[

Y1

Y2

]

4
= LY.

Then the global estimate x̂ can be obtained from the local estimates x̂1 and x̂2 if and only if

RY Y LT
(

LRY Y LT
)−1

LRY X = RY X .

Proof. The global estimate generated from the measurements is given by

x̂ = RXY R−1
Y Y Y.

If it is generated from the local estimates, it is given by

x̂ = RXY LT
(

LRY Y LT
)−1

LY.

The result is thus obvious.

If L is invertible, the condition is satisfied and hence the global estimate can be generated from
the local estimates. In general, however, L would be a fat matrix and hence the condition will not
be satisfied. We thus have two options:

1. Find the best possible global estimator from the space spanned by the local estimates. This
is left as an exercise.

2. Find the extra data that should be transmitted that will lead to the calculation of the global
estimate. We will now describe some such schemes. For these and more such strategies see,
e.g., [14, 15, 13, 16, 7, 17, 18, 19, 20, 21, 22, 23, 24, 25, 12].

3.2 Distributed Kalman Filtering

For this section we will assume that the sensors are able to transmit information to the central
node at every time step. We will use the following information form of the Kalman filter update
equations.

Proposition 8. Consider a random variable evolving in time as

x(k + 1) = Ax(k) + w(k).

Suppose it is observed through measurements of the form

y(k) = Cx(k) + v(k).

Then the measurement updates of the Kalman filter can be given by this alternate information form.

P−1(k|k)x̂(k|k) = P−1(k|k − 1)x̂(k|k − 1) + CTR−1y(k)

P−1(k|k) = P−1(k|k − 1) + CTR−1C.

Proof. The equations were derived in section 2.3.
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The basic result about the requirements from the individual sensors can be derived using the
above result.

Proposition 9. The global error covariance matrix and the estimate are given in terms of the local
covariances and estimates by

P−1(k|k) = P−1(k|k − 1) +

N
∑

i=1

(

P−1
i (k|k) − P−1

i (k|k − 1)
)

P−1(k|k)x̂(k|k) = P−1(k|k − 1)x̂(k|k − 1) +
N

∑

i=1

(

P−1
i (k|k)x̂i(k|k) − P−1

i (k|k − 1)x̂i(k|k − 1)
)

.

Proof. Proof follows by noting that the global estimate is given by

P−1(k|k)x̂(k|k) = P−1(k|k − 1)x̂(k|k − 1) + CTR−1y(k)

P−1(k|k) = P−1(k|k − 1) + CTR−1C.

Since R is block diagonal, the terms CT R−1y(k) and CTR−1C are decomposed into the sums

CTR−1y(k) =

N
∑

i=1

CT
i R−1

i yi(k)

CTR−1C =
N

∑

i=1

CT
i R−1

i Ci.

Noting the for the i-th sensor, the estimate and the error covariance are given by

P−1
i (k|k)x̂i(k|k) = P−1

i (k|k − 1)x̂i(k|k − 1) + CT
i R−1

i yi(k)

P−1
i (k|k) = P−1

i (k|k − 1) + CT
i R−1

i Ci,

the result follows immediately.

Based on this result we now give two architectures for dynamic sensor fusion.

1. In the first, rather obvious, architecture, the individual sensors transmit the local estimates
x̂i(k|k). The global fusion center combines the estimates using the theorem given above. Note
that the terms x̂(k|k − 1) and x̂i(k|k − 1) can be calculated by the fusion node by using the
time update equation

x̂(k|k − 1) = Ax̂(k − 1|k − 1).

Similarly all the covariances can also be calculated without any data from the sensor nodes.
This method is simple, especially at the sensor level. However, the fusion node has to do a
lot of computation.

2. This method makes the computation at the fusion node simple at the expense of more data
transmitted from the sensor node. The essential point is the observation that the term
P−1(k|k − 1)x̂(k|k − 1) can be written in terms of contributions from individual sensors, i.e.,

P−1(k|k − 1)x̂(k|k − 1) =
N

∑

i=1

zi(k).
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This can be proved using straight-forward algebraic manipulation as follows.

P−1(k|k − 1)x̂(k|k − 1) = P−1(k|k − 1)Ax̂(k − 1|k − 1)

= P−1(k|k − 1)AP (k − 1|k − 1)P−1(k − 1|k − 1)x̂(k − 1|k − 1)

= P−1(k|k − 1)AP (k − 1|k − 1)
(

P−1(k − 1|k − 2)x̂(k − 1|k − 2)

+
N

∑

i=1

(

P−1
i (k − 1|k − 1)x̂i(k − 1|k − 1)

−P−1
i (k − 1|k − 2)x̂i(k − 1|k − 2)

)

)

.

Thus zi(k) evolves according to the relation

zi(k) = P−1(k|k − 1)AP (k − 1|k − 1)zi(k − 1)

+
(

P−1
i (k − 1|k − 1)x̂i(k − 1|k − 1) − P−1

i (k − 1|k − 2)x̂i(k − 1|k − 2)
)

,

which depends only on the i-th sensor’s data. The covariances do not depend on the data
and can be calculated anywhere. Hence each sensor transmits the quantity

(

P−1
i (k|k)x̂i(k|k) − P−1

i (k|k − 1)x̂i(k|k − 1)
)

+ zi(k)

and the fusion node just calculates the sum of these quantities. Thus at expense of more data
transmitted from the sensor nodes, we have made the central node very simple.
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Abstract

In this lecture, we take a look at the problem of distributed control. We will begin by
seeing why the problem is hard. Then we will look at one obvious approach towards solving the
problem. Other approaches to the problem will also be mentioned.
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1 Introduction

Distributed Control is a very widely used and ill-defined term. We will consider one possible way
of defining such systems.

Conventional controller design problem assumes that all the controllers present in the system
have access to the same information. Thus, typically, the controller design problem if to design a
controller K for a plant P such that some performance specification min ‖ f(P,K) ‖ is met1. As
an example, the classical LQG problem can be stated as follows. Given a plant P of the form

x(k + 1) = Ax(k) + Bu(k) + w(k),

design a controller that generates control inputs u(k) as a causal function of the measurements

y(k) = Cx(k) + v(k)

1There is usually also an additional specification that K should stabilize the plant.
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and minimizes a quadratic cost function of the form

J = E

K
∑

k=0

[

x(k)T Qx(k) + u(k)T Ru(k)
]

.

The noises w(k) and v(k) are assumed white and Gaussian.
In the corresponding distributed control problem, multiple plants of the form

xi(k + 1) = Aixi(k) +
∑

i6=j

Aijxj(k) + Biui(k) + wi(k)

are present. If the terms Aij are all zero, the plants are said to be dynamically uncoupled. Each
plant i has access to (possibly noisy) observations about the states of a set of other agents. We
refer to this set as the out-neighbors of the agent i and denote it as Ni

2. For simplicity, throughout
this lecture we will assume that each agent can access the states of all its out-neighbors perfectly.
Denote by x(k) the vector formed by stacking the states of all the individual agents xi(k)’s and
define vectors u(k) and w(k) similarly. The aim is to design the control laws of the individual
agents to minimize (say) a quadratic cost function of the form

J = E

K
∑

k=0

[

x(k)T Qx(k) + u(k)T Ru(k)
]

,

where in general Q and R are full. The additional constraint is that each control input ui(k) can
only depend on the states of agents in the set Ni. If we try to minimize the cost function directly,
we will come up with a control law of the form u(k) = F (k)x(k) where the matrix F (k) is full in
general and thus does not satisfy this topology constraint. Solving the problem in the presence of
this constraint is a much harder problem.

Thus, in general, a distributed control problem can be stated in the form [22]

minimize ‖ f(P,K) ‖ (1)

subject to K stabilizes P

K ∈ S,

where S is a subspace3. For a general linear time-invariant plant P and sub-space S, there is no
known tractable algorithm for computing the optimal K. In the next section, we try to see why
this problem is hard. We will restrict ourselves to the case of linear plants and quadratic costs from
now on.

2 Information Pattern

While the problem stated in 1 is tractable (at least for the special LQ case we are concentrating on)
if the subspace constraint is not present, imposing the constraint that K lie only in the subspace
S renders the problem open in general. One of the earliest works that pointed out that just the

2By convention we assume that i ∈ Ni.
3The way we have defined the problem makes it very similar to the problem of finding a structured controller for

a plant.
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assumptions of a linear plant, quadratic cost and Gaussian noises are not sufficient to obtain the
solution was the famous counter-example provided by Witsenhausen [1] (see also [3]). The problem
was originally posed in terms of two stages. We can view them as two agents in our setting.
Consider x(0) and v to be two independent scalar random variables. At the first stage, the random
variable x(0) is viewed. Thus the output equation is

y(0) = x(0).

Based on this observation, a control input u(0) is calculated and applied. The state then evolves
to

x(1) = x(0) + u(0).

At the next stage, the output equation is

y(1) = x(1) + v.

A control input u(1) that depends on y(1) is then calculated and applied to obtain

x(2) = x(1) − u(1).

The objective is to minimize the cost function given by

J = k2u(0)2 + x(2)2.

The admissible controllers are

u(0) = γ0 (y(0))

u(1) = γ1 (y(1)) ,

where γ0 and γ1 are Borel functions.
Note that if u(1) were allowed the knowledge of u(0), the problem can be solved using LQG

like methods. However, in the present case, there is information to signal and the observation y(1)
can be used to signal that information. There is a trade-off between maximizing the information
available (signaling) and minimizing the use of control at the first stage. Note the form of the cost
function. At the second stage, all we are penalizing is x(2) which is calculated as

x(2) = x(1) − u(1).

The controller needs to estimate x(1) from y(1) as best as it can, so that it can set u(1) close
to x(1). On the other hand, at the first stage, we do not penalize the state x(1) and hence the
controller can choose u(0) arbitrarily without worrying about x(1). Thus we are asking for x(1) to
be

1. low entropy, so that it can be easily predicted.

2. high energy, so that the noise v does not affect it much.

Affine controllers would mean Gaussian random variables and for Gaussian variables these two aims
are in direct opposition. Non-linear controllers thus can achieve better performance.
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While it is known that a nonlinear controller can achieve much better performance than any
linear controller, the optimal controller of this problem is still unknown. As an instance, for k = 0.1,
the best possible affine control law gives a cost of 0.99, while non-linear controllers are possible
which drive the cost as close to zero as desired. It can also be shown that the cost function is no
longer convex in the controller variables, hence the problem is hard to solve numerically.

This simple counterexample is important since it shows that even for linear plants, quadratic
costs and Gaussian noises, linear controls may not be optimal and the problem may be very difficult
to solve. The additional piece that makes the conventional control problem simple is that of the
information pattern. Informally, the information pattern is a representation of the information set
that each decision maker in the problem (e.g. the controller) has access to at every time step when
it makes the decision (e.g. calculates the control input). As an example, in the conventional LQG
control problem, the controller at time step k has access to all the measurements y(0), y(1), · · · ,
y(k − 1) as well as all the previous control inputs u(0), u(1), · · · , u(k − 1). This is called a clas-
sical information pattern4. As Witsenhausen’s counterexample shows, a non-classical information
pattern can render a control problem intractable. Since in a distributed control problem, different
controllers have access to different information sets, the information pattern is not classical and
hence the problem is inherently difficult. It can be shown [4, 5], e.g., that the problem of finding a
stabilizing decentralized static output feedback is NP-complete.

Since the general problem is difficult, there are two main approaches that have been proposed:

1. Identifying sub-optimal solutions.

2. Identifying special conditions or information patterns under which the problem can be solved.

We now look at these approaches in a bit more detail.

3 Sub-optimal Controller Synthesis

In this section, we will take a look at some of the approaches that have been suggested to imple-
ment sub-optimal controllers for arbitrary interconnection topology (and hence arbitrary sub-space
constraints) on the controller.

Perhaps the approach that is most easy to understand is the one inspired by the design of
reduced-order controllers (e.g., [6]). This approach was used to obtain numerical algorithms for
solving the optimal linear control with arbitrary number of free parameters for the infinite horizon
case in, e.g., [7, 8]. We will consider the version presented in [9].

Consider N dynamically uncoupled agents evolving as

xi(k + 1) = Aixi(k) + Biui(k),

where the control of the i-th agent can depend linearly on its own state value and the states of a
specified set of other agents. On stacking the states of all the agents, the system evolves as

x(k + 1) = Ax(k) + Bu(k)

u(k) = Fx(k),

4Alternatively, the information pattern has total recall.
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where F is a matrix that incorporates the interconnection information. In particular, F has a block
structure, with the (i, j)-th block zero if agent i cannot obtain the information about agent j to
calculate its state value. Thus F is constrained to lie in a particular space. Assume that the initial
condition x(0) is random and Gaussian with mean zero and covariance R(0). We wish to find the
constrained control law F that minimizes the cost function

J = E

[

∞
∑

k=0

{xT (k)Qx(k) + uT (k)Ru(k)}

]

.

Assume that a F exists in the required space, such that A + BF is stable. Then, for that F ,
the cost function is given by

J = E
[

xT (0)Px(0)
]

,

where P satisfies the discrete algebraic Lyapunov equation

P = (Q + F T RF ) + (A + BF )T P (A + BF ).

Thus the cost is given by J = trace(PR(0)) with R(0) as the initial covariance.
The case when noise is present can also be expressed similarly. Suppose that the system evolves

as

x(k + 1) = Ax(k) + Bu(k) + w(k)

u(k) = Fx(k),

where F is chosen to minimize the cost function

J = lim
k→∞

E
[

xT (k)Qx(k) + uT (k)Ru(k)
]

.

As an exercise, prove that the cost can now be written as J = trace(PRw) where Rw is the
covariance of noise w(k). Note that because F is stable, the initial condition R(0) would not affect
the cost function.

3.1 Stabilizability

Two questions arise immediately:

1. Is it possible to stabilize the system using information from other agents when the agents are
individually not stable. In other words, if an agent is unstable, can the system be stabilized
by the exchange of information between different agents?

2. Are some topologies inherently unstable in that even if the agents are stable, the information
flow will always make it impossible to stabilize the formation?

The following result [9, 10]) answers these questions.

Proposition 1. Consider a system of interconnected dynamically uncoupled agents as defined
above.

1. The system is controllable if and only if each individual agent is controllable.
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2. The system is stabilizable if and only if each individual agent is stabilizable.

Proof. We present the proof for the case of identical agents. The case of non-identical agents is
similar and is left as an exercise. Suppose there are N agents each with state-space dimension m

with state matrices Φ and Γ. Thus the entire system has state-space dimension Nm and system
matrices

A = I ⊗ Φ

B = I ⊗ Γ,

where I is the identity matrix of suitable dimensions and ⊗ represents the Kronecker product. For
controllability of the system, we thus want the following matrix to have rank Nm

M1 =
[

I ⊗ Γ (I ⊗ Φ)(I ⊗ Γ) (I ⊗ Φ)2(I ⊗ Γ) · · · (I ⊗ Φ)Nm−1(I ⊗ Γ)
]

.

Using the standard property of Kronecker product

(a ⊗ b)(c ⊗ d) = ac ⊗ bd,

we can rewrite M1 as

M1 =
[

I ⊗ Γ (I ⊗ ΦΓ) (I ⊗ Φ2Γ) · · · (I ⊗ ΦNm−1Γ)
]

.

This matrix has rank Nm if and only if the following matrix has rank m

M2 =
[

Γ ΦΓ Φ2Γ · · · ΦNm−1Γ
]

.

Since Φ is an m × m matrix, the equivalent condition is that the matrix

M3 =
[

Γ ΦΓ Φ2Γ · · · Φm−1Γ
]

has rank m. But M3 being rank m is simply the condition for the individual agent being controllable.
Thus the system is controllable if and only if each individual agent is controllable. This proves the
first part. The proof of the second part is similar. The subspace not spanned by the columns of
M1 is stable if and only if the subspace not spanned by the columns of M3 is stable.

3.2 Numerical Algorithms

In this section we obtain necessary conditions for the optimal solution that we can numerically
solve. We wish to find

F =
n

∑

i=1

αiΦi

such that trace(PR(0)) is minimized, where

P = (Q + F T RF ) + (A + BF )T P (A + BF ). (2)

For a critical point

trace

(

∂P

∂αi

R(0)

)

= 0, ∀i = 1, 2, · · · , n.
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Let us define
Σi = ΦT

i

[

RF + BT P (A + BF )
]

. (3)

Differentiating (2) with respect to αi, we obtain

∂P

∂αi

= (A + BF )T ∂P

∂αi

(A + BF ) + Σi + ΣT
i .

Thus the cost is given by

trace

(

∂P

∂αi

R(0)

)

= trace

((

(A + BF )T ∂P

∂αi

(A + BF ) + Σi + ΣT
i

)

R(0)

)

.

Now the covariance of the state at time k evolves as

R(k + 1) = (A + BF )R(k)(A + BF )T .

Thus

trace

(

(A + BF )T ∂P

∂αi

(A + BF )R(0)

)

= trace

(

∂P

∂αi

R(1)

)

.

Using this relation k times, we obtain

trace

(

∂P

∂αi

R(0)

)

= trace

((

∂P

∂αi

R(k) + ΣiX(k) + ΣT
i X(k)

)

R(0)

)

,

where
X(k) = R(0) + R(1) + · · · + R(k).

But if (A + BF ) is stable, R(k) would be approximately be a zero matrix for sufficiently large
values of k. Thus if we denote

X = R(0) + R(1) + · · · ,

we see that X satisfies the Lyapunov equation

X = R(0) + (A + BF )X(A + BF )T , (4)

we obtain the following necessary condition for a critical point. We want

trace
(

ΣiX + ΣT
i X

)

= 0 ∀i = 1, · · · , n,

where

F =

n
∑

i=1

αiΦi,

P satisfies (2), Σi is defined by (3) and X satisfies (4). This equation can either be solved iteratively
or a gradient descent method can be used to obtain the control law.

As an exercise, show that

1. For the case when F has no restrictions on its structure, we obtain the usual condition

BTP (A + BF ) + RF = 0.

7



2. If the initial conditions of the agents are independent, then for the completely decentralized
case (when the control law of each agent can depend only on its own state value), only the
diagonal terms of cost matrices Q and R are important. Note that this is not true is general.
Even if agent i cannot access the state of agent j, the (i, j)-th block of matrices Q and R are
still important.

The algorithm we have discussed is for the infinite horizon case. For the finite horizon case,
a similar algorithm can be applied as described, e.g., in [11]. However, as [12] pointed out, there
are computational difficulties arising out of solving a large number of coupled matrix equations. A
sub-optimal algorithm to get around this difficulty was proposed in [10] in which as opposed to NT

coupled matrix equations (where T is the time horizon and N agents are present), N equations
need to be solved T times.

3.3 Other Approaches

We have described one particular approach towards obtaining sub-optimal algorithms for the dis-
tributed control problem. Many other approaches have been proposed in the literature. We do not
have time to go through them in any detail. However we summarize a couple of approaches here.

The problem of synthesizing a constrained controller while minimizing a H2 performance crite-
rion was considered in [13]. The analysis problem (for a given controller) was shown to be convex.
However the it was shown that for the synthesis problem, enforcing the topology constraint typically
destroys convexity. A method to retain convexity at the expense of sub-optimality was presented.

The problem of synthesizing a distributed controller achieving H∞ performance was considered
in [14]. They used tools inspired by dissipativity theory and derive sufficient LMI conditions on
which performance constraints can be imposed. The controller structure that they come up with
has the same interconnection topology as the plant interconnection topology. The tools have been
extended to the case of lossy communication links in [15].

These are but two particular approaches. The problem can also be looked at in context of
Receding Horizon Control. Distributed Receding Horizon Control will be covered in detail next
week. There is also extensive work on many other approaches including those inspired by Game
Theory, potential fields and so on.

4 Identifying Solvable Information Patterns

As we saw, the general problem of distributed control is very difficult and the optimal controller is
not known for arbitrary information patterns. In particular, optimal controllers are not linear or
even numerically easy to calculate in general. There have been numerous efforts to classify what
information patterns lead to linear controllers being optimal and in what cases can the optimal
linear controller be cast as a convex optimization problem. Witsenhausen [2] in a survey paper
summarized several important results. He gave sufficient conditions under which the standard LQG
theory could be applied and thus the optimal controller would be linear. Another important early
contribution was [16] which showed the optimal controller to be linear for a class of information
structures that they called partially nested. A partially nested information structure is one in which
the memory communication structure is the same as the precedence relation in the information
structure diagram. Informally, this means that a controller A has access to all the information that
another controller B has access to, if the decision that B makes can affect the information set of
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A. Thus once the control laws are fixed, any controller can deduce the action of all the controllers
precedent to it.The only random effects are due to the structure of the external disturbances which
are not control-law dependent.

As an example, consider a system where two agents evolve according to

x1(k + 1) = A1x1(k) + B1u1(k) + w1(k)

x2(k + 1) = A2x2(k) + A + 12x1(k) + B2u2(k) + w2(k),

where w1(k) and w2(k) are white uncorrelated zero mean Gaussian noises. Further let the initial
conditions x1(0) and x2(0) be independent. Suppose the cost function to be minimized is

J = E

[

K
∑

k=0

{xT
1 (k + 1)Q1x1(k + 1) + xT

2 (k + 1)Q2x2(k + 1) + uT
1 (k)R1u1(k) + +uT

2 (k)R2u2(k)}

]

.

The agents are being observed through measurements of the form

y1(k) = C1x1(k) + v1(k)

y2(k) = C2x2(k) + v2(k),

with the usual assumptions on the noises. Obviously if both the agents have access to all previous
control inputs ui(0), ui(1), · · · , ui(k − 1) and the measurements yi(0), yi(1), · · · , yi(k) at any time
step k, the information structure is classical. The problem then admits of unique optimal control
inputs ui(k). Further they are linear in the measurements and can be obtained, e.g., using the
LQG theory. However now consider an information pattern in which agent 1 has access to its own
previous controls u1(0), u1(1), · · · , u1(k − 1) and its own measurements y1(0), y1(1), · · · , y1(k).
The agent 2 has access to its own control inputs but measurements from both agents. In this case,
the information pattern is partially nested. Even for this information structure, the optimal control
inputs are unique and linear in the measurements. This is so because agent 1 can choose its control
input without worrying about agent 2’s decision. Agent 2 can reconstruct agent 1’s control input
if it knows the control law followed by agent 1 even if it does not have access to the control input
directly. Thus it can also solve for the same control input as in the classical information pattern
case.

There has been a lot of work on particular information patterns. For instance the one-step
delayed information sharing pattern assumes that each controller has, at the current time, all the
previously implemented control values, all the observations made anywhere in the system through,
and including the previous time, and its own observation at the current time. Hence current
observations are not shared. Recursive solutions for this problem with a quadratic cost were
provided using dynamic programming in [18], an exponential cost by [19] and with H2, H∞ and
L1 costs by [21]. Some other structures that are tractable have been identified, e.g., in [17, 20].
A property called quadratic invariance was defined in [22] and it was shown that it is necessary
and sufficient for the constraint set to be preserved under feedback, and that this allows optimal
stabilizing decentralized controllers to be synthesized via convex programming.
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