NCS Lecture 8
A Primer on Graph Theory

Richard M. Murray
Control and Dynamical Systems
California Institute of Technology

Goals
* Introduce some motivating cooperative control problems
» Describe basic concepts in graph theory (review)
* Introduce matrices associated with graphs and related properties (spectra)

Based on CDS 270 notes by Reza Olfati-Saber (Dartmouth) and PhD thesis of
Alex Fax (Northrop Grumman).
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¢ R. Diestel, Graph Theory. Springer-Verlag, 2000.
¢ C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.
¢ R.A. Horn and C. R. Johnson, Matrix Analysis. Cambridge Univ Press,1987.
¢ R. Olfati-Saber and M, “Consensus Problems in Networks of Agents”, IEEE
Transactions on Automatic Control, 2004.

Cooperative Control Applications

’ﬂ’ Transportation
o Air traffic control

o |ntelligent transportation systems (ala
California PATH project)

Military

] e Distributed aperture imaging
}5 e Battlespace management
]

H Scientific
]

e Distributed aperture imaging

e Adaptive sensor networks (eg,
Adaptive Ocean Sampling Network)

Commercial
e Building sensor networks (related)

Non-vehicle based applications
e Communication networks (routing, ...)
e Power grid, supply chain mgmt
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@ Example: RoboFlag (D'Andrea, Cornell) "™

rbiter

Humans
(2-3 per team)

computers
ach vehicle

, Yoo Scig B @) Q.. Robot version of “Capture the Flag”

e Teams try to capture flag of opposing team
without getting tagged

e Mixed initiative system: two humans
controlling up to 6-10 robots

e Limited BW comms + limited sensing
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Problem Framework

Agent dynamics Task
ii— fi(l‘i ui) 2 e R™ o € R™ o EncodeTas finite horizon optimal control
- 9 )
Y’ =hi(z') ' e SE(3), J = /0 L(z, o, u) dt + V(x(T), o(T)),
Vehicle “role” e Assume task is coupled
e a € A encodes internal state +
relationship to current task Strategy
e Transition o/ = r(x,a) e Control action for individual agents
Communications graph G u' =(z,e)  Agjle,a) ri(@,a)}
® Encodes the system information flow i r;’_ (z, ) g(z, @) = true
* Neighbor set \*(z, ) | unchanged otherwise.

Decentralized strategy
u'(z,a) =ul(z’ o’ 27 a”")
a7t = {0 i}
R €N mi= N

e Similar structure for role update
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Information Flow in Vehicle Formations

Sensed information

« Local sensors can see some subset of nearby
vehicles

¢ Assume small time delays, pos’n/vel info only

Communicated information

« Point to point communications (routing OK)
« Assume limited bandwidth, some time delay
¢ Advantage: can send more complex

information
Example: satellite formation Topological features
o Blue links represent sensed « Information flow (sensed or communicated)
information represents a directed graph
e Green links represent « Cycles in graph = information feedback loops

communicated information

Question: How does topological structure of information flow affect
stability of the overall formation?
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Basic Definitions (1 of 2)

Definition 1. A graph is a pair G = (V, £) that consists of a set of vertices V and a
set of edges E CV x V:

e Vertices: v; € V

o Edges: ¢;; = (v;,v;) € €

1
@
Example:
VY ={1,2,3,4,5,6} 2(/ \;’JS
&= {(17 6)a (27 1)7 (23 3)7 (2a 6)7 (67 2)3 (37 4); \/\I 6
(3,6), (4,3), (4,5), (5,1), (6,1), (6,2), (6,4)} /(‘\
Notation: 311""—“'*;

e Order of a graph = number of nodes: |V|

e v; and v; are adjacent if there exists e = (v;, v;)

e An adjacent node v; for a node v; is called a neighbor of v;
e N; = set of all neighbors of v;

e G is complete if all nodes are adjacent
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Basic Definitions (2 of 2)
Undirected graphs
o A graph is undirected if e;; € £ = e;; € &
e Degree of a node: deg(v;) := |NV;]
e A graph is regular (or k-regular) if all vertices of a graph
have the same degree k

Directed graphs (digraph)
o Out-degree of v;: deg,,, = number of edges e;; = (v;,v;)

e In-degree of v;: deg;, = number of edges eg; = (vi, v;)

Balanced graphs
e A graph is balanced if out-degree = in-degree at each node

1
2 4 6 8 10 1 2 3 4 5
6 2 mg i :I
<—O<—O<—O
5 % 3 1 3 5 7 9 10 9 8 7 6
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Connectedness of Graphs (1 of 2)

Paths
e A path is a subgraph 7 = (V, &) C G with
distinct nodes V = {vy,vs,...,v,,} and 9

1 2 8
([
Er = {(v1,v2), (v2,13), ..., (Vin—1,0m)} ; \3 - T I o
e The length of 7 is defined as |E,| = m — 1. /)&\ \L/.
o A cycle (or m-cycle) C = (V,&¢) is a path
5 4 12 11

(of length m) with an extra edge (vy,,v1) € £.

Connectivity of undirected graphs 1
e An undirected graph G is called connected if there
exists a path m between any two distinct nodes of G. 5
e For a connected graph G, the length of the longest 20
path is called the diameter of G. .
e A graph with no cycles is called acyclic .
e A tree is a connected acyclic graph 4
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Connectedness of Graphs (2 of 2)

Connectivity of directed graphs 1
e A digraph is called strongly connected if there

exists a directed path 7 between any two distinct 5 5

nodes of G. \ 6

e A digraph is called weakly connected if there
exists an undirected path between any two distinct

nodes of G. 3 4
Strongly connected

RN RN
}' % / \ :

Weakly connected

e Q: how do we check connectivity of a graph?
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Matrices Associated with a Graph

Capturing properties of a graph using matrices
e The adjacency matriz A = [a;;] € R™*™ of a graph G of order n is given by:

1 if (v,v5) €€

Q5 = .
0 otherwise

e The degree matriz of a graph as a diagonal n x n (n = |V|) matrix

A = diag{deg,,,(v;)} with diagonal elements equal to the out-degree of each node and

zero everywhere else.

e The Laplacian matriz L of a graph is defined as
L=A-A
e The row sums of the Laplacian are all 0.

1 - - -

o 0 0 o0 o0 1 1 0 0
5 1 0 1 0 0 1 —1 3 —1
2 o o0 o0 1 0 1 0 0 2 —1
6 A= L =
0O 0 1 0 1 O 0 0 —1
1 0 0 0 0 O -1 0 0
3 4 11 1 0 1 0 O] -1 -1 -1
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Periodic 6raphs and Weighted Graphs

Periodic and acyclic graphs
e A graph with the property that the set of all cycle P )

lengths has a common divisor k > 1 is called k-periodic.
e A graph without cycles is said to be acyclic. / \

Weighted graphs \ /
o A weighted graph is graph (V, &) together with a map

¢ : £ — R that assigns a real number w;; = ¢(e;;) called 0 ’
a weight to an edge e;; = (v;,v;) € £.

N[

e The set of all weights associated with £ is denoted by 1 -3 0
W.

e A weighted graph can be represented as a triplet G =
V,E,W).

|OO

N =

= o O O
N |—=

[
O = O
_= o o

Weighted Laplacian Weighted Laplacian

e In some applications it is natural to “normalize” the
Laplacian by the outdegree

e L:=A"'L=1— P, where P = A~'A (weighted adja-
cency matrix).
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Application: Consensus Protocols

Consider a collection of N agents that communicate along

a set of undirected links described by a graph G. Each - 1
agent has a state z; with initial value z;(0) and together / O
5 2

VAR
Ave((0)) = 1/N 3 2:(0). \ © /P |
The agents implement the following consensus protocol: \ o /

. 4

T; = Z (.Z‘j — .Z’Z) = _|M|(-Tz - AVG(%’M)) -
JEN;

they wish to determine the average of the initial states

which is equivalent to the dynamical system Sensor Network

Proposition 1. If the graph is connected, the state of the 35\\

agents converges to xf = Ave(z(0)) exponentially fast. %0

2 25
e Proposition 1 implies that the spectra of L controls the 20 F
stability (and convergence) of the consensus protocol.

e To (partially) prove this theorem, we need to show

10 20 30 40
iteration
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that the eigenvalues of L are all positive.



Gershgorin Disk Theorem

Theorem 2 (Gershgorin Disk Theorem). Let A = [a;;] € R™™™ and define the deleted

absolute row sums of A as
n

rio= Y agl (1)

J=lg#i
Then all the eigenvalues of A are located in the union of n disks

G(A) = U Gi(A), with Gi(A):={2€C: |z —ay| <ri} (2)

Furthermore, if a union of k of these n disks forms a connected region that is disjoint from
all the remaining n — k disks, then there are precisely k eigenvalues of A in this region.

Sketch of proof Let A\ be an eigenvalue of A and let v be a corresponding eigenvector.

Choose ¢ such that |v;| = max; [v; > 0. Since v is an eigenvector,
Av; = Z Aijvj - ()\ — a“—)vi = Z Aijvj
i i#]
Now divide by v; # 0 and take the absolute value to obtain
A —aiil =) aioil <D lagl =i
J#i J#i
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Properties of the Laplacian (1)

Proposition 3. Let L be the Laplacian matriz of a digraph G with maximum node
out—degree of dpar > 0. Then all the eigenvalues of A = —L are located in a disk

B(G) :=={s € C:[s + dmaa| < dimaa} (3)
that is located in the closed LHP of s-plane and is tangent to the imaginary azis at s = 0.

Proposition 4. Let L be the weighted Laplacian matriz of a digraph G. Then all the
eigenvalues of A = —L are located inside a disk of radius 1 that is located in the closed
LHP of s-plane and is tangent to the imaginary azxis at s = 0.

Theorem 5 (Olfati-Saber). Let G = (V,E, W) be a weighted digraph of order n with

Laplacian L. If G is strongly connected, then rank(L) =n — 1. Im

Remarks: r=d,, ..
e Proof for the directed case is standard

e Proof for undirected case is available in
Olfati-Saber & M, 2004 (IEEE TAC)

e For directed graphs, need G to be strongly connected

and converse is not true. Spec(~L) Spec(L)
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Proof of the Consensus Protocol
T =—Lx L=A—-A

Note first that the subspaced spanned by 1 = (1,1,...,1) is an invariant subspace since
L -1 =0 Assume that there are no other eigenvectors with eigenvalue 0. Hence it suffices
to look at the convergence on the complementary subspace 1.

Let 0 be the disagreement vector
0=z — Ave(z(0)) 1
and take the square of the norm of § as a Lyapunov function candidate, i.e. define
V(6) = [8]* = 65 (4)
Differentiating V (§) along the solution of § = —L§, we obtain
V() =—26"L5 <0, V5#0, (5)

where we have used the fact that G is connected and hence has only 1 zero eigenvalue
(along 1). Thus, § = 0 is globally asymptotically stable and 6 — 0 as t — +o0, i.e.
2 =limy_ 100 () = apl because a(t) = ap = Ave(z(0)),Vt > 0. In other words, the

average—consensus is globally asymptotically achieved. O
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Perron-Frobenius Theory

Spectral radius:
e spec(L) = {A1,...,\n} is called the spectrum of L.
e p(L) = |\y| = maxy |\g| is called the spectral radius of L

Theorem 6 (Perron’s Theorem, 1907). If A € R™"*™ is a positive matriz (A > 0), then

p(A) > 0;
r = p(A) is an eigenvalue of A;
There ezists a positive vector x > 0 such that Az = p(A)z;

e o~

|A] < p(A) for every eigenvalue A # p(A) of A, i.e. p(A) is the unique eigenvalue of
mazximum modulus; and

5. [p(A)7TA]™ — R as m — +oo where R = 2yT, Az = p(A)x, ATy = p(A)y, = > 0,
y >0, and 2Ty = 1.

Theorem 7 (Perron’s Theorem for Non—Negative Matrices). If A € R"*" is a
non-negative matriz (A > 0), then p(A) is an eigenvalue of A and there is a non-negative
vector x > 0, x # 0, such that Az = p(A)x.
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Irreducible 6raphs and Matrices

Irreducibility
e A directed graph is irreducible if, given any two ver- ! ° .2 i i
tices, there exists a path from the first vertex to the //' \
second. (Irreducible = strongly connected) ‘e NP '

°
e A matrix is irreducible if it is not similar to a block \ N .r/
o—=0 °
4 12 11

upper triangular matrix via a permutation. 5

o A dlgraph is irreducible if and Only if its adjacency Figure 4.1: Sample Graph G.
matrix is irreducible.

1 2 8 9
Theorem 8 (Frobenius). Let A € R™*" and suppose that o-—9o oo

A is irreducible and non-negative. Then 6 ’//' \3 7 10
° °

[ ] [ ]
1. p(4) > 0; /) A\
2. r = p(A) is an eigenvalue of A; o—=¢o oo
. . 5 4 12 11

3. There is a positive vector x > 0 such that Az = p(A)z;
4' r = p(A) s an algebraically simple eigem}alue Of A’. Figure 4.2: Induced Subgraphs of Components of G.

and

. . [ ] [ ] [ J

5. If A has h eigenvalues of modulus r, then these eigen- {1,....6} {7.8,9,11,12} {10}

Ualues are all dZSthCt To0ts Of )\ b — r= 0' Figure 4.3: Graph of Components of G.
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Properties of Laplacians (2)

Properties of L
e If G is strongly connected, the zero eigenvalue of L is simple.
e If G is aperiodic, all nonzero eigenvalues lie in the interior of the Gershgorin disk.

e If G is k-periodic, L has k evenly spaced eigenvalues on the boundary of the
Gershgorin disk.

Unidirectional Undirected Cycle Periodic
tree graph graph
[ . \
\\ . K \.\“o N \t\o

A

T N \:\‘“‘H:‘&. . f
AV A

A=0,1 A E[0,2] A, =12 0N A =0,h, =2
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Algebraic Connectivity

Theorem 9 (Variant of Courant-Fischer). Let A € R"*™ be a Hermitian matriz with
eigenvalues \1 < Aoy < --- < N\, and let wy be the eigenvector of A associated with the

eigenvalue \1. Then

x* Ax

Ao = min — = min 2 Az (6)
r#0,zeC, T z*r =1,
zlwy rlwy

Remarks:
e )\, is called the algebraic connectivity of L

e For an undirected graph with Laplacian L, the rate of convergence for the consensus
protocol is bounded by the second smallest eigenvalue Ao

E ) 1 2 8 9
xample
P ° °
® Directed graph with a bottleneck
Would ?e I:eﬁ'er fo[ dellefe 10
some of the extra links
0 make the bottleneck . > . L J
link wore clear. \ m /
- / L
5 11
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Cyclically Separable Graphs

Definition (Cyclic separability). A digraph G = (V, €) is cyclically L
separable if and only if there exists a partition of the set of edges

& = Upe & such that each partition &, corresponds to either the

edges of a cycle of the graph, or a pair of directed edges ij and ji 6 2
that constitute an undirected edge. A graph that is not cyclically
separable is called cyclically inseparable.

Lemma 10. Let L be the Laplacian matriz of a cyclically separable
digraph G and set w = —Lxz,x € R™. Then Z?Zl u; = 0,V € R
and 1= (1,...,1)T is the left eigenvector of L.

Proof. The proof follows from the fact that by definition of cyclic ; -~
separability. We have / \
Ne 4= = |
DICEDIUEEEES 3P SIUEEIEL N/

ijeg k=lije&
because the inner sum is zero over the edges of cycles and undi-
rected edges of the graph. O
e Provides a “conservation” principle for average consensus
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Balanced Graphs
Let G = (V,€) be a digraph. We say G is balanced if and only if the in—degree and
out—degree of all nodes of G are equal, i.e.

deggyy(vi) = degy, (vi), Vvi €V (7)
Theorem 11. A digraph is cyclically separable if and only if it is balanced.

Corollary 11.1. Consider a network of integrators with a directed information flow G
and nodes that apply the consensus protocol. Then, o = Ave(z) is an invariant quantity if
and only if G is balanced.

Remarks

e Balanced graphs generalized undirected graphs and retain many key properties
1

AN R
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Consensus Protocols for Balanced Graphs

1 2 3 4 5 1 2 3 4 5
10 9 8 7 6 10 9 8 7 6
(a) (b)

Algebraic Connectivity=0.191 Algebraic Connectivity=0.205
10 10
1 ) e
2 2 0= =
[ © —— 7
> > | A
(o} (0]
g g0
-20 L L -20 . .
0 5 10 15 0 5 10 15
time( sec) time( sec)
300 300
5 5 ool
2 200 £ 200
@ 9]
° o
(=) h =}
100 \ §100
© ©
~
0 . 0
0 5 10 15 0 5 10 15
time( sec) time( sec)
(a) (b)
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Formation Operations: Graph Switching

Control questions

e How do we split and rejoin teams of vehicles?

o How do we specify vehicle formations and control them?
e How do we reconfigure formations (shape and topology)

Consensus-based approach using balanced graphs

e |f each subgraph is balanced, disagreement vector provides common Lyapunov fcn

Reconfig.

Reconfig.

Reconfig

e By separately keeping track of the flow in and out of nodes, can preserve center of mass of of

subgraphs after a split manuever
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Computation of other functions besides the average

e Can adopt the basic approach to compute max, min, etc

e Chandy/Charpentier: can compute superidempotent functions:

fXUY) =ff(X)uY)

Basic idea: local conservation implies global conservation

e Can extend these cases to handle splitting and rejoining as well

Distributed Kalman filtering
e Maintain local estimates of global average and covariance
e Need to be careful about choosing rates of convergence

Data Band-Pﬂ'is'
Ci Filt

I
1
1
L
Covariagee
1
I
I
1

Micro
Kalman
Filter

(UKF)

____T __________

Data Band-P&:s\i
Ci Filt

I
1
1
L
Covariagce
1
I
I
1

Micro
Kalman
Filter

(LKF)

____T __________
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Summary

Graphs
e Directed, undirected, connected, strongly complete
e Cyclic versus acyclic; irreducible, balanced

Graph Laplacian
e L=A-A
e Spectral properties related to connectivity of graph
e # zero eigenvalues = # strongly connected components
e Second largest nonzero eigenvalue ~ weak links

1 0 —l 0 0
Spectral Properties of Graphs 2 2

e Gershgorin’s disk theorem 0 1 0 0 -1 0
e Perron-Frobenius theory o o 1 - 11 1
I 33 3
Examples 0 o o0 1 -1 0
e Consensus problems, distributed computing _1 0 0 - 1 1 = 1
e Cooperative control (coming up next...) 3 : 3 ) 3
0 -— 0 0 -— 1

2 2
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