

Similar structure for role update

HYCON-EECI, Mar 08

Richard M. Murray, Caltech CDS

4

Basic Definitions (2 of 2)

Undirected graphs

- A graph is undirected if $e_{ij} \in \mathcal{E} \implies e_{ji} \in \mathcal{E}$
- Degree of a node: $\deg(v_i) := |\mathcal{N}_i|$
- A graph is regular (or k-regular) if all vertices of a graph have the same degree k

Directed graphs (digraph)

- Out-degree of v_i : deg_{out} = number of edges $e_{ij} = (v_i, v_j)$
- In-degree of v_i : deg_{in} = number of edges $e_{ki} = (v_k, v_i)$

Balanced graphs

• A graph is *balanced* if out-degree = in-degree at each node

Connectedness of Graphs (1 of 2)

Paths

• A path is a subgraph $\pi = (\mathcal{V}, \mathcal{E}_{\pi}) \subset \mathcal{G}$ with distinct nodes $\mathcal{V} = \{v_1, v_2, \dots, v_m\}$ and

 $\mathcal{E}_{\pi} := \{ (v_1, v_2), (v_2, v_3), \dots, (v_{m-1}, v_m) \}.$

- The length of π is defined as $|\mathcal{E}_{\pi}| = m 1$.
- A cycle (or m-cycle) C = (V, E_C) is a path (of length m) with an extra edge (v_m, v₁) ∈ E.

Connectivity of undirected graphs

- An undirected graph G is called *connected* if there exists a path π between any two distinct nodes of G.
- For a connected graph \mathcal{G} , the length of the longest path is called the *diameter* of \mathcal{G} .
- A graph with no cycles is called *acyclic*
- A tree is a connected acyclic graph

8

Periodic Graphs and Weighted Graphs

Periodic and acyclic graphs

- A graph with the property that the set of all cycle lengths has a common divisor k > 1 is called *k-periodic*.
- A graph without cycles is said to be *acyclic*.

Weighted graphs

- A weighted graph is graph $(\mathcal{V}, \mathcal{E})$ together with a map $\varphi : \mathcal{E} \to \mathbb{R}$ that assigns a real number $w_{ij} = \varphi(e_{ij})$ called a weight to an edge $e_{ij} = (v_i, v_j) \in \mathcal{E}$.
- The set of all weights associated with \mathcal{E} is denoted by \mathcal{W} .
- A weighted graph can be represented as a triplet $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{W}).$

Weighted Laplacian

- In some applications it is natural to "normalize" the Laplacian by the outdegree
- $\tilde{L} := \Delta^{-1}L = I P$, where $P = \Delta^{-1}A$ (weighted adjacency matrix).

HYCON-EECI, Mar 08

Richard M. Murray, Caltech CDS

н

Application: Consensus Protocols

Consider a collection of N agents that communicate along a set of undirected links described by a graph \mathcal{G} . Each agent has a state x_i with initial value $x_i(0)$ and together they wish to determine the average of the initial states $\operatorname{Ave}(x(0)) = 1/N \sum x_i(0).$

The agents implement the following *consensus protocol*:

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} (x_j - x_i) = -|\mathcal{N}_i| (x_i - \operatorname{Ave}(x_{\mathcal{N}_i}))$$

which is equivalent to the dynamical system

 $\dot{x} = u \qquad u = -Lx.$

Proposition 1. If the graph is connected, the state of the agents converges to $x_i^* = Ave(x(0))$ exponentially fast.

- Proposition 1 implies that the spectra of *L* controls the stability (and convergence) of the consensus protocol.
- To (partially) prove this theorem, we need to show that the eigenvalues of *L* are all positive.

Richard M. Murray, Caltech CDS

Sensor Network

Gershgorin Disk Theorem

Theorem 2 (Gershgorin Disk Theorem). Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ and define the deleted absolute row sums of A as

$$r_i := \sum_{j=1, j \neq i}^n |a_{ij}| \tag{1}$$

Then all the eigenvalues of A are located in the union of n disks

$$G(A) := \bigcup_{i=1}^{n} G_i(A), \text{ with } G_i(A) := \{ z \in \mathbb{C} : |z - a_{ii}| \le r_i \}$$
(2)

Furthermore, if a union of k of these n disks forms a connected region that is disjoint from all the remaining n - k disks, then there are precisely k eigenvalues of A in this region.

Sketch of proof Let λ be an eigenvalue of A and let v be a corresponding eigenvector. Choose i such that $|v_i| = \max_j |v_j > 0$. Since v is an eigenvector,

$$\lambda v_i = \sum_i A_{ij} v_j \quad \Longrightarrow \quad (\lambda - a_{ii}) v_i = \sum_{i \neq j} A_{ij} v_j$$

Now divide by $v_i \neq 0$ and take the absolute value to obtain

$$|A - a_{ii}| = |\sum_{j \neq i} a_{ij} v_j| \le \sum_{j \neq i} |a_{ij}| = r_i$$

HYCON-EECI, Mar 08

Richard M. Murray, Caltech CDS

13

Properties of the Laplacian (1)

Proposition 3. Let L be the Laplacian matrix of a digraph \mathcal{G} with maximum node out-degree of $d_{max} > 0$. Then all the eigenvalues of A = -L are located in a disk

$$B(\mathcal{G}) := \{ s \in \mathbb{C} : |s + d_{max}| \le d_{max} \}$$

$$\tag{3}$$

that is located in the closed LHP of s-plane and is tangent to the imaginary axis at s = 0.

Proposition 4. Let \tilde{L} be the weighted Laplacian matrix of a digraph \mathcal{G} . Then all the eigenvalues of A = -L are located inside a disk of radius 1 that is located in the closed LHP of s-plane and is tangent to the imaginary axis at s = 0.

Theorem 5 (Olfati-Saber). Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ be a weighted digraph of order n with Laplacian L. If \mathcal{G} is strongly connected, then rank(L) = n - 1. Im

Remarks:

- Proof for the directed case is standard
- Proof for undirected case is available in Olfati-Saber & M, 2004 (IEEE TAC)
- For directed graphs, need \mathcal{G} to be strongly connected and converse is not true.

HYCON-EECI, Mar 08

Richard M. Murray, Caltech CDS

14

Proof of the Consensus Protocol

 $\dot{x} = -Lx$ $L = \Delta - A$

Note first that the subspaced spanned by $\mathbf{1} = (1, 1, \dots, 1)^T$ is an invariant subspace since $L \cdot \mathbf{1} = 0$ Assume that there are no other eigenvectors with eigenvalue 0. Hence it suffices to look at the convergence on the complementary subspace $\mathbf{1}^{\perp}$.

Let δ be the disagreement vector

$$\delta = x - \operatorname{Ave}(x(0)) \mathbf{1}$$

and take the square of the norm of δ as a Lyapunov function candidate, i.e. define

$$V(\delta) = \|\delta\|^2 = \delta^T \delta \tag{4}$$

Differentiating $V(\delta)$ along the solution of $\delta = -L\delta$, we obtain

$$\dot{V}(\delta) = -2\delta^T L \delta < 0, \quad \forall \delta \neq 0, \tag{5}$$

where we have used the fact that \mathcal{G} is connected and hence has only 1 zero eigenvalue (along 1). Thus, $\delta = 0$ is globally asymptotically stable and $\delta \to 0$ as $t \to +\infty$, i.e. $x^* = \lim_{t \to +\infty} x(t) = \alpha_0 \mathbf{1}$ because $\alpha(t) = \alpha_0 = \operatorname{Ave}(x(0)), \forall t > 0$. In other words, the average–consensus is globally asymptotically achieved.

HYCON-EECI, Mar 08

Richard M. Murray, Caltech CDS

Perron-Frobenius Theory

Spectral radius:

- $\operatorname{spec}(L) = \{\lambda_1, \dots, \lambda_n\}$ is called the *spectrum* of L.
- $\rho(L) = |\lambda_n| = \max_k |\lambda_k|$ is called the *spectral radius* of L

Theorem 6 (Perron's Theorem, 1907). If $A \in \mathbb{R}^{n \times n}$ is a positive matrix (A > 0), then

- 1. $\rho(A) > 0;$
- 2. $r = \rho(A)$ is an eigenvalue of A;
- 3. There exists a positive vector x > 0 such that $Ax = \rho(A)x$;
- 4. $|\lambda| < \rho(A)$ for every eigenvalue $\lambda \neq \rho(A)$ of A, i.e. $\rho(A)$ is the unique eigenvalue of maximum modulus; and
- 5. $[\rho(A)^{-1}A]^m \to R \text{ as } m \to +\infty \text{ where } R = xy^T, Ax = \rho(A)x, A^Ty = \rho(A)y, x > 0, y > 0, and x^Ty = 1.$

Theorem 7 (Perron's Theorem for Non–Negative Matrices). If $A \in \mathbb{R}^{n \times n}$ is a non-negative matrix $(A \ge 0)$, then $\rho(A)$ is an eigenvalue of A and there is a non–negative vector $x \ge 0$, $x \ne 0$, such that $Ax = \rho(A)x$.

Irreducible Graphs and Matrices

Irreducibility

- A directed graph is irreducible if, given any two vertices, there exists a path from the first vertex to the second. (Irreducible = strongly connected)
- A matrix is irreducible if it is not similar to a block upper triangular matrix via a permutation.
- A digraph is irreducible if and only if its adjacency matrix is irreducible.

Theorem 8 (Frobenius). Let $A \in \mathbb{R}^{n \times n}$ and suppose that A is irreducible and non-negative. Then

- 1. $\rho(A) > 0;$
- 2. $r = \rho(A)$ is an eigenvalue of A;
- 3. There is a positive vector x > 0 such that $Ax = \rho(A)x$;
- 4. $r = \rho(A)$ is an algebraically simple eigenvalue of A; and
- 5. If A has h eigenvalues of modulus r, then these eigenvalues are all distinct roots of $\lambda^h r^h = 0$.

HYCON-EECI, Mar 08

17

Algebraic Connectivity

Theorem 9 (Variant of Courant-Fischer). Let $A \in \mathbb{R}^{n \times n}$ be a Hermitian matrix with eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ and let w_1 be the eigenvector of A associated with the eigenvalue λ_1 . Then

$$\lambda_2 = \min_{\substack{x \neq 0, x \in \mathbb{C}^n, \\ x \perp w_1}} \frac{x^* A x}{x^* x} = \min_{\substack{x^* x = 1, \\ x \perp w_1}} x^* A x \tag{6}$$

Remarks:

- λ_2 is called the *algebraic connectivity* of L
- For an undirected graph with Laplacian L, the rate of convergence for the consensus protocol is bounded by the second smallest eigenvalue λ_2

Cyclically Separable Graphs

Definition (Cyclic separability). A digraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is cyclically separable if and only if there exists a partition of the set of edges $\mathcal{E} = \bigcup_{k=1}^{n_c} \mathcal{E}_k$ such that each partition \mathcal{E}_k corresponds to either the edges of a cycle of the graph, or a pair of directed edges ij and jithat constitute an undirected edge. A graph that is not cyclically separable is called cyclically inseparable.

Lemma 10. Let *L* be the Laplacian matrix of a cyclically separable digraph \mathcal{G} and set $u = -Lx, x \in \mathbb{R}^n$. Then $\sum_{i=1}^n u_i = 0, \forall x \in \mathbb{R}^n$ and $\mathbf{1} = (1, \ldots, 1)^T$ is the left eigenvector of *L*.

Proof. The proof follows from the fact that by definition of cyclic separability. We have

$$-\sum_{i=1}^{n} u_i = \sum_{ij \in \mathcal{E}} (x_j - x_i) = \sum_{k=1}^{n_c} \sum_{ij \in \mathcal{E}_k} (x_j - x_i) = 0$$

because the inner sum is zero over the edges of cycles and undirected edges of the graph. $\hfill \Box$

• Provides a "conservation" principle for average consensus

HYCON-EECI, Mar 08

Balanced Graphs

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a digraph. We say \mathcal{G} is *balanced* if and only if the in-degree and out-degree of all nodes of \mathcal{G} are equal, i.e.

$$\deg_{\text{out}}(v_i) = \deg_{\text{in}}(v_i), \quad \forall v_i \in \mathcal{V}$$

$$\tag{7}$$

Theorem 11. A digraph is cyclically separable if and only if it is balanced.

Corollary 11.1. Consider a network of integrators with a directed information flow \mathcal{G} and nodes that apply the consensus protocol. Then, $\alpha = \operatorname{Ave}(x)$ is an invariant quantity if and only if \mathcal{G} is balanced.

Remarks

• Balanced graphs generalized undirected graphs and retain many key properties

Summary

Graphs

- Directed, undirected, connected, strongly complete
- Cyclic versus acyclic; irreducible, balanced

Graph Laplacian

- L = ∆ A
- Spectral properties related to connectivity of graph
- # zero eigenvalues = # strongly connected components
- Second largest nonzero eigenvalue ~ weak links

Spectral Properties of Graphs

- Gershgorin's disk theorem
- Perron-Frobenius theory

Examples

- · Consensus problems, distributed computing
- Cooperative control (coming up next...)

HYCON-EECI, Mar 08

Richard M. Murray, Caltech CDS

L =

 $\frac{1}{2}$

0 0

0

25

 $\frac{1}{2}$

1