NCS Lecture 8
A Primer on Graph Theory

Richard M. Murray
Control and Dynamical Systems
California Institute of Technology

Goals
 Introduce some motivating cooperative control problems
¢ Describe basic concepts in graph theory (review)
* Introduce matrices associated with graphs and related properties (spectra)

Based on CDS 270 notes by Reza Olfati-Saber (Dartmouth) and PhD thesis of
Alex Fax (Northrop Grumman).

References
e R. Diestel, Graph Theory. Springer-Verlag, 2000.
e C. Godsil and G. Royle, Algebraic Graph Theory. Springer, 2001.
° R.A. Horn and C. R. Johnson, Matrix Analysis. Cambridge Univ Press,1987.
e R. Olfati-Saber and M, “Consensus Problems in Networks of Agents”, IEEE
Transactions on Automatic Control, 2004.

Cooperative Control Applications

e Transportation
g e Air traffic control

o Intelligent transportation systems (ala
California PATH project)

Military
e Distributed aperture imaging
e Battlespace management

Scientific
e Distributed aperture imaging

e Adaptive sensor networks (eg,
Adaptive Ocean Sampling Network)

Commercial
e Building sensor networks (related)

Non-vehicle based applications
e Communication networks (routing, ...)
e Power grid, supply chain mgmt
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@ Example: RoboFlag (D'Andrea, Cornell) ““*”

Humans
(2-3 per team)

computers 3
for_each vehicle

:"\‘. ®. Robot version of “Capture the Flag”

e Teams try to capture flag of opposing team
without getting tagged

e Mixed initiative system: two humans
s controlling up to 6-10 robots

i e Limited BW comms + limited sensing
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Problem Framework

Agent dynamics Task
P (xi, ui) & € R™,ui € R™ ° EncodeTas finite horizon optimal control
yt = hi(z?) y® € SE(3), J= /0 Lz, a,u) dt + V(2(T), a(T)),
Vehicle “role” e Assume task is coupled
e a € A encodes internal state +
relationship to current task Strategy
e Transition o’ = r(z, ) e Control action for individual agents
i i i
Communications graph G u* =1(z,a) {g] (@,0) : 75 (z, )}
e Encodes the system information flow o rj. (z,c) g(z,a) = true
® Neighbor set N*(z,a) " | unchanged otherwise.

Decentralized strategy
wi(z,a) =ui(zt of, 77 a7%)
g8 = {gh, ... xIm}
Jk € N m; = |N1'|

e Similar structure for role update

HYCON-EECI, Mar 08 Richard M. Murray, Caltech CDS




Information Flow in Vehicle Formations

Sensed information

 Local sensors can see some subset of nearby
vehicles

* Assume small time delays, pos’n/vel info only

Communicated information

< Point to point communications (routing OK)
e Assume limited bandwidth, some time delay
° Advantage: can send more complex

information
Example: satellite formation Topological features
e Blue links represent sensed e Information flow (sensed or communicated)
information represents a directed graph
e Green links represent e Cycles in graph = information feedback loops

communicated information

Question: How does topological structure of information flow affect
stability of the overall formation?
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Basic Definitions (1 of 2)

Definition 1. A graph is a pair G = (V, ) that consists of a set of vertices V and a
set of edges EC VYV X V:

e Vertices: v; € V

e Edges: e;; = (v;,v;) € E
1

Example: / \
‘ y 5

V=1{1,2,3,4,5,6} 2
& =1{(1,6),(2,1),(2,3),(2,6),(6,2), (3,4), \ 6
(37 6)7 (47 3): (47 5)7 (‘57 1)7 (6v 1)) (Ga 2)’ (Ga 4)} / \
Notation: 3 e A

e Order of a graph = number of nodes: |V|

o v; and v; are adjacent if there exists e = (v;,v;)

e An adjacent node v; for a node v; is called a neighbor of v;
e MN; = set of all neighbors of v;

e G is complete if all nodes are adjacent
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Basic Definitions (2 of 2)
Undirected graphs
e A graph is undirectedif e;; € £ = ej; €€
e Degree of a node: deg(v;) := [NV;]
e A graph is regular (or k-regular) if all vertices of a graph
have the same degree k

Directed graphs (digraph)
e Out-degree of v;: deg,,; = number of edges e;; = (v;, v;)

e In-degree of v;: deg;, = number of edges ex; = (vg,v;)

Balanced graphs
e A graph is balanced if out-degree = in-degree at each node

1

2 4 6 8 10 1 2 3 4 5
Q10 O—=0O0—0
6 2
O=—0=—0
5 ‘\) 3 1 3 5! 7 9 0 9 8 7 6
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Connectedness of Graphs (1 of 2)
Paths
e A path is a subgraph = = (V,&;) C G with
distinct nodes V = {v1,v2,...,vn} and 1 2 8 9
®
87[ = : bl  d - e | e | e \
{01, 02), (02,05), -, (Om-ryom)} s o 0
@
e The length of  is defined as |E;| =m — 1. )& ‘ \ /
e A cycle (or m-cycle) C' = (V,&¢) is a path
(of length m) with an extra edge (v, v1) € €. 5 4 12 11
Connectivity of undirected graphs 1

e An undirected graph G is called connected if there

exists a path m between any two distinct nodes of G. 5
e For a connected graph G, the length of the longest B

path is called the diameter of G. .
e A graph with no cycles is called acyclic 3
e A tree is a connected acyclic graph 4
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Connectedness of Graphs (2 of 2)

Connectivity of directed graphs 1
e A digraph is called strongly connected if there
exists a directed path 7 between any two distinct 5 5
nodes of G. \ p
e A digraph is called weakly connected if there
exists an undirected path between any two distinct

nodes of G. 3 4
Strongly connected
1 2 8 9 3 2
® @ ® "y
6 //’ \,\ 3 ¢ 10 / \
\NSNN A\ ”
[ o/: \o ® .
5 4 12 11 5 ¢
Weakly connected 2

e Q: how do we check connectivity of a graph?
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Matrices Associated with a 6Graph
Capturing properties of a graph using matrices

e The adjacency matriz A = [a;;] € R™*™ of a graph G of order n is given by:

1 if (v,v;) €€
Q5 =
0 otherwise

e The degree matriz of a graph as a diagonal n x n (n = |V|) matrix
A = diag{deg,,,,(v:)} with diagonal elements equal to the out-degree of each node and
zero everywhere else.

e The Laplacian maitriz L of a graph is defined as
L=A-A

e The row sums of the Laplacian are all 0.

0 0 0 0 0 1 1 0 0 0 0 -1

1 01 0 0 1 -1 3 -1 o0 0 -1
A= 0 0 0 1 0 1 L= 0 0 2 -1 o0 -1

0 01 0 1 O 0 0 -1 2 -1

1 0 0 0 0 O -1 0 0 0 : 0

i 1 0 1 0 0 -1 -1 0 -1 0
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Periodic Graphs and Weighted

Periodic and acyclic graphs
e A graph with the property that the set of all cycle
lengths has a common divisor &k > 1 is called k-periodic.
e A graph without cycles is said to be acyclic.

Weighted graphs

o A weighted graph is graph (V,€) together with a map
¢ : £ — R that assigns a real number w;; = ¢(e;;) called
a weight to an edge e;; = (v;,v;) € £.

e The set of all weights associated with £ is denoted by
W.

e A weighted graph can be represented as a triplet G =
V,E,W).

Weighted Laplacian
e In some applications it is natural to “normalize” the
Laplacian by the outdegree
o L:=A"'L=1— P, where P = A~'A (weighted adja-
cency matrix).
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Weighted Laplacian

Application: Consensus Protocols

Consider a collection of N agents that communicate along
a set of undirected links described by a graph G. Each
agent has a state x; with initial value x;(0) and together
they wish to determine the average of the initial states
Ave(z(0)) = 1/N 3" z;(0).

The agents implement the following consensus protocol:

& = Z (x5 — m3) = —|Ni|(w: — Ave(zns))
JEN;

which is equivalent to the dynamical system

Sensor Network

Proposition 1. If the graph is connected, the state of the
agents converges to x; = Ave(z(0)) exzponentially fast.

e Proposition 1 implies that the spectra of L controls the
stability (and convergence) of the consensus protocol.

AN
>

e To (partially) prove this theorem, we need to show

that the eigenvalues of L are all positive.
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Gershgorin Disk Theorem

Theorem 2 (Gershgorin Disk Theorem). Let A = [a;;] € R™*™ and define the deleted

absolute row sums of A as
n

re= Y lagl (1)

j=1,j7#1
Then all the eigenvalues of A are located in the union of n disks

G(A) = U Gi(A), with G;(A) :=={z€C:|z—as| <73} (2)

i=1
Furthermore, if a union of k of these n disks forms a connected region that is disjoint from
all the remaining n — k disks, then there are precisely k eigenvalues of A in this region.

Sketch of proof Let A be an eigenvalue of A and let v be a corresponding eigenvector.
Choose i such that |v;| = max; |v; > 0. Since v is an eigenvector,

Av; = ZAijvj = (/\ = a,-i)vi = ZA,;j’Uj
i it
Now divide by v; # 0 and take the absolute value to obtain
A= aul =Y asosl <D lassl =
J#t J#i
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Properties of the Laplacian (1)

Proposition 3. Let L be the Laplacian matriz of a digraph G with mazimum node
out-degree of dmaxr > 0. Then all the eigenvalues of A= —L are located in a disk

B(G) :=={s € C: |5 + dmaz| < dmas} 3)
that is located in the closed LHP of s-plane and is tangent to the imaginary azis at s = 0.

Proposition 4. Let L be the weighted Laplacian matriz of a digraph G. Then all the
eigenvalues of A= —L are located inside a disk of radius 1 that is located in the closed
LHP of s-plane and is tangent to the imaginary axis at s = 0.

Theorem 5 (Olfati-Saber). Let G = (V,£,W) be a weighted digraph of order n with

Laplacian L. If G is strongly connected, then rank(L) =n — 1. Im
:

Remarks: r=d pax
o Proof for the directed case is standard

e Proof for undirected case is available in 8
Olfati-Saber & M, 2004 (IEEE TAC)

e For directed graphs, need G to be strongly connected e d =

Re

and converse is not true. Spec(— L) Spe (L)
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Proof of the Consensus Protocol
= —Lx L=A—-A

Note first that the subspaced spanned by 1 = (1,1,..., 1)T is an invariant subspace since
L -1 = 0 Assume that there are no other eigenvectors with eigenvalue 0. Hence it suffices
to look at the convergence on the complementary subspace 1t.

Let & be the disagreement vector
§ =x — Ave(z(0)) 1
and take the square of the norm of & as a Lyapunov function candidate, i.e. define
V(6) = 8] = 6"5 (4)
Differentiating V (6) along the solution of § = —L&, we obtain
V() = —20"L5 <0, V§#0, (5)

where we have used the fact that G is connected and hence has only 1 zero eigenvalue
(along 1). Thus, § = 0 is globally asymptotically stable and § — 0 as t — 400, i.e.

z* = limy_, 100 Z(£) = a1 because a(t) = ap = Ave(z(0)),Vt > 0. In other words, the
average consensus is globally asymptotically achieved. O
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Perron-Frobenius Theory
Spectral radius:
e spec(L) = {A1,.-.,An} is called the spectrum of L.
e p(L) = |\s| = maxy | Ag| is called the spectral radius of L

Theorem 6 (Perron’s Theorem, 1907). If A € R™" is a positive matriz (A >0 ), then

1. p(A) > 0;

2. r = p(A) is an eigenvalue of A;

3. There ezists a positive vector x > 0 such that Az = p(A)z;

4. |Al < p(A) for every eigenvalue X # p(A) of A, v.e. p(A) is the unique eigenvalue of
mazimum modulus; and

5. [p(A)"LA]™ — R as m — +oo where R =zy", Az = p(A)z, ATy = p(A)y, = >0,
y>0, and zTy = 1.

Theorem 7 (Perron’s Theorem for Non-Negative Matrices). If A € R™*" is a
non-negative matriz (A > 0), then p(A) is an eigenvalue of A and there is a non-negative
vector z > 0, T # 0, such that Az = p(A)z.
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Irreducible Graphs and Matrices

Irreducibility

e A directed graph is irreducible if, given any two ver- 9

o <————— . —
tices, there exists a path from the first vertex to the /
second. (Irreducible = strongly connected) )& .

e A matrix is irreducible if it is not similar to a block

upper triangular matrix via a permutation.

e A digraph is irreducible if and only if its adjacency Figure 4.1: Sample Graph G.
matrix is irreducible.
1 2 8 9
Theorem 8 (Frobenius). Let A € R™™™ and suppose that o-—0 o=@
A is wrreducible and non-negative. Then 6 M \3

® [ ] [ ]

1. p(A) > 0; \ / \

2. r = p(A) is an eigenvalue of A; o=—o )

3. There is a positive vector x > 0 such that Az = p(A)z; ’ ! 2 "

4. 7 = p(A) is an algebraically simple eigenvalue of A; Tiwre2 Induced Subgraphs of Components of 6.
and

5. If A has h eigenvalues of modulus r, then these eigen- {1,,:6;——{;; 9'11‘? {.10}
values are all distinct roots of \* —r = 0. Figure 4.3: Graph of Components of G.
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Properties of Laplacians (2)

Properties of L
e If G is strongly connected, the zero eigenvalue of L is simple.
e If G is aperiodic, all nonzero eigenvalues lie in the interior of the Gershgorin disk.
e If G is k-periodic, L has k evenly spaced eigenvalues on the boundary of the
Gershgorin disk.

Periodic

Unidirectional Undirected Cycle
graph

tree graph

o '(\. -..\m .\\ '\\\.\..\ Y N

I vARYEI)

A=0,1 A €[0,2] y T (WL A =0A, =2
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Algebraic Connectivity

Theorem 9 (Variant of Courant-Fischer). Let A € R™"*" be a Hermitian matriz with
etgenvalues Ay < Ao < --- < A, and let wy be the eigenvector of A associated with the
etgenvalue A\1. Then

Ao = min —— = min z'Az (6)
z#0,z€C?, ety xtri=1,
zlw; xlun

Remarks:
e )y is called the algebraic connectivity of L
e For an undirected graph with Laplacian L, the rate of convergence for the consensus

protocol is bounded by the second smallest eigenvalue Ao

1 2 8
Example

9
® @ (] ®
e Directed graph with a bottleneck /
Would be better to delete 6 3 7 10
®

some of the extra links
“«>0

to make the bottleneck ® @
link more clear. \ M /
=@ ® ®
4 12

e ———————————
5 11
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Cyclically Separable 6raphs

Definition (Cyclic separability). A digraph G = (V, &) is cyclically i
separable if and only if there exists a partition of the set of edges

& = Upe | & such that each partition & corresponds to either the

edges of a cycle of the graph, or a pair of directed edges 7j and ji 6 2
that constitute an undirected edge. A graph that is not cyclically
separable is called cyclically inseparable.

Lemma 10. Let L be the Laplacian matriz of a cyclically separable
digraph G and set u = —Lz,z € R®. Then Y ., u; = 0,Vz € R"
and 1= (1,...,1)7 is the left eigenvector of L.

Proof. The proof follows from the fact that by definition of cyclic A
separability. We have / \

n MNe
SYu= Y -m) =Y. Y () =0 NN/
i=1 ije& k=1ijEE |
because the inner sum is zero over the edges of cycles and undi-
rected edges of the graph. B |
e Provides a “conservation” principle for average consensus
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Balanced Graphs
Let G = (V,€) be a digraph. We say G is balanced if and only if the in—degree and
out—degree of all nodes of G are equal, i.e.

degou,(vi) = degis(vi), Vvi €V (7)
Theorem 11. A digraph is cyclically separable if and only if it is balanced.

Corollary 11.1. Consider a network of integrators with a directed information flow G
and nodes that apply the consensus protocol. Then, a = Ave(z) is an invariant quantity if
and only if G is balanced.

Remarks

e Balanced graphs generalized undirected graphs and retain many key properties
1

. ? 4./ ‘_——\. .\:\la
’ \o ’ \ / / \’/
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Consensus Protocols for Balanced Graphs

1 2 3 4 5 1 2 3 4 5
10 9 8 7 6 10 9 8 i 6
(a) (b)

Algebraic Connectivity=0.191 o Algebraic Connectivity=0.205
10— -
3 e ——— 3 o\:-m —— —
' S = s );_; S ————
@« - @
8-10 g-10
2% 5 10 15 “0 5 10 15
time( sec) time( sec)
300 300
£ | £
£ 200} £ 200
g |\ 8
100l S 2100 \\
S ~ 5
0 - B —— o \ —
0 5 10 15 ) 5 10 15
time( sec) time( sec)
(a) (b)
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Formation Operations: Graph Switching

Reconlig

Reconlig

Reconlig

Control questions
e How do we split and rejoin teams of vehicles?
e How do we specify vehicle formations and control them?
e How do we reconfigure formations (shape and topology) —

Consensus-based approach using balanced graphs
e |f each subgraph is balanced, disagreement vector provides common Lyapunov fcn

e By separately keeping track of the flow in and out of nodes, can preserve center of mass of of
subgraphs after a split manuever
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Other Uses of Consensus Protocols

Computation of other functions besides the average
e Can adopt the basic approach to compute max, min, etc
e Chandy/Charpentier: can compute superidempotent functions:

fXUY) = f(f(X)UY)
Basic idea: local conservation implies global conservation
e Can extend these cases to handle splitting and rejoining as well

Distributed Kalman filtering
e Maintain local estimates of global average and covariance
e Need to be careful about choosing rates of convergence

\odeir-_._‘ __________ 1 Nodri..___t __________ 1

1 1
Sensor

1 1
Sensor | i 1
Data Low-Pass Data Low-Pass
Ll ¢ Fil ; Lsc Filter !
1 " i ' s o
] Icro 1 1 ICro 1
] Kalman |x ] Kal) |—x
I Filter [T I Filter |7
! (UKF) ! ! (UKF) 1
Covarial® | Band-Pass 1 Covaria®<® | Band-Pass 1
————] Filter 1 —lp{ C flter 1
1 1 1 1
1 1 I ]
1 1
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Summary

Graphs
e Directed, undirected, connected, strongly complete
e Cyclic versus acyclic; irreducible, balanced

Graph Laplacian
e | =A-A
e Specitral properties related to connectivity of graph
e # zero eigenvalues = # strongly connected components
e Second largest nonzero eigenvalue ~ weak links

Spectral Properties of Graphs
e Gershgorin’s disk theorem
e Perron-Frobenius theory

Examples
e Consensus problems, distributed computing
e Cooperative control (coming up next...)
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