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Probabalistic Bounds Example
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Multi-Description Coding for Estimation

Results

• Can computing upper and lower 
bounds for performance as a 
function of loss rate

• Simulations verify performance 
improvements in very loss 
environments

• Limited benefits at low to moderate 
packet loss levels

Q: what should we put in packets?

• Expect some packets to be lost

• Avoid retransmit to keep latency down

• Can we put important information in 
multiple packets?

• Idea: use MD coding theory

! Originally developed for audio/video 
applications (latency insensitive)

Increased stability region

Increased per-
formance at high
loss rates

Don’t bother at
low loss rates

Jin, Gupta, M, CDC 05
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Optimal Linear Control with Packet Loss

Separation principle

• Restrict to linear controllers that 
minimize quadratic cost

• Control and estimation costs 
decouple ! optimal control is 

optimal LQR control law using 
best estimate given information 
received

Optimal estimator

• Encoder receives y_i as input, 
estimates x_k based on all 
measurements and transmits

• Decoder uses new data when it 
is received; other wise propagate

Controller

• Standard LQR (using estimate)

Process

Estimation/
Control

Network

Encode

Decode

Gupta, Spanos, M & Hassibi
ACC 2004 (p)

Ling and
Lemmon

Proposed
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Kalman Filtering With Intermittent Observations
Bruno Sinopoli, Student Member, IEEE, Luca Schenato, Member, IEEE, Massimo Franceschetti, Member, IEEE,

Kameshwar Poolla, Member, IEEE, Michael I. Jordan, Senior Member, IEEE, and Shankar S. Sastry, Fellow, IEEE

Abstract—Motivated by navigation and tracking applications
within sensor networks, we consider the problem of performing
Kalman filtering with intermittent observations. When data travel
along unreliable communication channels in a large, wireless,
multihop sensor network, the effect of communication delays and
loss of information in the control loop cannot be neglected. We
address this problem starting from the discrete Kalman filtering
formulation, and modeling the arrival of the observation as a
random process. We study the statistical convergence properties
of the estimation error covariance, showing the existence of a
critical value for the arrival rate of the observations, beyond
which a transition to an unbounded state error covariance occurs.
We also give upper and lower bounds on this expected state error
covariance.

Index Terms—Kalman estimation, missing observation, online
adaptive filtering, sensor networks, stability.

I. INTRODUCTION

ADVANCES in very large-scale integration and micro-
electromechanical system technology have boosted the

development of micro sensor integrated systems. Such sys-
tems combine computing, storage, radio technology, and energy
source on a single chip [1], [2]. When distributed over a wide
area, networks of sensors can perform a variety of tasks that
range from environmental monitoring and military surveil-
lance, to navigation and control of a moving vehicle [3]–[5].
A common feature of these systems is the presence of signif-
icant communication delays and data loss across the network.
From the point of view of control theory, significant delay is
equivalent to loss, as data needs to arrive to its destination
in time to be used for control. In short, communication and
control become tightly coupled such that the two issues cannot
be addressed independently.

Consider, for example, the problem of navigating a vehicle
based on the estimate from a sensor web of its current position
and velocity. The measurements underlying this estimate can
be lost or delayed due to the unreliability of the wireless links.
What is the amount of data loss that the control loop can tolerate
to reliably perform the navigation task? Can communication
protocols be designed to satisfy this constraint? At Berkeley, we
have faced these kind of questions in building sensor networks
for pursuit evasion games as part of the network of embedded
systems technology (NEST) project [2]. Practical advances in
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Fig. 1. Overview of the system. We study the statistical convergence of the
expected estimation error covariance of the discrete Kalman filter, where the
observation, travelling over an unreliable communication channel, can be lost
at each time step with probability 1 � �.

the design of these systems are described in [6]. The goal of this
paper is to examine some control-theoretic implications of using
sensor networks for control. These require a generalization of
classical control techniques that explicitly take into account the
stochastic nature of the communication channel.

In our setting, the sensor network provides observed data that
are used to estimate the state of a controlled system, and this es-
timate is then used for control. We study the effect of data losses
due to the unreliability of the network links. We generalize the
most ubiquitous recursive estimation technique in control—the
discrete-time Kalman filter [7]—modeling the arrival of an ob-
servation as a random process whose parameters are related to
the characteristics of the communication channel, see Fig. 1. We
characterize the statistical convergence of the expected estima-
tion error covariance in this setting.

The classical theory relies on several assumptions that guar-
antee convergence of the Kalman filter. Consider the following
discrete-time linear dynamical system:

(1)

where is the state vector, the output vector,
and are Gaussian random vectors with zero

mean and covariance matrices and , respectively.
is independent of for . Assume that the initial state,

, is also a Gaussian vector of zero mean and covariance .
Under the hypothesis of stabilizability of the pair and
detectability of the pair , the estimation error covariance
of the Kalman filter converges to a unique value from any initial
condition [8].

0018-9286/04$20.00 © 2004 IEEE
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These assumptions have been relaxed in various ways. Ex-
tended Kalman filtering [8] attempts to cope with nonlinearities
in the model; particle filtering [9] is also appropriate for non-
linear models and additionally does not require the noise model
to be Gaussian. Recently, more general observation processes
have been studied. In particular, in [10] and [11], the case in
which observations are randomly spaced in time according to
a Poisson process has been studied, where the underlying dy-
namics evolve in continuous time. These authors showed the
existence of a lower bound on the arrival rate of the observa-
tions below which it is possible to maintain the estimation error
covariance below a fixed value, with high probability. However,
the results were restricted to scalar single-input–single-output
systems.

We approach a similar problem within the framework of dis-
crete time, and provide results for general -dimensional mul-
tiple-input–multiple-output (MIMO) systems. In particular, we
consider a discrete-time system in which the arrival of an ob-
servation is a Bernoulli process with parameter ,
and, rather than asking for the estimation error covariance to
be bounded with high probability, we study the asymptotic be-
havior (in time) of its average. Our main contribution is to show
that, depending on the eigenvalues of the matrix , and on the
structure of the matrix , there exists a critical value , such
that if the probability of arrival of an observation at time is

, then the expectation of the estimation error covariance
is always finite (provided that the usual stabilizability and de-
tectability hypotheses are satisfied). If , then the expec-
tation of the estimation error covariance is unbounded. We give
explicit upper and lower bounds on , and show that they are
tight in some special cases.

Philosophically, this result can be seen as another manifes-
tation of the well known uncertainty threshold principle [12],
[13]. This principle states that optimum long-range control of a
dynamical system with uncertainty parameters is possible if and
only if the uncertainty does not exceed a given threshold. The
uncertainty is modeled as white noise scalar sequences acting
on the system and control matrices. In our case, the result is for
optimal estimation, rather than optimal control, and the uncer-
tainty is due to the random arrival of the observation, with the
randomness arising from losses in the network.

Studies on filtering with intermittent observations can be
tracked back to Nahi [14] and Hadidi [15]. More recently, this
problem has been studied using jump linear systems (JLSs)
[16]. JLSs are stochastic hybrid systems characterized by linear
dynamics and discrete regime transitions modeled as Markov
chains. In [17], [18], and [19], the Kalman filter with missing
observations is modeled as a JLS switching between two dis-
crete regimes: an open-loop configuration and a closed-loop
one. Following this approach, these authors obtain convergence
criteria for the expected estimation error covariance. How-
ever, they restrict their formulation to the steady-state case,
where the Kalman gain is constant, and they do not assume to
know the switching sequence. The resulting process is wide
sense stationary [20], and this makes the exact computation of
the transition probability and state error covariance possible.
Other work on optimal, constant gain filtering can be found
in the work of Wang et al. [21], who included the presence of

system parameters uncertainty besides missing observations,
and Smith et al. [22], who considered multiple filters fusion.
Instead, we consider the general case of time varying Kalman
gain. In presence of missing observations, this filter has a
smaller linear minimum mean square error (LMMSE) than its
static counterpart, as it is detailed in Section II.

The general case of time-varying Kalman filter with intermit-
tent observations was also studied by Fortmann et al. [23], who
derived stochastic equations for the state covariance error. How-
ever, they do not statistically characterize its convergence and
provide only numerical evidence of the transition to instability,
leaving a formal characterization of this as an open problem,
which is addressed in this paper. A somewhat different formula-
tion was considered in [24], where the observations arrival have
a bounded delay.

Finally, we point out that our analysis can also be viewed as
an instance of expectation–maximization (EM) theory. EM is
a general framework for doing maximum likelihood estimation
in missing-data models [25]. Lauritzen [26] shows how EM can
be used for general graphical models. In our case, however, the
graph structure is a function of the missing data, as there is one
graph for each pattern of missing data.

The paper is organized as follows. In Section II, we formalize
the problem of Kalman filtering with intermittent observations.
In Section III, we provide upper and lower bounds on the ex-
pected estimation error covariance of the Kalman filter, and find
the conditions on the observation arrival probability for which
the upper bound converges to a fixed point, and for which the
lower bound diverges. Section IV describes some special cases
and gives an intuitive understanding of the results. In Section V,
we compare our approach to previous ones [18] based on jump
linear systems. Finally, in Section VI, we state our conclusions
and give directions for future work.

II. PROBLEM FORMULATION

Consider the canonical state estimation problem. We define
the arrival of the observation at time as a binary random vari-
able , with probability distribution , and with
independent of if . The output noise is defined in the
following way:

for some . Therefore, the variance of the observation at time
is if is 1, and otherwise. In reality the absence of obser-
vation corresponds to the limiting case of . Our approach
is to rederive the Kalman filter equations using a “dummy” ob-
servation with a given variance when the real observation does
not arrive, and then take the limit as .

First, let us define

(2)

(3)

(4)

(5)

(6)
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where we have defined the vectors and
. It is easy to see that

(7)

(8)

and it follows that the random variables and , con-
ditioned on the output and on the arrivals , are jointly
Gaussian with mean

and covariance

Hence, the Kalman filter equations are modified as follows:

(9)

(10)

(11)

(12)

Taking the limit as , the update (11) and (12) can be
rewritten as follows:

(13)

(14)

where is the Kalman
gain matrix for the standard ARE. Note that performing this
limit corresponds exactly to propagating the previous state when
there is no observation update available at time . We also point
out the main difference from the standard Kalman filter formu-
lation: Both and are now random variables,
being a function of , which is itself random.

It is important to stress that (13) and (14) give the minimum
state-error variance filter given the observations and their
arrival sequence , i.e. .
As a consequence, the filter proposed in this paper is neces-
sarily time-varying and stochastic since it depends on the arrival
sequence. The filters that have been proposed so far using JLS
theory [17], [19] give the minimum state error variance filters
assuming that only the observations and the knowledge on
the last arrival are available, i.e. .
Therefore, the filter given by (13) and (14) gives a better per-
formance than its JLS counterparts, since it exploits additional
information regarding the arrival sequence.

Given the new formulation, we now study the Riccati equa-
tion of the state error covariance matrix in the specific case when

the arrival process of the observation is time-independent, i.e.,
for all time. This will allow us to provide deterministic

upper and lower bounds on its expectation. We then characterize
the convergence of these upper and lower bounds, as a function
of the arrival probability of the observation.

III. CONVERGENCE CONDITIONS AND TRANSITION

TO INSTABILITY

It is easy to verify that the modified Kalman filter formulation
in (10) and (14) can be rewritten as follows:

(15)

where we use the simplified notation . Since the
sequence is random, the modified Kalman filter iteration
is stochastic and cannot be determined offline. Therefore, only
statistical properties can be deduced.

In this section, we show the existence of a critical value
for the arrival probability of the observation update, such that for

the mean state covariance is bounded for all initial
conditions, and for the mean state covariance diverges
for some initial condition. We also find a lower bound , and
upper bound , for the critical probability , i.e., .
The lower bound is expressed in closed form; the upper bound is
the solution of a linear matrix inequality (LMI). In some special
cases the two bounds coincide, giving a tight estimate. Finally,
we present numerical algorithms to compute a lower bound ,
and upper bound , for , when it is bounded.

First, we define the modified algebraic Riccati equation
(MARE) for the Kalman filter with intermittent observations as
follows:

(16)

Our results derive from two principal facts: The first is that con-
cavity of the modified algebraic Riccati equation for our filter
with intermittent observations allows use of Jensen’s inequality
to find an upper bound on the mean state covariance; the second
is that all the operators we use to estimate upper and lower
bounds are monotonically increasing, therefore, if a fixed point
exists, it is also stable.

We formally state all main results in form of theorems.
Omitted proofs appear in the Appendix. The first theorem
expresses convergence properties of the MARE.

Theorem 1: Consider the operator
, where ,

. Suppose there exists a matrix and a
positive–definite matrix such that

and

Then

a) for any initial condition , the MARE converges,
and the limit is independent of the initial condition

b) is the unique positive–semidefinite fixed point of the
MARE.

The next theorem states the existence of a sharp transition.
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Theorem 2: If is controllable, is de-
tectable, and is unstable, then there exists a such
that

for and (17)

for and (18)

where depends on the initial condition .1

The next theorem gives upper and lower bounds for the crit-
ical probability .

Theorem 3: Let

(19)

(20)

where and are the eigenvalues of . Then

(21)

Finally, the following theorem gives an estimate of the limit
of the mean covariance matrix , when this is bounded.

Theorem 4: Assume that is controllable, is
detectable and , where is defined in Theorem 4. Then

(22)

where and , where and
are solution of the respective algebraic equations

and .
The previous theorems give lower and upper bounds for both

the critical probability and for the mean error covariance
. The lower bound is expressed in closed form. We now

resort to numerical algorithms for the computation of the re-
maining bounds , and .

The computation of the upper bound can be reformulated
as the iteration of an LMI feasibility problem. To establish this,
we need the following theorem.

Theorem 5: If is controllable and is de-
tectable, then the following statements are equivalent.

a) such that
b) , such that
c) and such that

Proof: a) b) If exists, then by
Lemma 1(g). Let . Then
which proves the statement.

b) a) Clearly which proves the
statement.

b) c) Let , then

1We use the notation lim A = +1 when the sequence A � 0 is not
bounded, i.e., there is no matrix M � 0 such that A � M , 8t.

is equivalent to

where we used the Schur complement decomposition and the
fact that .
Using one more time the Schur complement decomposition on
the first element of the matrix we obtain

This is equivalent to

Let us consider the change of variable and
, in which case the previous LMI is equivalent to

Since , then can be restricted to
, which completes the theorem.

Combining Theorems 3 and 5, we immediately have the fol-
lowing corollary.

Corollary 1: The upper bound is given by the solution of
the following optimization problem:

This is a quasi-convex optimization problem in the variables
and the solution can be obtained by iterating LMI

feasibility problems and using bisection for the variable , as
shown in [27].

The lower bound for the mean covariance matrix can be
easily obtained via standard Lyapunov Equation solvers. The
upper bound can be found by iterating the MARE or by
solving a semidefinite programming (SDP) problem as shown
in the following.

Theorem 6: If , then the matrix is given
by

a) ; where
b)

subject to

Proof:

a) It follows directly from Theorem 1.
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Fig. 2. Example of transition to instability in the scalar case. The dashed line
shows the asymptotic value of the lower bound ( �S), the solid line the asymptotic
value of the upper bound ( �V ), and the dashed–dotted line shows the asymptote
(� ).

b) It can be obtained by using the Schur complement de-
composition on the equation . Clearly, the
solution belongs to the feasible set of the
optimization problem. We now show that the solution of
the optimization problem is the fixed point of the MARE.
Suppose it is not, i.e., solves the optimization problem
but . Since is a feasible point of the op-

timization problem, then . However,

this implies that , which contra-
dicts the hypothesis of optimality of matrix . Therefore,

and this concludes the theorem.

IV. SPECIAL CASES AND EXAMPLES

In this section, we present some special cases in which upper
and lower bounds on the critical value coincide and give some
examples. From Theorem 1, it follows that if there exists a
such that is the zero matrix, then the convergence condition
of the MARE is for , where ,
and are the eigenvalues of .

• C is invertible: In this case, a choice of
makes . Note that the scalar case also falls under this
category. Fig. 2 shows a plot of the steady state of the upper
and lower bounds versus in the scalar case. The discrete
time LTI system used in this simulation has ,

, with and having zero mean and variance
and , respectively. For this system, we have

. The transition clearly appears in the figure,
where we see that the steady-state value of both upper
and lower bound tends to infinity as approaches . The
dashed line shows the lower bound, the solid line the upper
bound, and the dashed–dotted line shows the asymptote.

• A has a single unstable eigenvalue: In this case, regard-
less of the dimension of (and as long as the pair
is detectable), we can use Kalman decomposition to bring

Fig. 3. Example of transition to instability with a single unstable eigenvalue
in the MIMO case. The dashed line shows the asymptotic value of the trace of
lower bound ( �S), the solid line the asymptotic value of trace of the upper bound
( �V ), and the dashed–dotted line shows the asymptote (� ).

to zero the unstable part of and thereby obtain tight
bounds. Fig. 3 shows a plot for the system

with and having zero mean and variance
and , respectively. This time, the asymptotic
value for trace of upper and lower bound is plotted versus

. Once again .
In general, cannot always be made zero and we have shown

that while a lower bound on can be written in closed form,
an upper bound on is the result of a LMI. Fig. 4 shows an
example where upper and lower bounds have different conver-
gence conditions. The system used for this simulation is

with and having zero mean and variance and
, respectively.

Finally, in Fig. 5 we report results of another experiment,
plotting the state estimation error for the scalar system used
above at two similar values of , one being below and one
above the critical value. We note a dramatic change in the error
at . The figure on the left shows the estimation error
with . The figure on the right shows the estimation error
for the same system evolution with . In the first case,
the estimation error grows dramatically, making it practically
useless for control purposes. In the second case, a small increase
in reduces the estimation error by approximately three orders
of magnitude.

V. STATIC VERSUS DYNAMIC KALMAN GAIN

In this section, we compare the performance of filtering with
static and dynamic gain for a scalar discrete system. For the
static estimator, we follow the jump linear system approach of
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Fig. 5. Estimation error for � (left) below and (right) above the critical value.

Fig. 4. Transition to instability in the general case, with arbitrary A and C. In
this case, lower and upper bounds do not have the same asymptote.

[18]. The scalar static estimator case has been also worked out
in [28].

Consider the dynamic state estimator

(23)

where the Kalman gain is time-varying. Also consider the
static state estimator

(24)

where the estimator gain is constant. If no data arrives, i.e.,
, both estimators simply propagate the state estimate of

the previous time-step.
The performance of the dynamic state estimator (23) has been

analyzed in the previous sections. The performance of static
state estimator (24), instead, can be readily obtained using jump
linear system theory [16], [18]. To do so, let us consider the es-
timator error . Substituting (1) for and
(24) for , we obtain the dynamics of the estimation error

(25)

Using the same notation of [18, Ch. 6], where the author con-
siders the general system

system (25) can be seen as jump linear system switching be-
tween two states given by

where the noise covariance , the transition prob-
ability matrix and the steady-state probability distribution

are given by
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Fig. 6. Error covariance bound �V for dynamic predictor obtained from our
theory and steady-state error covariance for three natural static predictors
obtained from JLS theory.

Following the methodology proposed in [18], it is possible
to show that the previous system is mean square stable, i.e.,

if and only if the transition probability
is

(26)

If the system is mean square stable, the steady-state error co-
variance is given by

(27)

Calculations to obtain (26) and (27) are tedious but straightfor-
ward, therefore, they are omitted.

It is immediately evident that the critical transition probability
of the estimator (24) using a static gain is always greater than

the critical transition probability of the estimator (23) which
adopts a dynamic gain, in fact

and the two probabilities are equal only when .
A natural choice for the static estimator gain is the steady-

state Kalman gain of the closed-loop system ,
which is always different from . For the scalar system con-
sidered in the previous section, where , ,

, , this is given by , while the gain
for largest mean square stability range is .
In the special case when the arrival probability is known, another
natural choice for the estimator gain is obtained by substi-
tuting the error covariance solution of into the equa-
tion for the Kalman filter gain .
For example, assuming , then and

. Fig. 6 shows all of these cases, comparing them with the
upper bound on the state error covariance of the dynamic es-
timator (23) that can be computed as indicated in Theorem 6.

Fig. 7. Empirical state error covariance of our time-varying filter and the linear
minimum mean square error estimator [17] obtained by using the optimal static
kalman gain K . The curves are obtained by averaging 10 000 Monte Carlo
simulations for t = 1; . . . ; 300, with the values of the input noise (v ; w ) and
the arrival sequence 
 generated randomly. Both filters were compared under
the same conditions.

The steady-state error covariance of the static predictor for the
three different gains is always greater then our upper bound .
This is not surprising, since the dynamic estimator is optimal
over all possible estimators as shown in Section II. Note that
the static predictor with static gain (designed for )
achieves the same state error covariance predicted by our upper
bound for the optimal dynamic filter when . However,
the empirical error state covariance is on average better than the
static filter, as shown in Fig. 7. This is to be expected, since the
solution of MARE gives only an upper bound of the true ex-
pected state covariance of the time-varying filter. Moreover, it
is worth stressing that if the arrival probability is different from
the one used to design the static gain, the performance of the
static filter will degrade considerably, while the time-varying
filter will still perform optimally since it does not require knowl-
edge of . From this example, it seems that the upper bound
for the dynamic estimator gives an estimate of the minimum
steady-state covariance that can be achieved with a static esti-
mator for any given arrival probability if the static gain is
chosen optimally. Then, the MARE could be used to find the
minimum steady-state covariance and then the corresponding
steady-state modified Kalman gain, thus providing an useful
tool for optimal static estimator design. Future work will ex-
plore this possibility.

VI. CONCLUSION

In this paper, we have presented an analysis of Kalman
filtering in the setting of intermittent observations. We have
shown how the expected estimation error covariance depends on
the tradeoff between loss probability and the system dynamics.
Such a result is useful to the system designer who must assess
the relationship between the dynamics of the system whose
state is to be estimated and the reliability of the communication
channel through which that system is measured.
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Our motivating application is a distributed sensor network
that collects observations and sends them to one or more
central units that are responsible for estimation and control.
For example, in a pursuit evasion game in which mobile pursuers
perform their control actions based on the current estimate of the
positions of both pursuers and evaders, the sensing capability
of each pursuer is generally limited, and an embedded sensor
network is essential for providing a larger overall view of the
terrain. The results that we have presented here can aid the
designer of the sensor network in the choice of the number
and disposition of the sensors.

This application also suggests a number of interesting di-
rections for further work. For example, although we have as-
sumed independent Bernoulli probabilities for the observation
events, in the sensor network there will generally be temporal
and spatial sources of variability that lead to correlations among
these events. While it is possible to compute posterior state es-
timates in such a setting, it would be of interest to see if a priori
bounds of the kind that we have obtained here can be obtained
in this case. Similarly, in many situations there may be corre-
lations between the states and the observation events; for ex-
ample, such correlations will arise in the pursuit evasion game
when the evaders move near the boundaries of the sensor net-
work. Finally, the sensor network setting also suggests the use
of smoothing algorithms in addition to the filtering algorithms
that have been our focus here. In particular, we may be willing
to tolerate a small amount of additional delay to wait for the ar-
rival of a sensor measurement, if that measurement is expected
to provide a significant reduction in uncertainty. Thus, we would
expect that the tradeoff that we have studied here between loss
probability and the system dynamics should also be modulated
in interesting ways by the delay due to smoothing.

We also remark that the assumption of modeling the arrival
of observations as a Bernoulli i.i.d. process can be clearly im-
proved upon. For example, one can imagine situations where
some of the sensing is done locally and therefore measurements
are available at all sampling times, while measurements taken at
distant locations are available at irregular intervals. This would
translate in different dropping rates for different channels. We
have focused on providing a basic result upon which more so-
phisticated models can be built and analyzed.

APPENDIX A

In order to give complete proofs of our main theorems, we
need to prove some preliminary lemmas. The first one shows
some useful properties of the MARE.

Lemma 1: Let the operator

(28)

where , . Assume
, , , and is controllable.

Then, the following facts are true.

a) With ,
.

b) , .
c) If , then .
d) If then .

e) If , then
.

f) .
g) If , then .
h) If is a random variable, then

.
Proof:

a) Define , and observe that

Next, we have

b) Let .
Note that

Since , , is quadratic and convex in
the variable , therefore, the minimizer can be found by
solving , which gives

Since the minimizer corresponds to defined above,
the fact follows from fact (1).

c) Note that is affine in . Suppose . Then

This completes the proof.
d) Note that . Then

e) Let where . Then, we have
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f) Note that and , for all and .
Then

g) From fact f), it follows that
. Let such that .

Such must clearly exist. Therefore,
. Moreover, the matrix

solves the Lyapunov Equation where
. Since is detectable, it fol-

lows that and so , which proves the fact.
h) Using fact f) and linearity of expectation, we have

Fact e) implies that the operator is concave, therefore
by Jensen’s Inequality, we have .

Lemma 2: Let and . If is
a monotonically increasing function, then

Proof: This lemma can be readily proved by induction. It
is true for , since by definition. Now, assume
that , then
because of monotonicity of . The proof for the other two
cases is analogous.

It is important to note that while in the scalar case
either or ; in the matrix case ,
it is not generally true that either or .
This is the source of the major technical difficulty for the proof
of convergence of sequences in higher dimensions. In this case,
convergence of a sequence is obtained by finding two
other sequences, , that bound , i.e.,

, , and then by showing that these two sequences converge
to the same point.

The next two Lemmas show that when the MARE has a so-
lution , this solution is also stable, i.e., every sequence based
on the difference Riccati equation converges to

for all initial positive semidefinite conditions .
Lemma 3: Define the linear operator

Suppose there exists such that .

a) For all

b) Let and consider the linear system

initialized at

Then, the sequence is bounded.

Proof:

a) First observe that for all . Also,
implies . Choose such that

. Choose such that . Then

The assertion follows when we take the limit , on
noticing that .

b) The solution of the linear iteration is

proving the claim.

Lemma 4: Consider the operator defined in (28).
Suppose there exists a matrix and a positive–definite matrix

such that

Then, for any , the sequence is bounded, i.e.,
there exists dependent of such that

Proof: First, define the matrices and con-
sider the linear operator

Observe that

Thus, meets the condition of Lemma 3. Finally, using fact b)
in Lemma 1 we have
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Since , using Lemma 3, we conclude
that the sequence is bounded.

We are now ready to give proofs for Theorems 1–4.

A. Proof of Theorem 1

a) We first show that the modified Riccati difference equation
initialized at converges. Let . Note that

. It follows from Lemma 1c) that

A simple inductive argument establishes that

Here, we used Lemma 4 to bound the trajectory. We now have a
monotone nondecreasing sequence of matrices bounded above.
It is a simple matter to show that the sequence converges, i.e.,

Also, we see that is a fixed point of the modified Riccati
iteration

which establishes that it is positive–semidefinite solution of
the MARE.

Next, we show that the Riccati iteration initialized at
also converges, and to the same limit . First, define the ma-
trices

and consider the linear operator

Observe that

Thus, meets the condition of Lemma 3. Consequently, for all

Now, suppose . Then

A simple inductive argument establishes that

Observe that

Then, , proving the claim.

We now establish that the Riccati iteration converges to for
all initial conditions . Define and .
Consider three Riccati iterations, initialized at , , and .
Note that

It then follows from Lemma 2 that

We have already established that the Riccati equations and
converge to . As a result, we have

proving the claim.
b) Finally, we establish that the MARE has a unique posi-

tive–semidefinite solution. To this end, consider
and the Riccati iteration initialized at . This yields the
constant sequence

However, we have shown that every Riccati iteration converges
to . Thus, .

B. Proof of Theorem 2

First, we note that the two cases expressed by the theorem are
indeed possible. If , the modified Riccati difference equa-
tion reduces to the standard Riccati difference equation, which
is known to converge to a fixed point, under the theorem’s hy-
potheses. Hence, the covariance matrix is always bounded in
this case, for any initial condition . If , then
we reduce to open-loop prediction, and if the matrix is un-
stable, then the covariance matrix diverges for some initial con-
dition . Next, we show the existence of a single point of
transition between the two cases. Fix a such that

is bounded for any initial condition . Then, for
any is also bounded for all . In fact, we
have

where we exploited fact d) of Lemma 1 to write the previous
inequality. We can now choose

completing the proof.

C. Proof of Theorem 3

Define the Lyapunov operator where
. If is controllable, also is
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controllable. Therefore, it is well known that has
a unique strictly positive definite solution if and only
if , i.e. , from
which follows . If it is also
a well-known fact that there is no positive–semidefinite fixed
point to the Lyapunov equation , since is
controllable.

Let us consider the difference equation ,
. It is clear that . Since the operator is

monotonic increasing, by Lemma 2 it follows that the sequence
is monotonically increasing, i.e., for all .

If this sequence does not converge to a finite matrix
, otherwise by continuity of the operator we would have

, which is not possible. Since it is easy to show that
a monotonically increasing sequence that does not converge
is also unbounded, then we have

Let us consider now the mean covariance matrix ini-
tialized at . Clearly, . Moreover, it is
also true that implies

where we used fact h) from Lemma 1. By induction, it is easy
to show that

This implies that for any initial condition is unbounded
for any , therefore, , which proves the first part of
the Theorem.

Now, consider the sequence ,
. Clearly, implies

where we used facts c) and h) from Lemma 1. Then a simple
induction argument shows that for all . Let us
consider the case , therefore, there exists such that

. By Lemma 1(g) , therefore, all hypotheses
of Lemma 3 are satisfied, which implies that

This shows that and concludes the proof of the theorem.

D. Proof of Theorem 4

Let us consider the sequences ,
and , . Using the same

induction arguments in Theorem 3 it is easy to show that

From Theorem 1, it also follows that , where
. As shown previously, the sequence is monotoni-

cally increasing. Also, it is bounded since . There-
fore, , and by continuity ,
which is a Lyapunov equation. Since is stable and

is controllable, then the solution of the Lyapunov
equation is strictly positive definite, i.e., . Adding all of
the results together, we get

which concludes the proof.
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