

Optimal Control Using Differential Flatness

Planner Approach	
Underlying strategy	Vehicle dynamics
 Nonlinear programming optimization with SNOPT 	$\dot{N} = v \cos \theta$ s.t.
 Traversal time optimized over space of trajectories 	$\dot{E} = v \sin \theta \qquad \phi \in [\phi_{min}, \phi_{max}]$ $\dot{\theta} = v \tan \phi \qquad (1 - \zeta - [(1 - \zeta) - (1 - \zeta)])$
Dynamic feasibility as constraints	$v = \frac{1}{L} \tan \phi$ $\omega \in [\omega_{min}, \omega_{max}]$ $v \in (0, v_{max}]$
 Obstacle avoidance as constraint/cost 	$\phi = \omega = u_1$ $\phi = (0, 0, 0)$
 Receding horizon 	$\dot{v} = a = u_2$ $u \in [u_{min}, u_{max}]$
Reparameterization	A 177
 Choose θ, v as indep variables; parameterize by quadratic splines 	\$E\$
 Integrate from initial pos to get N, E 	
 Impose speed limit, accel limit, steering mag/rate limits, rollover constraints 	\$s\$ \$\theta(s)\$
 Minimize traversal time 	
$T = S_f \int_0^1 \frac{1}{v(N(s), E(s))} ds$	\$s=0\$ \$(N_0, E_0)\$
plus steering, acceleration "effort"	p110
HYCON-EECI, Mar 08 R. M. Murray	Caltech CDS 26

Additional Modifications

Seed path (stage 1 planner)

- Provides initial conditions for optimization based planner
- Minimize time based on velocity along path

Obstacle convexification

- Flat obstacles create problems for optimization algorithm
- Solution: create gradient on obstacles to allow optimizer convergence

Growing obstacles

- Need to grow obstacles to take into account vehicle width
- Use orientation of obstacles in deciding how to grow

No data regions

- Encode no data regions as "negative" velocity in maps
- No data regions inside vehicle stopping distance: use low speed (3 m/s)
- No data regions further than stopping distance: use 2X current speed
- Allows vehicle to keep moving at high speed until slowing down is required

R. M. Murray, Caltech CDS

27

Interface Issues

Planning horizon

- Allow planning to increase as speed increases
- Min horizon = 25 m, max = 65 m
- Use lag to avoid rapid changes

Stage 1 "indecisiveness"

- · If obstacle is directly in front of vehicle, stage 1 can switch sides each iteration
- · Solution: penalize distance from path of nrevious iteration

Vehicle width

· Increase width of vehicle at high speed

HYCON-EECI, Mar 08

Planner Failed

100

200

R. M. Murray, Caltech CDS

Current Strategy Nominal Slow Advance Lone Ranger Unseen Obstacle L-turn Reverse ARPA estop pause GPS re-acquisition Outside RDDF End of RDDF

- Trajectories can go through obstacles or outside "corridor"
 - Obstacles appear after plan is made
 - Optimizer fails to converge
- Supervisory control catches these cases and brings vehicle to stop
- Supervisory controller can then "force" vehicle along last planned path ("lone ranger"

300

500 600

29

HYCON-EECI, Mar 08