
NCS Lecture 3:

Embedded Systems Programming

Richard M. Murray

17 March 2008

Goals:

• Describe how event ordering works in distributed systems

• Discuss choices in NCS message delivery

• Introduce Spread, a group communications toolkit

• Describe multi-threaded execution in the context of control systems

• Introduce Pthreads, a standard library for multi-threaded programming

Reading:

• “Time, Clocks, and the Ordering of Events in a Distributed System”, L. 
Lamport.  Comm. ACM, 1978

• “A User’s Guide to Spread”, Jonathan R. Stanton, 2002.

• “POSIX Threads Programming”, Lawrence Livermore National Laboratory. 
2006 (online tutorial)

• “Monitors: An Operating System Structuring Concept”, C. A. R. Hoare. 
Communications of the ACM, 17(10):549--557, 1974.
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Communication Management: Spread

1

22 3 4 5

6 7 7 1

Message type Bytes/Freq Recv Comments

Vehicle State ~250 B @ 40 Hz 15 Pos, vel, acc; highest update rate

Actuator State ~220 B @ 30 Hz 3? Actuators + OBD II information

Elevation Map 4 MB @ 10 Hz 0 Not transmitted

Cost Map 4 MB @ 10 Hz 3 Deltas transmitted

Trajectory  ??? @ 5 Hz 2 Variable size (I think)

Cameras 640x480 @ 30 Hz 5 Firewire (~20 MB/s per camera)
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Causality in Distributed Communications (Lamport, ‘78)

Partial ordering: a ! b

• If a and b are events in the same 
process, then a ! b

• If a is the sending of a message by one 
process and b is the receipt of the 
same message by another process, 
then a ! b

• If a ! b and b ! c then a ! c

• a ! b means “a can causally effect b”

Logical Clocks

• Let Ci"a#  be a clock for process Pi that 

assigns a number to an event

• Define C"b# = Cj"b# if b is an event in 

process Pj

• Clock condition: for any two events a, 
b: if a ! b then C"a# < C"b#

Remarks

• Events are partially ordered: can 
compare some events but not all 
events

• Example: p1 ! q3 but p3 and q3 are no 

related

• Clocks are not unique (can choose any 
set of integers with appropriate 
relations)
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Implementing a Clock

Conditions for a clock

• C1: If a, b are events in process Pi and 

a comes before b, then Ci "a# < Ci "b#

• C2: If event a is the sending of a 
message by process PI and event b is 

the receipt of that message by process 
Pj, then CI "a# < CI "b#

Space-Time Diagram 

• Add ticks for every count in each 
process

• Draw “tick lines” between equally 
numbered ticks

• C1 $ tick line between two events

• C2 $ every msg must cross tick line

Remarks

• Events can shift around between tick 
lines without changing logical clocks $ 

logical time is different than physical 
time
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Constructing Clocks

Implementation rule

• IR1: Each process Pi increments Ci 

between any two successive events

• IR2:

! (a) If event a is the sending a 
message m by process Pi, then the 

message m contains a timestamp 
Tm = Ci"a#

! (b) Upon receiving a message m, 
process Pj sets Cj greater than or 

equal to its present value and 
greater than Tm

Remarks:

• Gives an easy algorithm for 
constructing a clock

• Note that C"a# <  C"b#  does not imply 

a ! b.  Still only a partial order (can 

only compare certain elements)

Total order

• Order events according to logical 
clocks

• Break ties using process number

• Allows any two events to be compared

• Total ordering is not unique (depends 
on choice of clocks)
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Example: Resource allocation

Problem description

• Fixed processes Pi sharing resource R

• Once a process grabs a resource, it 
must release it before it is use again

• Requests granted in order they were 
requested

• Every request is eventually granted

• Solve in distributed way; processes 
agree on who goes next

• Problem is non-trivial, even with central 
scheduling (see Lamport paper)

Algorithm

1. PI sends message Tm:Pi request to 

every other process and puts message 
on its queue

2. Pj queues all requests and sends 

timestamped acknowledgement to 
sender

3. Process Pi uses resource when

1.Tm:Pi request is ordered before any 

other request in queue (according to 
total order)

2.Pi has been received ack from 

everyone with timestamp > Tm

3. Pi removes Tm:Pi request message 

from queue and sends Tm:Pi release 

message to everyone

• When Pj receives a Tm:Pi release 

message, it removes message from its 
queue

P1 P2 P3 P4 P5

R
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Group Messaging Systems

Group

• Collections of processes that can send 
messages back and forth to everyone

• Messaging system has to keep track of 
people joining and leaving groups

• Goal: deliver packets reliably and 
causally

Ex: Alice NCS group message types

• Modules receive certain message types

Issues

• Need to track membership over time

• Need to provide different levels of 
reliability (at the group level)

• Need to provide different levels of 
ordering (or causality)

• Also need to keep track of the fact that 
time may be different on different 
computers (no global clock)

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x
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Message Ordering (“Virtual Synchrony”)

Ordering

• None - No ordering guarantee. 

• Fifo by Sender-  All messages sent by 
this sender are delivered in FIFO order. 

• Causal - All messages sent by all 
senders are delivered in Lamport 
causal order.

• Total Order - All messages sent by all 
senders are delivered in the exact 
same order to all recipients

Remarks

• Imposing causality increases message 
overhead; need to make sure that 
everyone has the message

• Things get interesting with multiple 
groups - everyone in same collection of 
groups should receive all messages in 
same order

• HW: figure out an example where 
causal and total order are different

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x
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Message Reliability (“Extended Virtual Synchrony”)

Reliability

• Unreliable - Message may be dropped 
or lost and will not be recovered. 

• Reliable - Message will be reliably 
delivered to all recipients who are in 
group to which message was sent. 

• Safe - The message will ONLY be 
delivered to a recipient if everyone 
currently in the group definitely has the 
message

Remarks

• Key issue is keeping track of reliability 
in groups.  Reliable messages should 
be received by everyone (eventually).

• Requires agreement algorithm across 
computers (who has what)

• HW: find an example where reliable 
messages are not safe.

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x
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Spread Toolkit (Stanton ‘02)

Spread Functions

• SP_connect: establish a connection 
with the spread daemon

• SP_disconnect: terminate connection

• SP_join(mbox. group): join a group

• SP_leave(mbox. group): leave a group

• SP_multicast(…, group, message, 
type): send a message to everyone in 
group of given type

• SP_receive: receive a message

Message types

• Unreliable - no order, unreliable

• Reliable - no order, reliable

• FIFO - FIFO by sender, reliable

• Causal - Causal (Lamport), reliable

• Agreed - Totally ordered, reliable

• Safe - Totally ordered, safe

• Note: each message has a type; these 
can be mixed within groups

Computer 1 Spread
Server

P1 P2 P3

Computer 2 Spread
Server

P1 P2 P3

Computer 3

P1 P2 P3

Group 1

Group 2
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Features of Spread

Features of Spread

• Number and location of servers are 
configurable

• Retransmits are optimized in multi-hop 
environments

• Guarantees are provided at servers; 
assumes that inter-process comms on 
single computer is reliable

• Data is combined in packets when 
possible to increase efficiency

! Gives a correlated channel model 
when data is lost

• No hardwired addresses (exc servers)

Project ideas

• How can we model a spread-based 
communications network from the point 
of view of estimation and control

• Is it better to have one server or 
multiple servers?  What are the latency 
tradeoffs?

! Alice originally used one server per 
computer

! Eventually moved to a single server 
(not sure why)

Computer 1 Spread
Server

P1 P2 P3

Computer 2 Spread
Server

P1 P2 P3

Computer 3

P1 P2 P3
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How Spread Works (Amir and Stanton, ‘98)

Hop protocol

• UDP-based protocol between sites

! Sites connected by slower links

• Provide low latency communcations

• Packet loss handled on hop-by-hop 
basis (instead of end to end)

Spread daemon

• Implements group communi-
cations protocols

• Uses UDP to talk between 
spread hosts

• Two protocols: hop and ring

Applications

• Think client library

• Uses TCP to talk to server

Ring Protocol

• Used for communications between 
multiple servers at same site

! Assumes dedicated (switched) links

• Token ring based protocol: pass control 
from one server to the next
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Example: Resource allocation

Problem description

• Fixed processes Pi sharing resource R

• Once a process grabs a resource, it 
must release it before it is use again

• Requests granted in order they were 
requested

• Every request is eventually granted

• Solve in distributed way; processes 
agree on who goes next

• Problem is non-trivial, even with central 
scheduling (see Lamport paper)

Solution using Spread

• Assume totally ordered, reliable 
messages (“agreed” message type)

• All processes and resource in single 
spread group

Algorithm

1. Pi sends multcast message to group 

requesting resource

2. Pj queues all requests and sends ack

3. Process Pi uses resource when

• Pi request is at top of queue

• Ack has been received from 
everyone

• Pi sends release message when done

1. Pj dequeues release when message 

received

2. Note: spread provides single order

P1 P2 P3 P4 P5

R
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Process Management: Pthreads

1

22 3 4 5

6 7 7 1

Example: vehicle actuation (adrive)

• Interface to 7 different actuation 
systems (steer, gas, brake, etc)

• Each actuator involves different rates, 
delays, comms blocking

• Asynchronous receipt of commands 
and state + xmit actuator state

• Hard to synchronize individual 
actuators with main control loop

Approach: multi-threaded programming

• Break program up into independent 
execution threads

• Operating system can switch threads 
on blocking => always executing

• Challenges: asynchronous operation, 
simultaneous access to variables
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Traditional Control Systems Implementation (Sparrow)

Simplest case: interrupt driven loop

• Use HW/SW interrupts to run control 
routine at an accurate and fixed rate

• “Servo loop” overrides normal program 
operation

• Need to be careful about interaction of 
variables in servo loop with main pgm

Variations: 

• Time-triggered protocols - scheduling of 
events to allow multiple “servos”

Sample program

• Discrete time implementation

• Uses quasi-sparrow implementation

load_controller(file)

servo_setup(loop, rate, flags);

servo_enable();

loop()

{

! y = read_measurement();

  r = read_reference();

! xnew = Ac * x + Bc * (r - y);

  u = Cc * x + Dc * (r - y);

  write_control(u);

  x = xnew;

}

C(s) P(s)

Tustin
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Multi-Threaded Programming

Basic Idea

• Separate code into independent 
segments (“threads”)

• Switch between threads, allowing each 
to run “simultaneously”

• Threads share memory and devices; 
allows rapid sharing of information

Threads vs Processes

• Processes have separate memory 
space and device handles

• Requires interprocess communication 
to share data

Advantages

• Avoid manual coding to eliminate 
pauses due to hardware response

• Multiple control loops become separate 
threads; OS insures execution

• Allows messages (or signals) to be 
received in middle of long computation

Issues

• Race conditions

• Dead locks (“deadly embrace”)

• Asynchronous operations

(wait)(wait)

(wait)

(wait)
read_meas ctrl

computation

write_ctrl

suspended
executionSingle threaded execution Multi-threaded execution
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Issue #1: Race Conditions

Definition

• “A race condition is a flaw in a system 
or process where the output exhibits 
unexpected critical dependence on the 
relative timing of events.” (wikipedia)

Application to threads

• Execution of threads is controlled by 
the operating system (OS)

• It is possible for threads to be pre-
empted and another thread to run $ 

can’t assume anything about order

• While easy to understand, race 
conditions can be hard to locate and 
debug

(wait) (wait)

(wait)

(wait)
variable

variable

Example

• Thread 1: compute sqrt of number

• Thread 2: update number on condition

Code:

thread1() {

  if (x < 0) 

    y = 0;

  else

    y = sqrt(x);

}

thread2() {

! if (event) x = x - 1;

}
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Mutual Exclusion (mutex)

Solution: exclude overlapping access

• Semaphores introduced by Djikstra in 
1960s to handle this problem

• Key idea: protect “critical sections” of 
code by setting a “mutex”

• Mutex_lock: wait for mutex to be 
unblocked (if it isn’t already), then set

! While a mutex_lock is being 
blocked, the OS can execute code

• Mutex_unlock: unset the mutex

Atomicity

• Operating systems need to insure that 
mutexes are “atomic” operations - no 
instructions executed while checking 
and setting the flag

• If this doesn’t happen, you can get a 
race condition in setting the flag (which 
is what we are trying to avoid…)

thread1() {

  mutex_lock(xmtx);

  if (x < 0) 

    y = 0;

  else

    y = sqrt(x);

  mutex_unlock(xmtx);

}

thread2() {

  mutex_lock(xmtx);

! if (event) x = x - 1;

  mutex_unlock(xmtx);

}

(wait)

(wait)

variable

(locked)

Critical
Section

Critical
Section
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Issue #2: Deadlocks

Possible execution

• Thread 1 executes up to line 3

! Locks xmtx mutex

• Switch to thread 2

• Thread 2 executes through line 12

! Locks ymtx mutex

• Compute() blocks on xmtx mutex

• Switch to thread 1

• Thread 1 blocks on ymtx mutex

• (no further execution)

Remarks

• Easy to fix, but sometimes hard to spot 
(especially when using subroutines)

Solution: lots of debugging

• Formal tools exist, but generally can’t 
operate at programming code level

 1 thread1() {

 2   mutex_lock(xmtx);

 3   if (x < 0) x = 0;

 4   mutex_lock(ymtx);

 5   y = sqrt(-x);

 6   mutex_lock(ymtx)

 7   mutex_unlock(xmtx);

 8 }

 9

10 thread2() {

11   mutex_lock(ymtx);

12   if (y == 0) compute();

13   mutex_unlock(ymtx);

14 }

15

16 compute() {

17   mutex_lock(xmtx);

18   if (event) x = x - 1;

19   mutex_unlock(xmtx);

20 }
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Thread Usage

When to use threads

• Main usage is when the program has to 
wait on a process or resource

• Eliminate threads if they aren’t needed 
(eg, tight interlocking with no waits)

Avoiding deadlocks

• Never put a mutex around a call that 
might itself block (I/O call, mutex, etc)

• If you have to use nested mutex’s, 
make sure they are in the same order 
whenever they are invoked

Performance improvements

• Try to keep critical sections as small as 
possible (avoids excessive waiting)

• Combine accesses to same variables 
in nearby sections

• Use buffers to minimize lock times

Conditional variables

• Allows a thread to sleep until a certain 
condition is met

• Used in conjunction with a mutex

 1 thread1() {

 2   mutex_lock(xmtx); 

 3   while (!condition) 

 4     cond_wait(&cond, xmtx);

 5   do_something(); 

 6   mutex_unlock(xmtx); 

 7 }

 8

 9 thread2() { 

10   mutex_lock(xmtx); 

11   // make condition TRUE

12   if (cond)

13     cond_signal(&cond);

14   mutex_unlock(xmtx);

15 }

unlocks mutex on
entry and relocks

on return
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Issue #3: Asynchronous Execution

Executation is non-deterministic

• Operating system determines when to 
execute individual threads

• Different operating systems will give 
different sequences of operations

• Avoid tuning scheduling rules to let OS 
optimize (eg, multi-processor core)

Use mutexes and conditions if needed

• Can insure partial synchronization by 
using mutexes and conditions, but

• Avoid overly constraining threads; can 
get worse performance than just doing 
things sequentially

Reasoning about concurrent code

• It is still possible to prove things about 
multi-threaded execution

• Example: Lyapunov like functions

! Let V be a positive function whose 
minimum corresponds to desired 
state

! Show that each portion of code 
does not increase V’s value

! Show that some portions of code 
decrease value of V

! Conclude that V will approach 
minimum value

• Formal methods: temporal logic, unity

read

write

read

write

read

write
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POSIX Threads (Pthreads)

Thread creation

• pthread_create  call a function as a new thread of execution

• pthread_exit  terminate the current thread

• pthread_join  wait for a specific thread to exit

Mutexes

• pthread_mutex_init initialize a mutex

• pthread_mutex_lock lock a mutex (blocks until mutex is available)

• pthread_mutex_unlock unlock a mutex (and unblock first blocked threads)

• pthread_mutex_destroy free up resources associated with a mutex

Conditional variables

• pthread_cond_init initialize a condition

• pthread_cond_wait  wait until condition is satisfied (paired with a mutex)

• pthread_cond_signal signal that a condition is now satisfied

• pthread_cond_destroy free up resources associate with a mutex

Read/write locks

• Variation on mutexes that allow multiple unblocking reads
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Example: Threaded Control Loop

 1 pthread_create(…, sensor, …);

 2 pthread_create(…, actuator, …);

 3 pthread_create(…, control, …);

 4 display();

 5

 6 sensor() {

 7   // initialization

 8   while (1) {

 9     pthread_mutex_lock(smtx);

10     y = read_measurement();

11     r = read_reference();

12     pthread_mutex_unlock(smtx);

13     usleep(S_WAIT_USEC);

14   }

• }

•  

read

write

read

write

Notes

• Process inputs/outputs asynchronously

• HW: is this OK?  Optimal?

18 control() {

19  // initialization

20   while (1) {

21     pthread_mutex_lock(smtx);

22     err = r - y;

23     pthread_mutex_unlock(smtx);

24  

25     xnew = Ac * x + Bc * err;

26  

27     pthread_mutex_lock(amtx);

28     u = Cc * x + Dc * err;

29     pthread_mutex_unlock(amtx);

30  

•     usleep(C_WAIT_USEC)

20   }

21 }
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Thread Scheduling

Thread scheduling policies

• FIFO - threads are called in first in, first 
out order within each priority level

! Thread continues to run until a 
higher priority thread is runnable

! Threads at same priority must block 
in order for other threads to run

• Round-robin - each thread is called in 
sequence, within priority level

! Thread runs for fixed period of time 
before it is pre-empted

• Other - implementation specific

! Operating system defines how 
threads are scheduled

! This is the default (and undefined!)

Homework

• Write a simple multi-threaded program 
using pthreads that reads numbers 
from an input stream (terminal), 
averages all numbers that have been 
read, and prints out the average once a 
second [use three threads]

Project Ideas

• Expand sparrow to allow multi-threaded 
servo and channel (I/O) execution

• Analyze how to best use mutex’s for 
minimizing control latency when 
reading inputs via the network and 
writing outputs via (slow) serial ports

• Convert a controller from continuous to 
discrete for a multi-threaded control 
system using FIFO or round-robin 
scheduling
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Thread Usage in Alice

Module Threads

adrive (actuation) 19

trajFollower 10

astate (state estimator) 10

plannerModule 4

fusionMapper 16

Module Threads

ladarFeeder (5) 8

stereoFeeder (2) 7

road (road follower) 5

superCon 3

DBS 3

* doesn’t count heartbeat and logging threads
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Example: State Client

• Thread to 
read msgs

• Infinite loop

• Read msg 
(blocks until 
available)

• Unblock any-
one waiting

• Copy state 
into buffer

• Use mutex to 
insure 
completeness

• Block until 
new state 
msg arrives

• Asynchronously reads actuator state from adrive via thread

• Passes data back to calling module (eg, trajFollower)

void CStateClient::getActuatorStateThread() {

  int actuatorstatesocket = 

    m_skynet.listen(SNactuatorstate, ALLMODULES);

  while(m_bRunThreads) {

    if(m_skynet.get_msg(actuatorstatesocket,

      &m_rcvdActuatorstate, sizeof(m_rcvdActuatorstate), 0,
      &pActuatorstateMutex) != sizeof(m_rcvdActuatorstate)) 

        skynet_error();

    DGCSetConditionTrue(condNewActuatorState);

  }

}

void CStateClient::UpdateActuatorState()

{

  DGClockMutex(&m_actuatorstateMutex);

  memcpy(&m_actuatorState, &m_rcvdActuatorstate, sizeof(…));

  DGCunlockMutex(&m_actuatorstateMutex);

}

void CStateClient::WaitForNewActuatorState() {

  DGCWaitForConditionTrue(condNewActuatorState);

  UpdateActuatorState();

  condNewActuatorState.bCond = false;

}
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Verifying Multi-Threaded Programs

SPIN (Holzmann)

• Model system using PROMELA 
(Process Meta Language)

- Asynchronous processes

- Buffered and unbuffered 
message channels

- Synchronizing statements

- Structured data

• Simulation: Perform random or 
iterative simulations of the modeled 
system's execution

• Verification: Generate a C program 
that performs a fast exhaustive 
verification of the system state space

• Check for deadlocks, livelocks, 
unspecified receptions, and 
unexecutable code, correctness of 
system invariants, non-progress 
execution cycles

• Also support the verification of linear 
time temporal constraints

TLA/TLC (Lamport et al)

• Temporal Logic of Actions (TLA): 
Leslie Lamport, 1980’s

• Behavior (a sequence of states) is 
described by an initial predicate and 
an action

Spec ! Init ! !Action

• Specify a system by specifying a set 
of possible behaviors

• Theorem: A temporal formula satisfied 
by every behavior

Theorem ! Spec ⇒ !Properties 

TLA+

• Can be used to write a precise, formal 
description of almost any sort of 
discrete system

• Especially well suited to describing 
asynchronous systems

• Tools: Syntactic Analyzer, TLC model 
checker

27
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Summary: Embedded Systems Programming

Advantages

• Increased modularity

• Simplified programming*

Cautions

• Asynchronous execution

• Race conditions

• Deadlocking

• Debugging

Open Issues for Control Theory

• How do we best implement 
controllers in this setting?

• How do we verify that programs 
satisfy the specifications and 
design intent 

• How do we implement multi-rate 
controllers using threaded process 
and distributed computing?

(wait)

(wait)

(wait)(wait)

read_meas ctrl

computation

write_ctrl


