
NCS Lecture 3:

Embedded Systems Programming

Richard M. Murray

17 March 2008

Goals:

• Describe how event ordering works in distributed systems

• Discuss choices in NCS message delivery

• Introduce Spread, a group communications toolkit

• Describe multi-threaded execution in the context of control systems

• Introduce Pthreads, a standard library for multi-threaded programming

Reading:

• “Time, Clocks, and the Ordering of Events in a Distributed System”, L.
Lamport. Comm. ACM, 1978

• “A User’s Guide to Spread”, Jonathan R. Stanton, 2002.

• “POSIX Threads Programming”, Lawrence Livermore National Laboratory.
2006 (online tutorial)

• “Monitors: An Operating System Structuring Concept”, C. A. R. Hoare.
Communications of the ACM, 17(10):549--557, 1974.

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 2

Communication Management: Spread

1

22 3 4 5

6 7 7 1

Message type Bytes/Freq Recv Comments

Vehicle State ~250 B @ 40 Hz 15 Pos, vel, acc; highest update rate

Actuator State ~220 B @ 30 Hz 3? Actuators + OBD II information

Elevation Map 4 MB @ 10 Hz 0 Not transmitted

Cost Map 4 MB @ 10 Hz 3 Deltas transmitted

Trajectory ??? @ 5 Hz 2 Variable size (I think)

Cameras 640x480 @ 30 Hz 5 Firewire (~20 MB/s per camera)

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 3

Causality in Distributed Communications (Lamport, ‘78)

Partial ordering: a ! b

• If a and b are events in the same
process, then a ! b

• If a is the sending of a message by one
process and b is the receipt of the
same message by another process,
then a ! b

• If a ! b and b ! c then a ! c

• a ! b means “a can causally effect b”

Logical Clocks

• Let Ci"a# be a clock for process Pi that

assigns a number to an event

• Define C"b# = Cj"b# if b is an event in

process Pj

• Clock condition: for any two events a,
b: if a ! b then C"a# < C"b#

Remarks

• Events are partially ordered: can
compare some events but not all
events

• Example: p1 ! q3 but p3 and q3 are no

related

• Clocks are not unique (can choose any
set of integers with appropriate
relations)

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 4

Implementing a Clock

Conditions for a clock

• C1: If a, b are events in process Pi and

a comes before b, then Ci "a# < Ci "b#

• C2: If event a is the sending of a
message by process PI and event b is

the receipt of that message by process
Pj, then CI "a# < CI "b#

Space-Time Diagram

• Add ticks for every count in each
process

• Draw “tick lines” between equally
numbered ticks

• C1 $ tick line between two events

• C2 $ every msg must cross tick line

Remarks

• Events can shift around between tick
lines without changing logical clocks $

logical time is different than physical
time

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 5

Constructing Clocks

Implementation rule

• IR1: Each process Pi increments Ci

between any two successive events

• IR2:

! (a) If event a is the sending a
message m by process Pi, then the

message m contains a timestamp
Tm = Ci"a#

! (b) Upon receiving a message m,
process Pj sets Cj greater than or

equal to its present value and
greater than Tm

Remarks:

• Gives an easy algorithm for
constructing a clock

• Note that C"a# < C"b# does not imply

a ! b. Still only a partial order (can

only compare certain elements)

Total order

• Order events according to logical
clocks

• Break ties using process number

• Allows any two events to be compared

• Total ordering is not unique (depends
on choice of clocks)

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 6

Example: Resource allocation

Problem description

• Fixed processes Pi sharing resource R

• Once a process grabs a resource, it
must release it before it is use again

• Requests granted in order they were
requested

• Every request is eventually granted

• Solve in distributed way; processes
agree on who goes next

• Problem is non-trivial, even with central
scheduling (see Lamport paper)

Algorithm

1. PI sends message Tm:Pi request to

every other process and puts message
on its queue

2. Pj queues all requests and sends

timestamped acknowledgement to
sender

3. Process Pi uses resource when

1.Tm:Pi request is ordered before any

other request in queue (according to
total order)

2.Pi has been received ack from

everyone with timestamp > Tm

3. Pi removes Tm:Pi request message

from queue and sends Tm:Pi release

message to everyone

• When Pj receives a Tm:Pi release

message, it removes message from its
queue

P1 P2 P3 P4 P5

R

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 7

Group Messaging Systems

Group

• Collections of processes that can send
messages back and forth to everyone

• Messaging system has to keep track of
people joining and leaving groups

• Goal: deliver packets reliably and
causally

Ex: Alice NCS group message types

• Modules receive certain message types

Issues

• Need to track membership over time

• Need to provide different levels of
reliability (at the group level)

• Need to provide different levels of
ordering (or causality)

• Also need to keep track of the fact that
time may be different on different
computers (no global clock)

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 8

Message Ordering (“Virtual Synchrony”)

Ordering

• None - No ordering guarantee.

• Fifo by Sender- All messages sent by
this sender are delivered in FIFO order.

• Causal - All messages sent by all
senders are delivered in Lamport
causal order.

• Total Order - All messages sent by all
senders are delivered in the exact
same order to all recipients

Remarks

• Imposing causality increases message
overhead; need to make sure that
everyone has the message

• Things get interesting with multiple
groups - everyone in same collection of
groups should receive all messages in
same order

• HW: figure out an example where
causal and total order are different

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 9

Message Reliability (“Extended Virtual Synchrony”)

Reliability

• Unreliable - Message may be dropped
or lost and will not be recovered.

• Reliable - Message will be reliably
delivered to all recipients who are in
group to which message was sent.

• Safe - The message will ONLY be
delivered to a recipient if everyone
currently in the group definitely has the
message

Remarks

• Key issue is keeping track of reliability
in groups. Reliable messages should
be received by everyone (eventually).

• Requires agreement algorithm across
computers (who has what)

• HW: find an example where reliable
messages are not safe.

Feeder 1

Feeder 2

FusionMapper

Safety Mon.

State Estimate

Planner

x

x

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 10

Spread Toolkit (Stanton ‘02)

Spread Functions

• SP_connect: establish a connection
with the spread daemon

• SP_disconnect: terminate connection

• SP_join(mbox. group): join a group

• SP_leave(mbox. group): leave a group

• SP_multicast(…, group, message,
type): send a message to everyone in
group of given type

• SP_receive: receive a message

Message types

• Unreliable - no order, unreliable

• Reliable - no order, reliable

• FIFO - FIFO by sender, reliable

• Causal - Causal (Lamport), reliable

• Agreed - Totally ordered, reliable

• Safe - Totally ordered, safe

• Note: each message has a type; these
can be mixed within groups

Computer 1 Spread
Server

P1 P2 P3

Computer 2 Spread
Server

P1 P2 P3

Computer 3

P1 P2 P3

Group 1

Group 2

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 11

Features of Spread

Features of Spread

• Number and location of servers are
configurable

• Retransmits are optimized in multi-hop
environments

• Guarantees are provided at servers;
assumes that inter-process comms on
single computer is reliable

• Data is combined in packets when
possible to increase efficiency

! Gives a correlated channel model
when data is lost

• No hardwired addresses (exc servers)

Project ideas

• How can we model a spread-based
communications network from the point
of view of estimation and control

• Is it better to have one server or
multiple servers? What are the latency
tradeoffs?

! Alice originally used one server per
computer

! Eventually moved to a single server
(not sure why)

Computer 1 Spread
Server

P1 P2 P3

Computer 2 Spread
Server

P1 P2 P3

Computer 3

P1 P2 P3

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 12

How Spread Works (Amir and Stanton, ‘98)

Hop protocol

• UDP-based protocol between sites

! Sites connected by slower links

• Provide low latency communcations

• Packet loss handled on hop-by-hop
basis (instead of end to end)

Spread daemon

• Implements group communi-
cations protocols

• Uses UDP to talk between
spread hosts

• Two protocols: hop and ring

Applications

• Think client library

• Uses TCP to talk to server

Ring Protocol

• Used for communications between
multiple servers at same site

! Assumes dedicated (switched) links

• Token ring based protocol: pass control
from one server to the next

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 13

Example: Resource allocation

Problem description

• Fixed processes Pi sharing resource R

• Once a process grabs a resource, it
must release it before it is use again

• Requests granted in order they were
requested

• Every request is eventually granted

• Solve in distributed way; processes
agree on who goes next

• Problem is non-trivial, even with central
scheduling (see Lamport paper)

Solution using Spread

• Assume totally ordered, reliable
messages (“agreed” message type)

• All processes and resource in single
spread group

Algorithm

1. Pi sends multcast message to group

requesting resource

2. Pj queues all requests and sends ack

3. Process Pi uses resource when

• Pi request is at top of queue

• Ack has been received from
everyone

• Pi sends release message when done

1. Pj dequeues release when message

received

2. Note: spread provides single order

P1 P2 P3 P4 P5

R

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08 14

Process Management: Pthreads

1

22 3 4 5

6 7 7 1

Example: vehicle actuation (adrive)

• Interface to 7 different actuation
systems (steer, gas, brake, etc)

• Each actuator involves different rates,
delays, comms blocking

• Asynchronous receipt of commands
and state + xmit actuator state

• Hard to synchronize individual
actuators with main control loop

Approach: multi-threaded programming

• Break program up into independent
execution threads

• Operating system can switch threads
on blocking => always executing

• Challenges: asynchronous operation,
simultaneous access to variables

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 15

Traditional Control Systems Implementation (Sparrow)

Simplest case: interrupt driven loop

• Use HW/SW interrupts to run control
routine at an accurate and fixed rate

• “Servo loop” overrides normal program
operation

• Need to be careful about interaction of
variables in servo loop with main pgm

Variations:

• Time-triggered protocols - scheduling of
events to allow multiple “servos”

Sample program

• Discrete time implementation

• Uses quasi-sparrow implementation

load_controller(file)

servo_setup(loop, rate, flags);

servo_enable();

loop()

{

! y = read_measurement();

 r = read_reference();

! xnew = Ac * x + Bc * (r - y);

 u = Cc * x + Dc * (r - y);

 write_control(u);

 x = xnew;

}

C(s) P(s)

Tustin

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 16

Multi-Threaded Programming

Basic Idea

• Separate code into independent
segments (“threads”)

• Switch between threads, allowing each
to run “simultaneously”

• Threads share memory and devices;
allows rapid sharing of information

Threads vs Processes

• Processes have separate memory
space and device handles

• Requires interprocess communication
to share data

Advantages

• Avoid manual coding to eliminate
pauses due to hardware response

• Multiple control loops become separate
threads; OS insures execution

• Allows messages (or signals) to be
received in middle of long computation

Issues

• Race conditions

• Dead locks (“deadly embrace”)

• Asynchronous operations

(wait)(wait)

(wait)

(wait)
read_meas ctrl

computation

write_ctrl

suspended
executionSingle threaded execution Multi-threaded execution

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 17

Issue #1: Race Conditions

Definition

• “A race condition is a flaw in a system
or process where the output exhibits
unexpected critical dependence on the
relative timing of events.” (wikipedia)

Application to threads

• Execution of threads is controlled by
the operating system (OS)

• It is possible for threads to be pre-
empted and another thread to run $

can’t assume anything about order

• While easy to understand, race
conditions can be hard to locate and
debug

(wait) (wait)

(wait)

(wait)
variable

variable

Example

• Thread 1: compute sqrt of number

• Thread 2: update number on condition

Code:

thread1() {

 if (x < 0)

 y = 0;

 else

 y = sqrt(x);

}

thread2() {

! if (event) x = x - 1;

}

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 18

Mutual Exclusion (mutex)

Solution: exclude overlapping access

• Semaphores introduced by Djikstra in
1960s to handle this problem

• Key idea: protect “critical sections” of
code by setting a “mutex”

• Mutex_lock: wait for mutex to be
unblocked (if it isn’t already), then set

! While a mutex_lock is being
blocked, the OS can execute code

• Mutex_unlock: unset the mutex

Atomicity

• Operating systems need to insure that
mutexes are “atomic” operations - no
instructions executed while checking
and setting the flag

• If this doesn’t happen, you can get a
race condition in setting the flag (which
is what we are trying to avoid…)

thread1() {

 mutex_lock(xmtx);

 if (x < 0)

 y = 0;

 else

 y = sqrt(x);

 mutex_unlock(xmtx);

}

thread2() {

 mutex_lock(xmtx);

! if (event) x = x - 1;

 mutex_unlock(xmtx);

}

(wait)

(wait)

variable

(locked)

Critical
Section

Critical
Section

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 19

Issue #2: Deadlocks

Possible execution

• Thread 1 executes up to line 3

! Locks xmtx mutex

• Switch to thread 2

• Thread 2 executes through line 12

! Locks ymtx mutex

• Compute() blocks on xmtx mutex

• Switch to thread 1

• Thread 1 blocks on ymtx mutex

• (no further execution)

Remarks

• Easy to fix, but sometimes hard to spot
(especially when using subroutines)

Solution: lots of debugging

• Formal tools exist, but generally can’t
operate at programming code level

 1 thread1() {

 2 mutex_lock(xmtx);

 3 if (x < 0) x = 0;

 4 mutex_lock(ymtx);

 5 y = sqrt(-x);

 6 mutex_lock(ymtx)

 7 mutex_unlock(xmtx);

 8 }

 9

10 thread2() {

11 mutex_lock(ymtx);

12 if (y == 0) compute();

13 mutex_unlock(ymtx);

14 }

15

16 compute() {

17 mutex_lock(xmtx);

18 if (event) x = x - 1;

19 mutex_unlock(xmtx);

20 }

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 20

Thread Usage

When to use threads

• Main usage is when the program has to
wait on a process or resource

• Eliminate threads if they aren’t needed
(eg, tight interlocking with no waits)

Avoiding deadlocks

• Never put a mutex around a call that
might itself block (I/O call, mutex, etc)

• If you have to use nested mutex’s,
make sure they are in the same order
whenever they are invoked

Performance improvements

• Try to keep critical sections as small as
possible (avoids excessive waiting)

• Combine accesses to same variables
in nearby sections

• Use buffers to minimize lock times

Conditional variables

• Allows a thread to sleep until a certain
condition is met

• Used in conjunction with a mutex

 1 thread1() {

 2 mutex_lock(xmtx);

 3 while (!condition)

 4 cond_wait(&cond, xmtx);

 5 do_something();

 6 mutex_unlock(xmtx);

 7 }

 8

 9 thread2() {

10 mutex_lock(xmtx);

11 // make condition TRUE

12 if (cond)

13 cond_signal(&cond);

14 mutex_unlock(xmtx);

15 }

unlocks mutex on
entry and relocks

on return

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 21

Issue #3: Asynchronous Execution

Executation is non-deterministic

• Operating system determines when to
execute individual threads

• Different operating systems will give
different sequences of operations

• Avoid tuning scheduling rules to let OS
optimize (eg, multi-processor core)

Use mutexes and conditions if needed

• Can insure partial synchronization by
using mutexes and conditions, but

• Avoid overly constraining threads; can
get worse performance than just doing
things sequentially

Reasoning about concurrent code

• It is still possible to prove things about
multi-threaded execution

• Example: Lyapunov like functions

! Let V be a positive function whose
minimum corresponds to desired
state

! Show that each portion of code
does not increase V’s value

! Show that some portions of code
decrease value of V

! Conclude that V will approach
minimum value

• Formal methods: temporal logic, unity

read

write

read

write

read

write

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 22

POSIX Threads (Pthreads)

Thread creation

• pthread_create call a function as a new thread of execution

• pthread_exit terminate the current thread

• pthread_join wait for a specific thread to exit

Mutexes

• pthread_mutex_init initialize a mutex

• pthread_mutex_lock lock a mutex (blocks until mutex is available)

• pthread_mutex_unlock unlock a mutex (and unblock first blocked threads)

• pthread_mutex_destroy free up resources associated with a mutex

Conditional variables

• pthread_cond_init initialize a condition

• pthread_cond_wait wait until condition is satisfied (paired with a mutex)

• pthread_cond_signal signal that a condition is now satisfied

• pthread_cond_destroy free up resources associate with a mutex

Read/write locks

• Variation on mutexes that allow multiple unblocking reads

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 23

Example: Threaded Control Loop

 1 pthread_create(…, sensor, …);

 2 pthread_create(…, actuator, …);

 3 pthread_create(…, control, …);

 4 display();

 5

 6 sensor() {

 7 // initialization

 8 while (1) {

 9 pthread_mutex_lock(smtx);

10 y = read_measurement();

11 r = read_reference();

12 pthread_mutex_unlock(smtx);

13 usleep(S_WAIT_USEC);

14 }

• }

•

read

write

read

write

Notes

• Process inputs/outputs asynchronously

• HW: is this OK? Optimal?

18 control() {

19 // initialization

20 while (1) {

21 pthread_mutex_lock(smtx);

22 err = r - y;

23 pthread_mutex_unlock(smtx);

24

25 xnew = Ac * x + Bc * err;

26

27 pthread_mutex_lock(amtx);

28 u = Cc * x + Dc * err;

29 pthread_mutex_unlock(amtx);

30

• usleep(C_WAIT_USEC)

20 }

21 }

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 24

Thread Scheduling

Thread scheduling policies

• FIFO - threads are called in first in, first
out order within each priority level

! Thread continues to run until a
higher priority thread is runnable

! Threads at same priority must block
in order for other threads to run

• Round-robin - each thread is called in
sequence, within priority level

! Thread runs for fixed period of time
before it is pre-empted

• Other - implementation specific

! Operating system defines how
threads are scheduled

! This is the default (and undefined!)

Homework

• Write a simple multi-threaded program
using pthreads that reads numbers
from an input stream (terminal),
averages all numbers that have been
read, and prints out the average once a
second [use three threads]

Project Ideas

• Expand sparrow to allow multi-threaded
servo and channel (I/O) execution

• Analyze how to best use mutex’s for
minimizing control latency when
reading inputs via the network and
writing outputs via (slow) serial ports

• Convert a controller from continuous to
discrete for a multi-threaded control
system using FIFO or round-robin
scheduling

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 25

Thread Usage in Alice

Module Threads

adrive (actuation) 19

trajFollower 10

astate (state estimator) 10

plannerModule 4

fusionMapper 16

Module Threads

ladarFeeder (5) 8

stereoFeeder (2) 7

road (road follower) 5

superCon 3

DBS 3

* doesn’t count heartbeat and logging threads

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 26

Example: State Client

• Thread to
read msgs

• Infinite loop

• Read msg
(blocks until
available)

• Unblock any-
one waiting

• Copy state
into buffer

• Use mutex to
insure
completeness

• Block until
new state
msg arrives

• Asynchronously reads actuator state from adrive via thread

• Passes data back to calling module (eg, trajFollower)

void CStateClient::getActuatorStateThread() {

 int actuatorstatesocket =

 m_skynet.listen(SNactuatorstate, ALLMODULES);

 while(m_bRunThreads) {

 if(m_skynet.get_msg(actuatorstatesocket,

 &m_rcvdActuatorstate, sizeof(m_rcvdActuatorstate), 0,
 &pActuatorstateMutex) != sizeof(m_rcvdActuatorstate))

 skynet_error();

 DGCSetConditionTrue(condNewActuatorState);

 }

}

void CStateClient::UpdateActuatorState()

{

 DGClockMutex(&m_actuatorstateMutex);

 memcpy(&m_actuatorState, &m_rcvdActuatorstate, sizeof(…));

 DGCunlockMutex(&m_actuatorstateMutex);

}

void CStateClient::WaitForNewActuatorState() {

 DGCWaitForConditionTrue(condNewActuatorState);

 UpdateActuatorState();

 condNewActuatorState.bCond = false;

}

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Verifying Multi-Threaded Programs

SPIN (Holzmann)

• Model system using PROMELA
(Process Meta Language)

- Asynchronous processes

- Buffered and unbuffered
message channels

- Synchronizing statements

- Structured data

• Simulation: Perform random or
iterative simulations of the modeled
system's execution

• Verification: Generate a C program
that performs a fast exhaustive
verification of the system state space

• Check for deadlocks, livelocks,
unspecified receptions, and
unexecutable code, correctness of
system invariants, non-progress
execution cycles

• Also support the verification of linear
time temporal constraints

TLA/TLC (Lamport et al)

• Temporal Logic of Actions (TLA):
Leslie Lamport, 1980’s

• Behavior (a sequence of states) is
described by an initial predicate and
an action

Spec ! Init ! !Action

• Specify a system by specifying a set
of possible behaviors

• Theorem: A temporal formula satisfied
by every behavior

Theorem ! Spec ⇒ !Properties

TLA+

• Can be used to write a precise, formal
description of almost any sort of
discrete system

• Especially well suited to describing
asynchronous systems

• Tools: Syntactic Analyzer, TLC model
checker

27

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 28

Summary: Embedded Systems Programming

Advantages

• Increased modularity

• Simplified programming*

Cautions

• Asynchronous execution

• Race conditions

• Deadlocking

• Debugging

Open Issues for Control Theory

• How do we best implement
controllers in this setting?

• How do we verify that programs
satisfy the specifications and
design intent

• How do we implement multi-rate
controllers using threaded process
and distributed computing?

(wait)

(wait)

(wait)(wait)

read_meas ctrl

computation

write_ctrl

