NCS Lecture 2
Case Study - Alice

Richard M. Murray
17 March 2008

Goals:
¢ Provide detailed overview of a a model networked control system
¢ Introduce NCS features to be addressed in upcoming lectures

Reading:

¢ “Alice: An Information-Rich Autonomous Vehicle for High-Speed Desert
Navigation”, Cremean et al. Journal of Field Robotics, 2006

Alice Overview

Team Caltech
50 students worked on Alice over 1 year
» Course credit through CS/EE/ME 75

¢ Summer team: 20 SURF students + 6
graduated seniors + 4 work study + 4
grads + 2 faculty + 6 volunteers (= ~40)

Alice
» 2005 Ford E-350 Van
« Sportsmobile 4x4 offroad package
* 5 cameras: 2 stereo pairs + roadfinding

* 5 LADARSs: long, med*2, short, bumper
. a0 Short range
¢ 2 GPS units + 1 IMU (LN 200) stereo
2 Alice L
y. ong range
e 4 seats w/ £ 10 \ stereo
computer g0 '
workstations ©
~J
2 < LADAR (4)
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Alice’s Architecture

Supervisory Control

~>| Road Finding I-—->| Cost Map |—>| Path Planner |—>| Path Follower '—) Vehicle

A A Actuation
[
] 2
Environment —>| Elevation Map [« {State Estimator |<-—| Vehicle
Sensors 7
i |
} Environment }:

Computing
* 6 Dell 750 PowerEdge Servers (P4, 3GHz)
* 11BM Quad Core AMDG64 (fast!)
* 1 Gb/s switched ethernet
Software
» 15 individual programs with ~50 threads of
execution
« FusionMapper: integrate all sensor data into
a speed map for planning
* PlannerModule: optimization-based planning
over a 10-20 second horizon
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Communication Management: Spread

. Supervis

->| Road Finding I—->| Cost Map Path e bollower ehicle
A X uation
s < imator ~| Vehicle
ensors
A S
I
{ Environment }:
Modular architecture Communication Groups
» Each block represents one or more ¢ Modules subscribe to “groups”; receive
processes (programs) communicating all messages to that group
via network (packets) « Multiple levels of reliability/causality:
* Processes linked to specific hardware unreliable, guaranteed, causal

run on dedicated computers; otherwise

* Use individual “keys” to allow multiple
can run on any computer

users to avoid conflicts (especially
« Each process can have multiple useful for simuilations)

threads of execution (multi-tasking) « Graphical user interface (GUI)
subscribes to all messages
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Path Follower/Actuation

-‘ Path Follower }—) Vehicle
A Actuation
~| State Estimator Vehicle |

A [

Vehicle Actuation: adrive

» Accept actuation commands from
control algorithm; command actuators

» Check proper vehicle operation; pause
vehicle on error (and signal superCon)

* Broadcast actuator state

Trajectory Tracking: pathFollower
» Accept desired trajectory from planner
* Read vehicle state via broadcast

« PID controller to generate actuation
commands

* Modes: normal, pause, reverse
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« HW: steering, throttle, brake, ignition,
transmission, engine diagnostics -
serial port interfaces

In: normalized actuation commands,
engine diagnostics (OBD II)

Out: actuator values and engine state
Independent threads for each actuator
“Interlock” logic to ensure safety

PathFollower

« HW: none
« In: desired trajectory, mode (fwd/rev)
¢ Out: actuation commands

« PID controller, with trajectory storage
and “reverse” capability
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State Estimation

'I Path Follower |—> Vehicle
A Actuation
-I State Estimator Vehicle

A I

State estimation: astate

* Broadcast current vehicle state to all
modules that require it (many)

» Timing of state signal is critical - use to
calibrate sensor readings

¢ Quality of state estimate is critical: use
to place terrain features in global map

* Issue: GPS jumps

s Can get 20-100 cm jumps as
satellites change positions

= Maintain continuity of state at same
time as insuring best accuracy
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Adrive
GPS * Actuator
I Kalman |[,___| state
GPS Fiter | | Engine
IMU : state
v

Vehicle position, orientation,
velocities, accelerations

e HW: 2 GPS units (2-10 Hz update), 1
inertial measurement unit (gryo, accel

@ 400 Hz)

« In: actuator commands, actuator
values, engine state

» Out: time-tagged position, orientation,
velocities, accelerations

¢ Use vehicle wheel speed + brake
command/position to check if at rest
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Terrain Estimation

Cost Map |—

Road Finding
A

Environment )| Elevation Map €
Sensors

A

Sensor processing

» Construct local elevation based on
measurements and state estimate

» Compute speed based on gradients

Sensor fusion
* Combine individual speed maps
» Process “missing data” cells

Road finding
« Identify regions with road features
« Increase allowable speed along roads
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| LadarFeeder,||StereoFeeder|
*« HW: LADAR (serial), stereo (firewire)
¢ In: Vehicle state
¢ Out: Speed map (deltas)
¢ Multiple computers to maintain speed

« In: Sensor speed maps (deltas)
» Output: fused speed map
* Run on quadcore AMD64
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Sensor Fusion and Cost Map Processing

Short range LADAR I Combined speed
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Path Planner

’| Cost Map |—>| Path Planner |—)l Path Follower |— Trajectory Generation: plannerModule
x

¢ Use speed map to plan trajectory that
maximizes distance traveled

t+T
arg min/ L(z,u)dr + V(z(T)) » Two phase planner: first stage uses
t simple grid to seed optimization
&t = f(z,u) « Exploit differential flatness for speed
g(z,u) < 0
N vcosf ; | PlannerModule
. s.t. -
E = wsing e HW: none
. v ¢ € [¢mzna ¢maz] . :
v * In: speed maps, vehicle state
0 L tan ¢ w € |Wmin,Wmaz) . .
) min, =man » Out: desired trajectory
¢ W=t v € (0,vmad] « Algorithm runs on quadcore AMD64 at
) a=us a € [@min,mas] approx. 5 Hz
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Supervisory Control (2005)

Supervisory Control Su pe rCon
—-P{ Cost Map |—>| Path Planner H Path Follower Vehicle « Input: read all published information
Actuation  Output: targetted mode messages

« Reason about different situations and

Elevation Map -|State Estimator Vehicle | control operation of other modules
based on current strategy

A I

s . Control » Make heavy use of networked architec-
upervisory or? ro ture, especially communication groups
» Control operation of other modules

* Always maintain forward progress

Seen Pbstacle /
(presgnt in cost-map)

Currgnt Plan Unseen Obstacle

(not present ih cost-map)

RDDF =
RDDF
RDDF =

RDDF =

® @ ® iy ®
Cost-Map border
Dead-End Scenario Blocked RDDF Scenario Planning outside Unseen Obstacle Scenario Super-Wide RDDF Scenario

Note that this is guaranteed not to RDDFScenario
physically occur in the GCE by DARPA
(but Alice may believe it has occurred
from her sensor data)
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RDDF




SuperCon Logic

in front
obstacle

Lone Ranger

HYCON-EECI, Mar 08

Contingency Set
A

PLN — NFP through
terrain obstacle only

Alice statlonary just
f terrain

PLN — INFP Nominal <
(obstacle-free
terrain) Alice's speed, Il her wheel-speed is < No Forward Progress (NFP)
the min. maintainable speed, but her H
— NFP speed reference (target value) is >= Scenarlo
igh any the min. maintainable speed &&
tacle type the accelerator command is > 0.0 (and
hence the brake command = 0.0) &&
PLN — INFP (obst e-free terrain) Il
7 PLN — NFP through terrain obstacle
B o ]
Slow Advance Unseen Obstacle

PLN — NFP through
SC obstacle

Additional connection not |
used in race build of SC,
if present it allows Alice
to escape from dead-end
scenarios where she
would need to reverse for |
a distance > her planning |
distance |

Alice has reversed for the full distance specified by SC and
has not found an obstacl e path, but has found a path
that only goes through terrain obstacles (no SC obstacles)

hence try to push through to make sure all current
possibilities have been explored before reversing further
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ANew sC ob

| of Alice's cuyrent position
| now need

L-turn Reve

tacle created
in the costjmap in front

b back-up to
drive ground it

In the situation where after reversing for the
full distance specified by SC, the PLN —
NFP through a SC obstacle. Hence in order
to call a second reversing action L-turn
reverse = Nominal which then = back to L-
turn reverse. This is so that all other
possibilities are explored before deciding to
reverse further as reversing is a relatively
risky action - Note this response means that
Alice cannot escape from dead-end
scenarios where she would have to reverse |
A for a distance > her planning distance |

SuperCon Usage (NQE Run 1)

Current Strategy

-1 | |

Slow Advance l I 1
Lone Ranger I
Unseen Obstacle
L—turn Reverse I
DARPA estop pause
GPS re—acquisition
Outside RDDF
End of RDDF

Planner Failed

300

400

500 600 700

Heavy usage of superCon modes during “typical” operations
» Vehicle must be able to operate in “degraded” mode
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Architecture Summary

Supervisory Control

-)I Road Finding |—->| Cost Map |—>| Path Planner |—>| Path Follower l—) Vehicle

A Ly Actuation
[
] L7
Environment —>| Elevation Map [« {State Estimator |(-—| Vehicle
Sensors X
A

I Environment I:

Additional modules/features
* GUI: show system states in real-time

« Sensor logging (“timber”): log and
playback raw sensor data

Network logging (“author, logplayer”):
capture and playback all network traffic

Simulator: read actuation commands ra otane— |
and generate (simulated) state data

Toggle current path

¥ RODF

Runlevels: automatically restart [ooms T |
crashed modules e

Find CMap

(3772204.727. 453814.2074) = 0.08 (No Data) -3.00
A Al o A

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 13

Race Results

* WP1: 9:03a - begin vehicle motion

* WP 23: second intersection

* WP 58: small and roof have cut out

* WP 74, RDDF intersection (fork to right)

* WP 147, RDDF has narrowed to road width

* WP 156, cross intersection with future section of
RDDF

* WP 171, begin approach to straight section
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GUI View

=
IS
~

IClick an a cell to see its LITM coordinates and valuel -2.50
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Cremean et al
JFR 05 (s)

What Happened

GPS signal lost under power lines

» Software recognized condition and
stopped vehicle to allow position
estimate to converge

* GPS receiver reacquired the signal, but
with very high error estimates = slow
convergence of state estimate

» Software confused slow convergence
with convergence and began to move

« Alice headed down “corridor” that was
lined up with barriers

Other factors
* Midrange LADAR units stopped
working => relied on long (35m) and
short (3m) units
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Alice Off the Road
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Networked Control Systems

External Environment

TCP:Command

Inner Loop

(PID, H.,)

Actuation Sensing

UDP:Measurement 1

< UDP:Model ) lUDP:Model —
_______ Onllne Model | Pty _l
| UDP:Mode — < UDP:State |
1

1
Mode and

(‘Tj )

TCP:Traj

TCP:Traj

Online

Fault

Optimization
Management prmizal '

(RHC, MILP)

Atz Atz At7

Goal Mgmt Attention & Memory and
(MDS) Awareness Learning

juswainses\:dan

HYCON-EECI, Mar 08

R. M. Murray, Caltech CDS



2007 Urban Challenge - 3 November 2007

Autonomous Urban Driving
e 60 mile course, less than 6 hours
o City streets, obeying traffic rules
¢ Follow cars, maintain safe distance
¢ Pull around stopped, moving vehicles
¢ Stop and go through intersections
¢ Navigate in parking lots (w/ other cars)
¢ U turns, traffic merges, replanning
e Prizes: $2M, $500K, $250K
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Urban Driving
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CNSE Retreat, 7 Oct 06

Sensing and Decision Making

Video from 29 Jun 06 field test
e Front and side views from Tosin
e Rendered at 320x240, 15 Hz
e Manually synchronized

Some challenges

e Moving obstacle detection, separation,
tracking and prediction

Decision-making
Lane markings (w/ shadows)
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Architecture, July 2007

Fl | module startup mapv’r| FlO| health monitor _ mplanner F3
F4 * 1
| ] P R
i i
LADAR ‘:_\_“ ﬁ Obet 'll—\_» ME(2) 3 Update map F?
: ! : - FSM
Mapper A, Plan path

DGC Contract Kickoff, 6 Oct 06

Stereo Line

¥

Sensnet

___K_____Jr____
Z
B

Compute vel Fg

Fusicw O :

I I
I I
RADAR 1—/— 1—/— Claszify trafsim | follow [=— ROA i
1 | | |
! ! 1 ) 1
_________________ - m
ettt === Computing - 24 cores
_\_‘L Moving Vehicle || e 10 Core 2 Duo processors (cPCl)
PTU atten’n 1 e 11BMQ
_— 1| Vehicles Prediction |! uad Core AMD64
I e T ; e 2 Intel P4 (legacy)
Pttt ol el enliien Sensing
|
Field Opc | !| Mounts Cabin Power Vehid e 8 LADP.\R, 8. cameras, 2 RADAR
I e 2 panl/tilt units (roof + bumper)
I

“““““““““““““““““““ e Applanix INS (dGPS, IMU, DMI)
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