

NCS Lecture 1-1 Intro to Networked Control Systems

Richard M. Murray Caltech Control and Dynamical Systems 17 March 2008

Goals:

- · Describe current and emerging applications of networked control systems
- · Summarize key features and recent advances in NCS
- · Provide an overview of the course contents

Reading:

- · Networked Control Systems, 2008 (preprint). Chapter 1
- Control in an Information Rich World, Sections 1, 3.2 and 3.3
- "Design Patterns for Robust and Evolvable Networked Control", Robinson et al, CSER, 2004
- "Issues in the convergence of control with communication and computing: Proliferation, architecture, design, services, and middleware", Graham et al, CDC 2004

Available on course wiki page

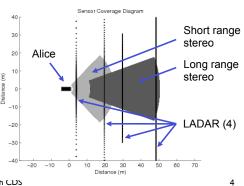
http://www.cds.caltech.edu/~murray/wiki/ncs-sp08

Networked Control Systems (following P. R. Kumar) **External Environment Process** Sensing ActuatorState:Unreliable Online Model Traj:Causal Online Map:Causal Fault 10 Mb/s **Management** (RHC, MILP) (KF, MHE) State:Unreliable 1 100 Kb/s **1 1 1** ጎ ተ ነ **ጎ ተ** ታ Memory and Learning Attention & Goal Mgmt (MDS) **Awareness** HYCON-EECI, Mar 08 Richard M. Murray, Caltech CDS

Alice Overview

Team Caltech

- 50 students worked on Alice over 1 year
- Course credit through CS/EE/ME 75
- Summer team: 20 SURF students + 6 graduated seniors + 4 work study + 4 grads + 2 faculty + 6 volunteers (= ~40)


Computing

- 6 Dell 750 PowerEdge Servers (P4, 3GHz)
- 1 IBM Quad Core AMD64 (fast!)
- 1 Gb/s switched ethernet

Software

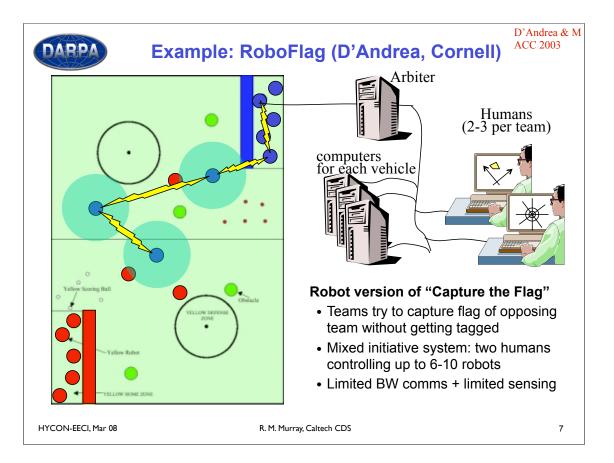
- 15 individual programs with ~50 threads of execution
- Sensor fusion: separate digital elevation maps for each sensor; fuse @ 10 Hz
- Path planning: optimization-based planning over a 10-20 second horizon

HYCON-EECI, Mar 08

Alice

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 5

Optimization-Based Control of Alice

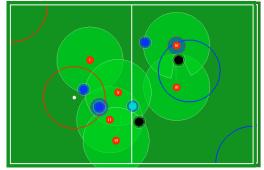

Cremean et al JFR 05 (s)

MapDisplay Module Starter astate Sample Tab trajFollower 6.71 Colormap Options Center: 1.853 4.853 Min Range: 0.100 ✓ Auto Range Auto Center Map Options CMap Options Draw CMap ✓ Draw CMap Border Layer: 0 Clear Current Layer Clear All Lavers Path Options Paths: 0 Toggle Current Path ✓ Grid ✓ RDDF ✓ Sensors ✓ Paths Waypts ☐ Info 0.0 Gridlines every 40m Write Log (3772204.727, 453814.2074) = 0.08 (No Data) Timber Playback: Resume Pause Replay Timber Logging: Start Stop Restart

Sensor-Based Navigation

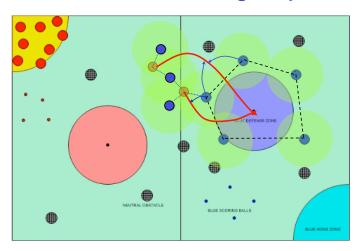
- Sensors create digital elevation map (one per sensor)
 - Riegl LADAR: 35 m
 - Mid LADARS: 20m, 10m
 - Stereo: 5-20m
 - Short LADAR: 3 m
- Sensor fusion creates a speed map indicating how quickly a given area can be traversed
 - □ No obstacle ⇒ RDDF limit
 - Roadfinding bumps speed
- Optimization-based planner computes fastest path for next 20-40 meters
- Supervisor Control used if planner fails or state drifts

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 6



RoboFlag Demonstration

Integration of computer science, communications, and control


- Time scales don't allow standard abstractions to isolate disciplines
- Example: how do we maintain a consistent, shared view of the field?

Higher levels of decision making and mixed initiative systems

- Where do we put the humans in the loop? what do we present to them?
- Example: predict "plays" by the other team, predict next step, and react

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 8

RoboFlag Subproblems

1. Formation control

 Maintain positions to guard defense zone

2. Distributed estimation

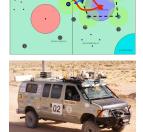
 Fuse sensor data to determine opponent location

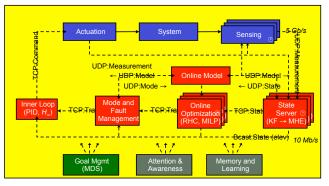
3. Distributed consensus

 Assign individuals to tag incoming vehicles

Goal: develop systematic techniques for solving subproblems

- Cooperative control and graph Laplacians
- Distributed receding horizon control
- Verifiable protocols for consensus and control


Implement and test


→ as part of annual

RoboFlag competition

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 9

Control Problems and Design Patterns

Control Challenges

- How should we distribute computing load burden between computers?
- How should we handle communication limits and dropped packets?
- How do multiple computers cooperate in a shared task (with common view)?
- What types of protocols should we use for transmitting data between nodes

Candidate Techniques (Themes)

- Local temporal autonomy allow modules to operate with data losses
- State estimation estimate future states if current data are not available
- Control buffers buffer commands to tolerate latency and lost data
- Time servers time stamp data and track clock skew

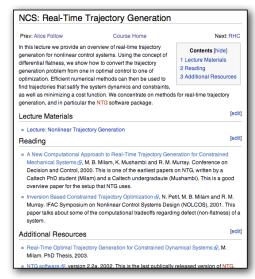
Outline of Lectures

	Mon	Tue	Wed	Thu	Fri
9:00	L1: Intro to Networked Control Systems	L5: State Estimation and Sensor Fusion	L7: Distributed Estimation and Control	L11: Distributed Protocols and CCL	L13: Appl #2 - Multi-vehicle cooperative control
11:00	L2: Alice	L6: Packet- Based Estimation and Control	L8: Distributed Receding Horizon Control	L12: Embedded Graph Grammars	L14: Open Problems and Future Research
12:00	Lunch	Lunch	Lunch	Lunch	Lunch
14:00	L3: Networked Embedded Systems Programming		L9: Information Flow and Consensus		
16:00	L4: Optimization- Based Control		L10: Formation Control in Multi- Agent Systems		

HYCON-EECI, Mar 08 Richard M. Murray, Caltech CDS I

Comments on Style and Approach

NCS is an emerging research area


- Many results are new (in the last 5 years) and haven't yet been standardized
- Integration between different aspects of NCS are a work in progress

NCS is a systems problem

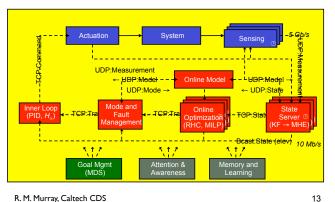
- Successful NCS research requires integration of component technologies
- Lectures will summarize key elements, with selected detail
- Application examples will highlight the many gaps in the theory

Lots of additional material online

- Additional references, web pages, etc are posted on the wiki pages
- Detailed derivations and proofs for most results

http://www.cds.caltech.edu/~murray/ wiki/ncs-sp08

Summary: Networked Control Systems


Large scale computation and communication allows new approach to control

- · Build on rich "inner loop" consisting of optimization-based estimation and planning
- Modular design with supervisory control to guide operation via models, cost functions, modes
- Multiple implementations (ducted fan, MVWT, Alice) demonstrate feasibility of approach

Many open problems

- How do we handle/exploit packet-based communications
- How to we partition sensing & optimization across computers
- · How do we specify, design, verify and validate supervisory control functionality
- · How do we include attention, awareness, memory & learning

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS

Assignment 0

1. Fill out background survey and hand in at end of break

- Will use this to tune the upcoming lectures to provide the right amount of detail
- Key questions: familiarity with concepts that will be covered + research interests

2. Fill out questionnaire giving information about yourself

- Will make copies and distribute to the class
- Mainly so that we all know a little bit about each other

3. Go around the room and introduce yourself (+ picture)

RMM will compile pictures and distribute a facepage tomorrow

HYCON-EECI, Mar 08