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Richard M. Murray (Caltech) and Erik Klavins (U. Washington)

17 March 2008

Goals:

• Describe methods for modeling and analyzing distributed protocols

• Introduce the Computation and Control Language (CCL) as an example

• Explore and analyze protocols written in CCL for cooperative contro

Reading:

• E. Klavins, “A Computation and Control Language for Multi-Vehicle Systems”, Int’l 

Conference on Robotics and Automation, 2004.

• E. Klavins and R. M. Murray, “Distributed Computation for Cooperative Control”, IEEE 

Pervasive Computing, 2004.
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Problem Framework

Agent dynamics

Vehicle “role”

•             encodes internal state + 

relationship to current task

• Transition 

Communications graph

• Encodes the system information flow

• Neighbor set 

Task

• Encode as finite horizon optimal control

• Assume task is coupled

Strategy

• Control action for individual agents

Decentralized strategy

• Similar structure for role update

2

N i(x,α)

J =
∫ T

0
L(x,α, u) dt + V (x(T ),α(T )),

ui = γ(x,α) {gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

x−i = {xj1 , . . . , xjmi}

jk ∈ N i mi = |N i|

α ∈ A

α′ = r(x,α)

G

ui(x,α) = ui(xi,αi, x−i,α−i)

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ SE(3),
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RoboFlag Subproblems

1.Formation control

• Maintain positions to 
guard defense zone

2.Distributed estimation

• Fuse sensor data to 
determine opponent 
location

3.Distributed assignment

• Assign individuals to tag 
incoming vehicles

Desirable features for designing and verifying distributed protocols

•Controls: stability, performance, robustness

•Computer science: safety, fairness, liveness

•Real-world: delays, asynchronous executions, (information loss)
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Distributed Decision Making: RoboFlag Drill
Klavins

CDC, 03

Task description

• Incoming robots should be blocked by 
defending robots

• Incoming robots are assigned randomly 
to whoever is free

• Defending robots must move to block, 
but cannot run into or cross over others

• Allow robots to communicate with left and 
right neighbors and switch assignments

Goals

• Would like a provably correct, distributed 
protocol for solving this problem

• Should (eventually) allow for lost data, 
incomplete information

Status

• Provably correct protocol available in 
perfect information case, using CCL
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Distributed Situational Awareness

Communications complexity

! Maintain “situational awareness”

! Assume point-to-point commun-
ications and that each robot knows its 
own position 

! Q: how many messages are required 
for each robot to keep track of all 
other robots w/in !?

! A: O(n2) messages (worst case)

Method #1: Distance Modulated Communication - O(n log n)

! Maintain position estimates to within kPxi – xjP

! Communicate more often with robots that are closer

Method #2: Wandering Communication Scheme - O(n) 

! Only moving robots need to keep track of position

! Robots transfer knowledge when they stop/start

Proof of 
correctness 
using CCL

Klavins
WAFR 02
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Lost Wingman Protocol Verification

Temporal logic specification

• “Lost mode leads to the distance 

between the aircraft always being larger 

than dsep”

Protocol specification in CCL

!Use guarded commands to implement finite 

state automaton

!Allows reasoning about controlled 

performance using semi-automated theorem 

proving

!Relies on Lyapunov certificates to provide 

information about controlled system

Lost wingman in fingertip formation

Comms failure
between 1 and 2
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Models of Concurrency

Petri Nets and Processes

• Standard tool in Manufacturing

Hybrid Automata (Henzinger, 1996)

• Use FSM for discrete states, with dynamic inclusions in each 

“mode” and transitions between states

I/O Automata [Lynch: Book 1996]

• Composition with internal / input / output actions

• Hybrid version is "sophisticated" [Lynch, Segala, Vaandrager, 

Weinberg: HSIII 1996]

UNITY [Chandy & Misra: Book 1988]

• Interleaving-based parallel programming 

• Based on guarded commands [Dijkstra: 1975]

• Uses temporal logic for verification

Temporal Logic of Actions [Lamport: TPLS 1994]

• TL is used for specification and "implementation"

• Sophisticated treatment of fairness constraints
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Hybrid Automata (Henzinger, 1996)

Description

• Discrete states model different “modes” of 

operation

• Continuous variables within each state describe

how the system evolves in that state.  Allow 

differential inclusions:

• Transitions consist of guards and rules: when a 

guard is true, execute the rule and then transition 

to a new state 

• Allow composition by taking cross product of 

states; any transitions that have the same label 

must share states

Properties

• Can be used to model broad variety of systems

• Composition can lead to very large state space (n 

robots with r states each gives rn states)

• Awkward to reason about in many applications 

(not enough structure)
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Henzinger, 1996

−50 ≤ ẋ ≤ −40



Richard M. Murray, Caltech CDSHYCON-EECI,  Mar 08

I/O Automata (Lynch,1989) 

Description

• Individual components modeled as an 

automaton, but with possibly infinite 

number of states

• Actions (transitions) are either input, 

output, or internal

• Composition occurs by connecting inputs 

to outputs (labels must match)

• Executions are given by sequence of 

actions; output actions trigger input 

actions

• Fairness constraint: each process must 

be allowed to execute a non-input action 

infinitely often in any execution => 

interleaving

Hybrid I/O Automata

• Add continuous dynamics via differential 

eqns

• Continuous execution is “interrupted” by 

events to give trajectories (traces)

Properties

• Extensive use in distributed algorithms

• Can reason about whether a property is 

true for all possible executions, which 

allows asynchrony of individual events
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Temporal Logic

Description

• State of the system is a snapshot of values of all 

variables

• Reason about behaviors !: sequence of states of 

the system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is 

related to state t by action a if a takes s to t (via 

prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of 

allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component 

take an action (eg, infinitely often)

Example

• Action: a " x’ = x + 1

• Behavior: ! " x := 1, x := 2, x:= 3, ...

• Safety: "x > 0 (true for this behavior)

• Fairness: "(x’ = x + 1 ! x’ = x) " "" (x’ ! x)

Properties

• Can reason about time by adding 

“time variables” (t’ = t + 1)

• Specifications and proofs can be 

difficult to interpret by hand, but 

computer tools existing (eg, TLC, 

Isabelle, PVS, etc)
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# "p # always p (invariance)

# "p # eventually p (guarantee)

# p $ "q # p implies eventually q 
(response)

# p $ q U r # p implies q until r 

(precedence)

# ""p # always eventually p 

(progress)

# ""p # eventually always p 
(stability)

# "p $ "q # eventually p implies 
eventually q (correlation)
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UNITY (Chandy and Misra)

Description

• Specification consists of a set of (possibly gaurded) 

variable assignments

• Behaviors are generated by starting an an initial state, 

then choosing any assignment for which the guard is 

true

• Command (g:r) may be evaluated in any order, at any 

time

• Require that all assignments be applied infinitely often 

in any execution (built in fairness)

• Reason about “programs” using temporal logic

Properties

• Useful for reasoning about systems in which there is 

very asynchronous behavior

• Fairness constraint is a bit too loose for control 

applications; only assume that each command 

executes eventually (instead of once every iteration)
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g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8
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P(k1,k2) := {

  initializers

  guard1:rule1
  guard2:rule2

   ...

}

S(k1,k2):=P(k1,k2)+C(k1+1) sharing y,u

"soup" of 
guarded commands

composition = union

non-shared variables 
remain local to 

component programs

CCL: Computation and Control Language
Formal Language for Provably Correct Control Protocols

CCL Interpreter

Formal programming lang-

uage for control and comp-

utation. Interfaces with 

libraries in other languages. 

Automated Verification

CCL encoded in the Isabelle 

theorem prover; basic specs 

verified semi-automatically. 

Investigating various model 

checking tools.

Formal Results

Formal semantics in transition 

systems and temporal logic. 

RoboFlag drill formalized and 

basic algorithms verified.

CCL Protocol for

Decentralized 

Target Allocation
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Guarded Command Programs

• Non-deterministic execution schedule models 

concurrency

• Easy to reason about programs

• Guarded commands = update functions
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g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8

P = ( I,                                    )

Initial 
Predicate

Command 
Soup

x > 0 : x' < x

inbox(i) : x' =recv(i)

current state

Any sequence of states produced by this process is a possible behavior 
of the system. We want to reason about them all. 

CCL

Choose s so that s |= I 

Choose g:r 

g(s)?

Choose s' so that r(s,s')

set s := s'

yesno

skip
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Scheduling and Composition
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Program composition:
(I1,C1) + (I2,C2) = ( I1%I2, C1&C2 )

EPOCH

Each command is 

executed before any 

are again.

SYNCH(')
In any interval, the difference in 

the number of times any two 

commands are executed is ( '.

UNITY

Each command must be 

executed infinitely often.



include standard.ccl

program plant ( a, b, x0, delta ) := { 
  x := x0; 
  y := x; 
  u := 0.0; 
  true : { 
    x := x + delta * ( a * x + b * u ), 
    y := x, 
    print ( " x = ", x, "\n" ) 
  }; 
}; 

program control() := {
  y := 0.0; 
  u := 0.0; 
  true : { u := -y }; 
}; 

program sys ( a, b, x0 ) := plant ( a, b, x0, 0.1 ) +
                            control ( 2*a/b ) sharing u, y;

exec sys ( 3.1, 0.75, 15.23 ); 

An Example CCL Program

  x = 3.216250
  x = 3.095641
  x = 2.979554
  x = 2.867821
  x = 2.760278
  x = 2.656767
  x = 2.557138
  x = 2.461246
  x = 2.368949
  x = 2.280113
  x = 2.194609
  x = 2.112311
  x = 2.033100
  x = 1.956858
  x = 1.883476
  x = 1.812846
  x = 1.744864
  x = 1.679432
  x = 1.616453
  ...

program prog3 ( ... ) := 
  prog1 ( ... ) + 
  prog2 ( ... ) sharing x, y, z, ...;

exec prog ( 1.1, 2.0 );

This makes a new program with conjoined 
initial section and includes all clauses 
from prog1 and prog2. x, y and z are 
shared, other vars are local.

Starts the interpreter.

Structure of CCL Programs

program prog1 = {

   declarations

   initial {
     assignments
   }

   guard : { rules }
   guard : { rules }

   ...

};

Declares a new program with name "prog1"

Declare variables and functions to be used.

Initialize state (variables and environment)

Any number of "clauses". Guards are boolean 
expressions and rules are assignments to 
variables or control commands.

n {

  agent 0 gets prog0;

  agent 1 gets prog1;

  ...

}

For the simulator: assign programs to agents
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CCL Language Features (optional)

Variables

• Can be of type constant, number or array 

External functions

• Can be of type function, arrayfunction, boolean, with numerical arguments

• Can link to C/C++ functions

• whoami, time, posx, posy, print, rand, reset, send_mesg, clear_box, 
sin, cos, abs, pos, vel, get_mesg, check_box,...

Expressions

• Numeric (1 + sin(x+y)/time()) or boolean (y[2] < y[3] || false)

Communications

• Mailboxes: send_mesg(to, arg1, ..., argn), recv_mesg (from), check_box 

(from)

Predefined Controllers

• Specified with the controller keyword

• velcontrol, pd, force, pd_vehicle,...
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Defensive Zone

0

a b

c

Example: RoboFlag Drill



Defensive Zone

0

a b

c

i        j

)(j) is too far 

down for i to get

RoboFlag Control Protocol

fun r i j . 

  if red[alpha[j]][1] < abs ( blue[i] - 

red[alpha[j]][0] ) 

    then 1 

    else 0

  end;

fun switch i j .  

  r i j + r j i < r i i + r j j 

  | ( r i j + r j i = r i i + r j j 

    & red[alpha[i]][0]  > red[alpha[j][0] );

program ProtoPair ( i, j ) := {

  temp := 0;

  switch i j : {

    temp := alpha[i],

    alpha[i] := alpha[j],

    alpha[j] := temp,

  }

};

program Blue ( i ) := {

  red[alpha[i]][0] > blue[i] & blue[i] + 

delta < toplimit i : {

    blue[i] := blue[i] + delta

  }

  red[alpha[i]][0] < blue[i] & blue[i] - 

delta > botlimit i : {

    blue[i] := blue[i] - delta

  }

};

CCL Program for Switching Assignments

program Red ( i ) := {

  red[i][1] > delta : { 

    red[i][1] := red[i][1] - delta

  }

  red[i][1] < delta : {

    red[i] := { rrand 0 n, rrand lowerlimit 

n }

  }

};
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CCL/Temporal Logic Notation

Temporal logic

• "p     always p (invariance)

• "p     eventually p (guarantee)

• p # "q   p implies eventually q (response)

• p # q U r   p implies q until r (precedence)

• ""p       always eventually p (progress)

• ""p       eventually always p (stability)

• "p # "q    eventually p implies eventually q (correlation)

• ¬p    negation (not p)

• $#F$    true if a behavior $ satisfies a formula F

• P % F   &$ . $#P$ ⇒ $#F$   P models F (any behavior consistent with a program 

        satisfies a specified formula)

CCL

• skip    true : &v . v’ = v   guarded command that does nothing

• p ! q   "(p ⇒ "q)    “p leads to q”: if p is true, q will eventually be true

• p co q   "(p ⇒ [(q’ ! skip]) " "q’]) if p is true, then next time state changes, q will be true

21
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Safety (Defenders do not collide) 

Stability (switch predicate stays false)

“Lyapunov” stability

• Let % be the number of blue robots that are too far away to reach their red robots

• Let & be the total number of conflicts in the current assignment

• Define the Lyapunov function that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.
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V =
[(

n

2

)
+ 1

]
ρ + β β =

n∑

i=1

n∑

j=i+1

γ(i, j) where γ(i, j) =

{
1 if xα(i) > xα(j)

0 otherwise
ρ =

n∑

i=1

r(i, i)
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Sketch of Proof for RoboFlag Drill

More notation:

• Meaning of an action: s [[a]] t ' a(&v : s[[v]] / v, t[[v]] / v’) 

- Updates the state of the system by replacing all unprimed variables in a by their values under the 
state s and replacing all primed variables in a by their values under t

• Hoare triple notation: {P} a {Q} ' & s, t . s[[P]] ^ s [[a]] t => t[[Q]]

- True if the predicate P being true implies that Q is true after action a

Lemma (Klavins, 5.2) Let P = (I, C) be a program and p and q be predictates.  If for all 

commands c in C we have {p} c {q} then P % p co q.

- If p is true then any action in the program P that can be applied in the current state leaves q true

Thm  Prf(n) % " zi < zi+1

- For the RoboFlag drill with n defenders and n attackers, the location of defender  will always be to 
the left of defender i+1.

Proof.  Using the lemma, it suffices to chech that for all commands c in C we have {p} c {q}.  So, 

we need to show that if zi < zi+1 then any command that changes zi or zi+1 leaves these 

unchanged.  Two cases: i moves or i+1 moves.  For the first case, {p} c {q} becomes

From the definition of the gaurded command, this is true.  Similar for second case. 
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zi < zi+1 ∧ (zi < xα(i) ∧ zi < zi+1 − δ : z′
i = zi + δ) =⇒ z′

i < z′
i+1

RoboFlag Simulation



actual F-15 software

model of dynamics

Control T33 to follow 
F15 and to execute 
"lost wingman" during 
simulated 
communications loss.

Real-World Example: Lost Wingman Protocol (tomorrow)

Richard M. Murray, Caltech CDSHYCON-EECI,  Mar 08

Problem Framework

Agent dynamics

Vehicle “role”

•             encodes internal state + 

relationship to current task

• Transition 

Communications graph

• Encodes the system information flow

• Neighbor set 

Task

• Encode as finite horizon optimal control

• Assume task is coupled

Strategy

• Control action for individual agents

Decentralized strategy

• Similar structure for role update
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N i(x,α)

J =
∫ T

0
L(x,α, u) dt + V (x(T ),α(T )),

ui = γ(x,α) {gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

x−i = {xj1 , . . . , xjmi}

jk ∈ N i mi = |N i|

α ∈ A

α′ = r(x,α)

G

ui(x,α) = ui(xi,αi, x−i,α−i)

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ SE(3),


