
NCS Lecture 11

Distributed Computation for Cooperative Control

Richard M. Murray (Caltech) and Erik Klavins (U. Washington)

17 March 2008

Goals:

• Describe methods for modeling and analyzing distributed protocols

• Introduce the Computation and Control Language (CCL) as an example

• Explore and analyze protocols written in CCL for cooperative contro

Reading:

• E. Klavins, “A Computation and Control Language for Multi-Vehicle Systems”, Int’l

Conference on Robotics and Automation, 2004.

• E. Klavins and R. M. Murray, “Distributed Computation for Cooperative Control”, IEEE

Pervasive Computing, 2004.

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Problem Framework

Agent dynamics

Vehicle “role”

• encodes internal state +

relationship to current task

• Transition

Communications graph

• Encodes the system information flow

• Neighbor set

Task

• Encode as finite horizon optimal control

• Assume task is coupled

Strategy

• Control action for individual agents

Decentralized strategy

• Similar structure for role update

2

N i(x,α)

J =
∫ T

0
L(x,α, u) dt + V (x(T),α(T)),

ui = γ(x,α) {gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

x−i = {xj1 , . . . , xjmi}

jk ∈ N i mi = |N i|

α ∈ A

α′ = r(x,α)

G

ui(x,α) = ui(xi,αi, x−i,α−i)

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ SE(3),

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS 3

RoboFlag Subproblems

1.Formation control

• Maintain positions to
guard defense zone

2.Distributed estimation

• Fuse sensor data to
determine opponent
location

3.Distributed assignment

• Assign individuals to tag
incoming vehicles

Desirable features for designing and verifying distributed protocols

•Controls: stability, performance, robustness

•Computer science: safety, fairness, liveness

•Real-world: delays, asynchronous executions, (information loss)

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08 4

Distributed Decision Making: RoboFlag Drill
Klavins

CDC, 03

Task description

• Incoming robots should be blocked by
defending robots

• Incoming robots are assigned randomly
to whoever is free

• Defending robots must move to block,
but cannot run into or cross over others

• Allow robots to communicate with left and
right neighbors and switch assignments

Goals

• Would like a provably correct, distributed
protocol for solving this problem

• Should (eventually) allow for lost data,
incomplete information

Status

• Provably correct protocol available in
perfect information case, using CCL

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08 5

Distributed Situational Awareness

Communications complexity

! Maintain “situational awareness”

! Assume point-to-point commun-
ications and that each robot knows its
own position

! Q: how many messages are required
for each robot to keep track of all
other robots w/in !?

! A: O(n2) messages (worst case)

Method #1: Distance Modulated Communication - O(n log n)

! Maintain position estimates to within kPxi – xjP

! Communicate more often with robots that are closer

Method #2: Wandering Communication Scheme - O(n)

! Only moving robots need to keep track of position

! Robots transfer knowledge when they stop/start

Proof of
correctness
using CCL

Klavins
WAFR 02

HYCON-EECI, Mar 08 R. M. Murray, Caltech CDS

Lost Wingman Protocol Verification

Temporal logic specification

• “Lost mode leads to the distance

between the aircraft always being larger

than dsep”

Protocol specification in CCL

!Use guarded commands to implement finite

state automaton

!Allows reasoning about controlled

performance using semi-automated theorem

proving

!Relies on Lyapunov certificates to provide

information about controlled system

Lost wingman in fingertip formation

Comms failure
between 1 and 2

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Models of Concurrency

Petri Nets and Processes

• Standard tool in Manufacturing

Hybrid Automata (Henzinger, 1996)

• Use FSM for discrete states, with dynamic inclusions in each

“mode” and transitions between states

I/O Automata [Lynch: Book 1996]

• Composition with internal / input / output actions

• Hybrid version is "sophisticated" [Lynch, Segala, Vaandrager,

Weinberg: HSIII 1996]

UNITY [Chandy & Misra: Book 1988]

• Interleaving-based parallel programming

• Based on guarded commands [Dijkstra: 1975]

• Uses temporal logic for verification

Temporal Logic of Actions [Lamport: TPLS 1994]

• TL is used for specification and "implementation"

• Sophisticated treatment of fairness constraints

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Hybrid Automata (Henzinger, 1996)

Description

• Discrete states model different “modes” of

operation

• Continuous variables within each state describe

how the system evolves in that state. Allow

differential inclusions:

• Transitions consist of guards and rules: when a

guard is true, execute the rule and then transition

to a new state

• Allow composition by taking cross product of

states; any transitions that have the same label

must share states

Properties

• Can be used to model broad variety of systems

• Composition can lead to very large state space (n

robots with r states each gives rn states)

• Awkward to reason about in many applications

(not enough structure)

8

Henzinger, 1996

−50 ≤ ẋ ≤ −40

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

I/O Automata (Lynch,1989)

Description

• Individual components modeled as an

automaton, but with possibly infinite

number of states

• Actions (transitions) are either input,

output, or internal

• Composition occurs by connecting inputs

to outputs (labels must match)

• Executions are given by sequence of

actions; output actions trigger input

actions

• Fairness constraint: each process must

be allowed to execute a non-input action

infinitely often in any execution =>

interleaving

Hybrid I/O Automata

• Add continuous dynamics via differential

eqns

• Continuous execution is “interrupted” by

events to give trajectories (traces)

Properties

• Extensive use in distributed algorithms

• Can reason about whether a property is

true for all possible executions, which

allows asynchrony of individual events

9

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Temporal Logic

Description

• State of the system is a snapshot of values of all

variables

• Reason about behaviors !: sequence of states of

the system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is

related to state t by action a if a takes s to t (via

prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of

allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component

take an action (eg, infinitely often)

Example

• Action: a " x’ = x + 1

• Behavior: ! " x := 1, x := 2, x:= 3, ...

• Safety: "x > 0 (true for this behavior)

• Fairness: "(x’ = x + 1 ! x’ = x) " "" (x’ ! x)

Properties

• Can reason about time by adding

“time variables” (t’ = t + 1)

• Specifications and proofs can be

difficult to interpret by hand, but

computer tools existing (eg, TLC,

Isabelle, PVS, etc)

10

"p # always p (invariance)

"p # eventually p (guarantee)

p $ "q # p implies eventually q
(response)

p $ q U r # p implies q until r

(precedence)

""p # always eventually p

(progress)

""p # eventually always p
(stability)

"p $ "q # eventually p implies
eventually q (correlation)

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

UNITY (Chandy and Misra)

Description

• Specification consists of a set of (possibly gaurded)

variable assignments

• Behaviors are generated by starting an an initial state,

then choosing any assignment for which the guard is

true

• Command (g:r) may be evaluated in any order, at any

time

• Require that all assignments be applied infinitely often

in any execution (built in fairness)

• Reason about “programs” using temporal logic

Properties

• Useful for reasoning about systems in which there is

very asynchronous behavior

• Fairness constraint is a bit too loose for control

applications; only assume that each command

executes eventually (instead of once every iteration)

11

g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08 12

P(k1,k2) := {

 initializers

 guard1:rule1
 guard2:rule2

 ...

}

S(k1,k2):=P(k1,k2)+C(k1+1) sharing y,u

"soup" of
guarded commands

composition = union

non-shared variables
remain local to

component programs

CCL: Computation and Control Language
Formal Language for Provably Correct Control Protocols

CCL Interpreter

Formal programming lang-

uage for control and comp-

utation. Interfaces with

libraries in other languages.

Automated Verification

CCL encoded in the Isabelle

theorem prover; basic specs

verified semi-automatically.

Investigating various model

checking tools.

Formal Results

Formal semantics in transition

systems and temporal logic.

RoboFlag drill formalized and

basic algorithms verified.

CCL Protocol for

Decentralized

Target Allocation

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Guarded Command Programs

• Non-deterministic execution schedule models

concurrency

• Easy to reason about programs

• Guarded commands = update functions

13

g3:r3
g4:r4

g7:r7

g6:r6

g1:r1

g5:r5

g2:r2

g8:r8

P = (I,)

Initial
Predicate

Command
Soup

x > 0 : x' < x

inbox(i) : x' =recv(i)

current state

Any sequence of states produced by this process is a possible behavior
of the system. We want to reason about them all.

CCL

Choose s so that s |= I

Choose g:r

g(s)?

Choose s' so that r(s,s')

set s := s'

yesno

skip

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Scheduling and Composition

14

Program composition:
(I1,C1) + (I2,C2) = (I1%I2, C1&C2)

EPOCH

Each command is

executed before any

are again.

SYNCH(')
In any interval, the difference in

the number of times any two

commands are executed is ('.

UNITY

Each command must be

executed infinitely often.

include standard.ccl

program plant (a, b, x0, delta) := {
 x := x0;
 y := x;
 u := 0.0;
 true : {
 x := x + delta * (a * x + b * u),
 y := x,
 print (" x = ", x, "\n")
 };
};

program control() := {
 y := 0.0;
 u := 0.0;
 true : { u := -y };
};

program sys (a, b, x0) := plant (a, b, x0, 0.1) +
 control (2*a/b) sharing u, y;

exec sys (3.1, 0.75, 15.23);

An Example CCL Program

 x = 3.216250
 x = 3.095641
 x = 2.979554
 x = 2.867821
 x = 2.760278
 x = 2.656767
 x = 2.557138
 x = 2.461246
 x = 2.368949
 x = 2.280113
 x = 2.194609
 x = 2.112311
 x = 2.033100
 x = 1.956858
 x = 1.883476
 x = 1.812846
 x = 1.744864
 x = 1.679432
 x = 1.616453
 ...

program prog3 (...) :=
 prog1 (...) +
 prog2 (...) sharing x, y, z, ...;

exec prog (1.1, 2.0);

This makes a new program with conjoined
initial section and includes all clauses
from prog1 and prog2. x, y and z are
shared, other vars are local.

Starts the interpreter.

Structure of CCL Programs

program prog1 = {

 declarations

 initial {
 assignments
 }

 guard : { rules }
 guard : { rules }

 ...

};

Declares a new program with name "prog1"

Declare variables and functions to be used.

Initialize state (variables and environment)

Any number of "clauses". Guards are boolean
expressions and rules are assignments to
variables or control commands.

n {

 agent 0 gets prog0;

 agent 1 gets prog1;

 ...

}

For the simulator: assign programs to agents

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

CCL Language Features (optional)

Variables

• Can be of type constant, number or array

External functions

• Can be of type function, arrayfunction, boolean, with numerical arguments

• Can link to C/C++ functions

• whoami, time, posx, posy, print, rand, reset, send_mesg, clear_box,
sin, cos, abs, pos, vel, get_mesg, check_box,...

Expressions

• Numeric (1 + sin(x+y)/time()) or boolean (y[2] < y[3] || false)

Communications

• Mailboxes: send_mesg(to, arg1, ..., argn), recv_mesg (from), check_box

(from)

Predefined Controllers

• Specified with the controller keyword

• velcontrol, pd, force, pd_vehicle,...

17

Defensive Zone

0

a b

c

Example: RoboFlag Drill

Defensive Zone

0

a b

c

i j

)(j) is too far

down for i to get

RoboFlag Control Protocol

fun r i j .

 if red[alpha[j]][1] < abs (blue[i] -

red[alpha[j]][0])

 then 1

 else 0

 end;

fun switch i j .

 r i j + r j i < r i i + r j j

 | (r i j + r j i = r i i + r j j

 & red[alpha[i]][0] > red[alpha[j][0]);

program ProtoPair (i, j) := {

 temp := 0;

 switch i j : {

 temp := alpha[i],

 alpha[i] := alpha[j],

 alpha[j] := temp,

 }

};

program Blue (i) := {

 red[alpha[i]][0] > blue[i] & blue[i] +

delta < toplimit i : {

 blue[i] := blue[i] + delta

 }

 red[alpha[i]][0] < blue[i] & blue[i] -

delta > botlimit i : {

 blue[i] := blue[i] - delta

 }

};

CCL Program for Switching Assignments

program Red (i) := {

 red[i][1] > delta : {

 red[i][1] := red[i][1] - delta

 }

 red[i][1] < delta : {

 red[i] := { rrand 0 n, rrand lowerlimit

n }

 }

};

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

CCL/Temporal Logic Notation

Temporal logic

• "p always p (invariance)

• "p eventually p (guarantee)

• p # "q p implies eventually q (response)

• p # q U r p implies q until r (precedence)

• ""p always eventually p (progress)

• ""p eventually always p (stability)

• "p # "q eventually p implies eventually q (correlation)

• ¬p negation (not p)

• $#F$ true if a behavior $ satisfies a formula F

• P % F &$. $#P$ ⇒ $#F$ P models F (any behavior consistent with a program

 satisfies a specified formula)

CCL

• skip true : &v . v’ = v guarded command that does nothing

• p ! q "(p ⇒ "q) “p leads to q”: if p is true, q will eventually be true

• p co q "(p ⇒ [(q’ ! skip]) " "q’]) if p is true, then next time state changes, q will be true

21

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Safety (Defenders do not collide)

Stability (switch predicate stays false)

“Lyapunov” stability

• Let % be the number of blue robots that are too far away to reach their red robots

• Let & be the total number of conflicts in the current assignment

• Define the Lyapunov function that captures “energy” of current state (V = 0 is desired)

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.

22

V =
[(

n

2

)
+ 1

]
ρ + β β =

n∑

i=1

n∑

j=i+1

γ(i, j) where γ(i, j) =

{
1 if xα(i) > xα(j)

0 otherwise
ρ =

n∑

i=1

r(i, i)

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Sketch of Proof for RoboFlag Drill

More notation:

• Meaning of an action: s [[a]] t ' a(&v : s[[v]] / v, t[[v]] / v’)

- Updates the state of the system by replacing all unprimed variables in a by their values under the
state s and replacing all primed variables in a by their values under t

• Hoare triple notation: {P} a {Q} ' & s, t . s[[P]] ^ s [[a]] t => t[[Q]]

- True if the predicate P being true implies that Q is true after action a

Lemma (Klavins, 5.2) Let P = (I, C) be a program and p and q be predictates. If for all

commands c in C we have {p} c {q} then P % p co q.

- If p is true then any action in the program P that can be applied in the current state leaves q true

Thm Prf(n) % " zi < zi+1

- For the RoboFlag drill with n defenders and n attackers, the location of defender will always be to
the left of defender i+1.

Proof. Using the lemma, it suffices to chech that for all commands c in C we have {p} c {q}. So,

we need to show that if zi < zi+1 then any command that changes zi or zi+1 leaves these

unchanged. Two cases: i moves or i+1 moves. For the first case, {p} c {q} becomes

From the definition of the gaurded command, this is true. Similar for second case.

23

zi < zi+1 ∧ (zi < xα(i) ∧ zi < zi+1 − δ : z′
i = zi + δ) =⇒ z′

i < z′
i+1

RoboFlag Simulation

actual F-15 software

model of dynamics

Control T33 to follow
F15 and to execute
"lost wingman" during
simulated
communications loss.

Real-World Example: Lost Wingman Protocol (tomorrow)

Richard M. Murray, Caltech CDSHYCON-EECI, Mar 08

Problem Framework

Agent dynamics

Vehicle “role”

• encodes internal state +

relationship to current task

• Transition

Communications graph

• Encodes the system information flow

• Neighbor set

Task

• Encode as finite horizon optimal control

• Assume task is coupled

Strategy

• Control action for individual agents

Decentralized strategy

• Similar structure for role update

26

N i(x,α)

J =
∫ T

0
L(x,α, u) dt + V (x(T),α(T)),

ui = γ(x,α) {gi
j(x,α) : ri

j(x,α)}

αi ′ =

{
ri
j(x,α) g(x,α) = true

unchanged otherwise.

x−i = {xj1 , . . . , xjmi}

jk ∈ N i mi = |N i|

α ∈ A

α′ = r(x,α)

G

ui(x,α) = ui(xi,αi, x−i,α−i)

ẋi = f i(xi, ui) xi ∈ Rn, ui ∈ Rm

yi = hi(xi) yi ∈ SE(3),

