Motivation for Snapshot: Some Examples

- Write a distributed operating systems algorithm to detect whether an underlying user computation is deadlocked, or has terminated.
- The number of tokens in a computation never increases but may decrease. Design an algorithm to obtain an upper bound on the number of tokens.

Motivation Snapshots: Example

What happens when a computation dies while a snapshot is taken?

<table>
<thead>
<tr>
<th>active</th>
<th>terminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>alive</td>
<td>dead</td>
</tr>
<tr>
<td>died</td>
<td></td>
</tr>
</tbody>
</table>

Motivation Snapshots: Specification?

In this scenario, should the detection algorithm report that the computation is alive? Or that is is dead?

Time

Detection algorithm starts

Detection algorithm ends

Should report: alive

Motivation: Specification?

In this scenario, should the detection algorithm report that the computation is alive? Or that is is dead?

Time

Detection algorithm starts

Detection algorithm ends

Should report: alive

Motivation: Specification?

In this scenario, should the detection algorithm report that the computation is alive? Or that is is dead?

Time

Detection algorithm starts

Detection algorithm ends

Should report: dead

Motivation: Specification?

In this scenario, should the detection algorithm report that the computation is alive? Or that is is dead?

Time

Detection algorithm starts

Detection algorithm ends

Should report: dead

Motivation: Specification?

In this scenario, should the detection algorithm report that the computation is alive? Or that is is dead?

Time

Detection algorithm starts

Detection algorithm ends

Either

Specification of Detection Algorithms

- Let P be a stable predicate of a system, i.e., stable(P)
- Specification of an algorithm that detects P
 - The detection algorithm must terminate
 - If the detection algorithm terminates when NOT P holds then the algorithm must report that NOT P holds
 - If the detection algorithm starts when P holds then the detection algorithm must report that P holds
 - (If the detection algorithm starts when NOT P holds and ends when P holds then it may report either)
Motivation: Specification

If algorithm reported dead then dead now

Detection algorithm starts
Detection algorithm ends

If alive now then algorithm reported alive

Detection algorithm starts
Detection algorithm ends

Specification of Detection Algorithm

- If the snapshot said that P holds then P holds now.
- If NOT P holds now then the snapshot said that NOT P holds.

More general problem

Given

\[P \text{ next } (P \text{ OR } Q) \]

where Q is an operating systems action, and P is in the underlying computation.

Write an OS algorithm to detect P

Example:

\[P: \text{database computations are deadlocked} \]

\[Q: \text{transactions have been aborted to break deadlock} \]

Detecting a Stable Predicate P

\[
\text{while(NOT P) } \{ \\
\text{ P = detectionAlgorithm(); } \\
\text{ sleep(T); } \\
\text{ } \\
\text{ // P holds } \\
\text{ Q } \\
\text{ // P may no longer hold } \\
\}
\]

GENERAL APPROACH TO DETECTION ALGORITHMS

System Time Lines: Channel States

- State of channel from R to P at time T (assume only one such channel)

Consistency of Local Snapshots

Events BEFORE snapshot

Events AFTER snapshot

Pictorial Explanation: Consistency means the line can be straightened
There exists a computation from the start state to the snapshot state, and from the snapshot state to the final state.

If a stable predicate holds in any state then it holds in all states reachable from that state.

If P holds in the start state (Stable P) then if P holds in the snapshot state then it holds in the finish state which implies that it also holds for the start state.
Global Snapshot: Prevents this situation

Error message sent after snapshot received before snapshot

Marker message: Prevents this situation

Correct: message sent after snapshot received after snapshot

Determining messages in flight

Marker line P to Q
Message sent before snapshot

Marker line Q to P
Message in flight

Determine messages in flight

Marker line P to Q
Message sent before snapshot

Marker line Q to P
Message in flight

Global Snapshot Algorithm

- When an agent takes a local snapshot it sends a marker on each of its outgoing channels.
- When an agent receives a marker, the agent takes a local snapshot if it hasn’t done so already.
- The messages in flight along a channel c to an agent Q are the messages received by Q after Q takes its snapshot and before Q receives a marker along c.