Goals:
• Describe some types of specifications (contracts) for complex systems
• New concepts: program union and superposition, conditional properties
• Describe how to refine specifications for complex problems
• Examples: mutex and dining philosophers, revisited

Reading:
• K. M. Chandy and J. Misra, *Parallel Program Design: A Foundation*, 1988 (Chapter 7) [posted on Moodle]
• P. Sivilotti, *Introduction to Distributed Algorithms*, Chapter 8
How do we design software-controlled systems of systems to insure safe operation across all operating conditions (w/ failures)?
Design of Cyberphysical Systems (e.g. self-driving cars)

How do we manage the complexity?

- Abstraction
- A/G contracts
- Formal methods for verification/synthesis + model- & data-driven sims/testing

Zoox, 14 April 2017
Assume/guarantee contracts

- Assume: properties of other components in the system
- Guarantee: properties that will hold for my component

\[A_i \Rightarrow G_i \]

\[G_2 \land G_3 \Rightarrow A_1, G_1 \land G_3 \Rightarrow A_2, \ldots \]

“Horizontal” contracts

- A/G contracts within a layer

“Vertical” contracts

- A/G contracts between layers
Reasoning about Unions of Programs

Need to think about combinations of programs and how to proof things about them

- Write “property in F” if a given property holds in program F (also F ⊨ P)
- Write H = F ⪫ G for the “composition” H of two “component” programs (F and G)
- By default, share all variables with the same name (refine later)

Execution semantics

- To execute the union of a program, we just combine all of the rules into a single “bag”

Some properties of unions of programs

- $P \text{ unless } Q$ in $F ⪫ G \equiv (P \text{ unless } Q$ in $F) \land (P \text{ unless } Q$ in $G)$
 - Why is this true? A: _____________________________
- $P \text{ ensures } Q$ in $F ⪫ G \equiv [P \text{ ensures } Q$ in $F \land P \text{ unless } Q$ in $G] \lor [P \text{ ensures } Q$ in $G \land P \text{ unless } Q$ in $F]$
 - Why is this not just $(P \text{ ensures } Q$ in $F) \land (P \text{ ensures } Q$ in $G)$?
 - A: _____________________________
- FP of $F ⪫ G \equiv (FP$ of $F) \land (FP$ of $G)$
- $(P \text{ unless } Q$ in $F) \land (stable(P)$ in $G) \Rightarrow P \text{ unless } Q$ in $F ⪫ G$
- Locality: P is local to F if it only uses variables in F. $local(P) \Rightarrow (P$ in $F) \equiv (P$ in $F ⪫ G)$
Conditional Properties

Properties with hypothesis (assume) and conclusion (guarantee)
- For composite program $H = F \parallel G$, hypotheses & conclusions can be about F, G, or H
- Use conditional properties to prove properties without the entire program description

Example:

Program F

```plaintext
var $x, y : \text{integers}$

assign

$(x \leq 0 \land y > 0) \implies y := -y$

$\parallel x := -1$
```

Let G be any program that only shares the variable y. Show that the following conditional property is satisfied
- Assume: $y \neq 0$ is stable in $F \parallel G$
- Guarantee: $y > 0 \leadsto y < 0$ in $F \parallel G$

Proof

- Step 1: true $\leadsto x \leq 0$ in $F \parallel G$ Why: ______________________________
- Step 2: $x \leq 0 \land y \neq 0 \leadsto y < 0$ in $F \parallel G$ Why: ______________________________
- Now use PSP: $(P \leadsto Q) \land (R \text{ next } S) \implies (P \land R) \leadsto ((R \land Q) \lor (\neg R \land S))$
 - $P = \text{true}$
 - $Q = x \leq 0$ $\implies y \neq 0 \leadsto (x \leq 0 \land y \neq 0) \leadsto y < 0$
 - $R = S = (y \neq 0)$
Superposition

Provide a mechanism for structuring a program as a set of “layers”

- Let G be a program that we wish to create by superposition from a program F
- Augmentation rule: An action a in the underlying program (F) may be transformed into an action $a || b$ where b does not assign variables in F
- Restricted union rule: An action b may be added to F provided that b does not modify any of F’s variables

Theorem Every property of the underlying program is a property of the transformed program

- Proof for augmentation: if $\{P\} a \{Q\}$ holds then $\{P\} a || b \{Q\}$ also holds
- Proof for restricted union: $\mathbf{local}(P) \Rightarrow (P \text{ in } F \equiv P \text{ in } F || G)$

Example: detect whether a program has executed 10 actions (alternative: terminated)

Program $detect10$-aug

initial	count = 0		claim = false		
transform	each statement s in F to s		count := count + 1		claim := count \geq 10

Program $detect10$-augunion

| initial | count = 0 || claim = false |
|----------|-------------------------|
| transform| each statement s in F to s || count := count + 1 |
| add | claim := count \geq 10 |
Example: Specification for Mutual Exclusion

UNITY style design specification format for transformed program $H = F' \parallel G$

- Specification of F: list of properties for F + description of shared variables
 - Unconditional properties apply to F
 - Conditional properties apply to $H = F' \parallel G$
- Specification of H: list of (unconditional) properties that should be true for the composite program
- Constraints: Variables in F that can be accessed from outside F

Example: mutual exclusion

- Properties for program user ($u = U_i$)
 - $u\text{.mode}=\text{NC}$ unless $u\text{.mode}=\text{TRY}$
 - $\text{stable}(u\text{.mode}=\text{TRY})$
 - $u\text{.mode}=\text{CS}$ unless $u\text{.mode}=\text{NC}$
 - Conditional property
 - $A: (\forall u,v : u \neq v : \neg(u\text{.mode} = \text{CS} \land v\text{.mode} = \text{CS}))$
 - $G: (\forall u : u\text{.mode} = \text{CS} \Rightarrow u\text{.mode} = \text{NC})$
- Properties for program $mutex$ (H)
 - $u\text{.mode} = \text{TRY} \Rightarrow u\text{.mode} = \text{CS}$
 - invariant($\neg(u\text{.mode} = \text{CS} \land v\text{.mode} = \text{CS} \land u \neq v)$)
- Constraints: what mutex protocol can access
 - Only non-local variable is $u\text{.mode}$
 - $(\forall u : \text{stable}(u\text{.m}=\text{CS}))$ in G
 - $(\forall u : \text{stable}(u\text{.m}=\text{NC}))$ in G
Program Specification (Dining Philosophers)

User process specification

- **udn1**: u.t unless u.h in user
- **udn2**: stable(u.h) in user
- **udn3**: u.e unless u.t in user
- **udn4**: \((\forall u,v : E(u,v) : \neg(u.e \land v.e)) \Rightarrow (\forall u :: u.e \sim \neg u.e)\)

Specification of composite program

- **dn1**: (safety): invariant \((\neg(u.e \land v.e \land E(u,v))\) in user | os
- **dn2**: (progress): u.h \sim u.e in user | os

Constraints on conflict resolution layer (os)

- **odn1**: constant(u.t) in os \{constant(P) = stable(P) ^ stable(!P)\}
- **odn2**: stable(u.e) in os
- Derived properties of os
 - stable(\neg u.h) in os
 - u.h unless u.e in os

Given these specs, how do we proceed?

- Need to define a “program” that implements the “os” function in a distributed fashion
- OK to assume listed properties about agents
- Approach: write specs for os, then write code

CM88 key:

- dn = dining (philosophers)
- udn = user process spec
- odn = os process spec
Specification Refinement #1: Safety

Original specification of composite program:

\[\text{dn1: } (\forall u, v :: \text{invariant.} (\neg (E(u, v) \land u.e \land v.e))) \]

- Can implement this invariant by making use of a token (\textit{a la} mutual exclusion)
- For each edge \((u, v)\) in the graph, establish a token \(\text{fork}(u, v)\) that keeps track of who has access to the shared resource (fork) at the current time
- New spec: if \(u\) is eating (in CS), then it must have the token

\[\text{odn9: } (\forall u, v :: \text{invariant.} (u.e \land E(u, v) \Rightarrow \text{fork}(u, v) = u)) \]

- New spec satisfies the old spec since token can only be in one place at a time

Implement that idea of a token by \textit{refining} the specification

- Add new variables/functions and write specification in term of those quantities
- New specification should satisfy the original specification
- In setting up the new specification, you are making a choice about program structure
 - For dining philosophers, this refinement means we will use a token-based approach to enforce mutual exclusion on each edge
Additional Refinements: Priority, Token Request

Need to break the symmetry between philosophers
 • Basic idea: establish some sort of priority on the graph
 \[u < v \equiv (\text{fork}(u, v) = v \land \text{clean}(u, v)) \]
 \[\lor (\text{fork}(u, v) = u \land \neg\text{clean}(u, v)) \]

Establish desired properties (informal refinement)
 1. An eating process holds all its forks and the forks are dirty.
 2. A process holding a clean fork continues to hold it (and it remains clean) until the process eats.
 3. A dirty fork remains dirty until it is sent from one process to another (at which point it is cleaned)
 4. Clean forks are held only by hungry philosophers

Problem: how do we know if our neighbor is hungry?
 • Need this in order to implement previous spec

Solution: add a “request token” req(u,v) to each edge
 • Idea: if agent is hungry, doesn’t have fork, and has the request token, then send request to v (set req(u,v) = v)

Approach: refine specifications and use this to define the program (for the os)
Summary: Composition and Refinement

Key ideas:

- Specifications for composed systems
 - Properties of the underlying process (user)
 - Properties of the composed system (user | os)
 - Constraints on access to user processes
- Design via successive refinement
 - Refine properties to establish program structure
 - Each refinement solves problem from previous level (and satisfies the prior specs)
 - Final specification can be converted to code
- Advantages of this approach
 - Maintain a formal proof structure throughout
 - Painful, but necessary for safety critical systems!

Wed: global snapshots

Next week: fault tolerance
- Byzantine agreement
- Paxos algorithm