
CS 142: Lecture 5.2
Mutual Exclusion

Richard M. Murray
1 November 2019

Goals:
• Review Lamport’s algorithm (from Mon) and prove correctness
• Describe token-based algorithms for mutual exclusion (ring + tree)
• If time: performance comparison

Reading:
• P. Sivilotti, Introduction to Distributed Algorithms, Chapter 7
• [SS94] M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating

Systems. McGraw-Hill, 1994. (Chapter 6: Distributed Mutual Exclusion)

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Idea: treat request queue as a distributed atomic variable
• reqQ: queue of timestamps requests for CS (sorted in increasing order)

• knownT: list of last “known times” for other processes

UNITY program: list of actions that can be executed by each agent (in any order)
• SendReq: mode = NC → mode := TRY || (∀j :: send(i, j, ⟨reqi, ti⟩))

• EnterCS: mode = TRY ^ recQ[head] = ⟨reqi, ti⟩ ^ (∀j :: knownT[j] > ti) → mode := CS;

• ReleaseCS: mode = CS → mode := NC || reqQ.pop(⟨reqi, ti⟩ || (∀j :: send(i, j, ⟨reli, ti⟩))

• RecvReq: (∃j :: recv(i, j) = ⟨reqj, tj⟩ → recQ.push/sort(⟨reqj, tj⟩) || send(i, j, ⟨acki, ti⟩))

• RecvAck: (∃j :: recv(i, j) = ⟨ackj, tj⟩ → knownT[j] := tj)

• RecvRel: (∃j :: recv(i, j) = ⟨relj, tj⟩ → reqQ.pop(⟨relj, tj⟩)

Lamport’s Mutual Exclusion Algorithm

2

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Sample Execution
8 {SendReq:} mode = NC → mode = TRY || (∀j :: send(i, j, ⟨reqi, ti⟩))
8 {RecvReq:} (∃j :: recv(i, j) = ⟨reqj, tj⟩ → recQ.push/sort(⟨reqj, tj⟩) || send(i, j, ⟨acki, ti⟩))
8 {RecvAck:} (∃j :: recv(i, j) = ⟨ackj, tj⟩ → knownT[j] := tj)
8 {EnterCS:} mode = TRY ^ recQ[head] = ⟨reqi, ti⟩ ^ (∀j :: knownT[j] > ti) → mode = CS;
8 {ReleaseCS:} mode = CS → mode = NC || reqQ.pop(⟨rel\q, ti⟩ || (∀j :: send(i, j, ⟨reli, ti⟩))
8 {RecvRel:} (∃j :: recv(i, j) = ⟨relj, tj⟩ → reqQ.pop(⟨ackj, tj⟩)

3

U1

U2

U3

CS

CS
{⟨req1, 2⟩} {⟨req2, 1⟩, ⟨req1, 2⟩} {⟨req1, 2⟩}

{⟨req2, 1⟩} {⟨req2, 1⟩, ⟨req1, 2⟩}

{⟨req2, 1⟩} {⟨req2, 1⟩, ⟨req1, 2⟩} {⟨req1, 2⟩}

{⟨req1, 2⟩}

[4,3,?] [5,3,3]

[?,?,2] [?,?,3][?,?,1]

[?,0,?]

[1,?,?]

[?,?,7]

[?,3,?] [3,4,?]

[3,?,?]

[3,5,2] [3,6,2]

[7,3,3]

reqQ1

reqQ2

reqQ3

knwT1

knwT2

knwT3

recQ: {⟨reqj, tj⟩, …}
knwT1: [log, kT2, kT3]

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Proof of Correctness

4

⟨reqi, ti⟩
⋮ 

⟨reqj, tj⟩
⋮

⟨reqj, tj⟩
⋮ 

⟨reqi, ti⟩
⋮

Ui reqQ Uj reqQ

Check conditions that are needed for induction:

Safety: need to show that no two processes are in CS at the same time
• Assume the converse: Ui and Uj are both in CS

• Both Ui and Uj must have their own requests at head of queue

• Head of Ui: <reqi, ti>
• Head of Uj: <reqj, tj>

• Assume WLOG ti < tj (if not, switch the argument)

• Since Uj is in its CS, then we must have tj < Uj.knownT[i] 
⟹ <reqi, ti> must be in Uj.reqQ (since messages are FIFO)

• ti < tj ⟹ reqj can’t be at the head of Uj.reqQ
• →← (contradiction)

Progress: need to show that eventually every request is eventually processed
• Approach: find a metric that is guaranteed to decrease (or increase)

• One metric: number of entries in Ui.knownT that are less than its request time (ti)
- Represents number of agents who might not have received our request

• Is this a good metric?
- Bounded below by zero and if at zero then we eventually enter our critical section
- Must always decrease as other processes enter their critical section (and

someone will execute their CS at some point in time)

ti < tj < Uj.knownT[i] ⇒ Uj  
has acknowledged reqi

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Proof of Correctness (Progress)
8 {SendReq:} mode = TRY || (∀j :: send(i, j, ⟨reqi, ti⟩))
8 {RecvReq:} (∃j :: recv(i, j) = ⟨reqj, tj⟩ → recQ.push/sort(⟨reqj, tj⟩) || send(i, j, ⟨acki, ti⟩))
8 {RecvAck:} (∃j :: recv(i, j) = ⟨ackj, tj⟩ → knownT[j] := tj)
8 {EnterCS:} mode = TRY ^ recQ[head] = ⟨reqi, ti⟩ ^ (∀j :: knownT[j] > ti) → mode = CS;
8 {ReleaseCS:} mode = CS → mode = NC || reqQ.pop(⟨rel\q, ti⟩ || (∀j :: send(i, j, ⟨reli, ti⟩))
8 {RecvRel:} (∃j :: recv(i, j) = ⟨relj, tj⟩ → reqQ.pop(⟨ackj, tj⟩)

Proof steps
• Metric: number of entries in Ui.knownT that are less than its request time (ti)

• Need to show that this is guaranteed to decrease ⇒ eventually Ui can enter CS

• Consider an agent Uj with with an entry less than Ui’s request time:

• Agent Uj’s logical time is guaranteed to increase when ⟨reqi, ti⟩ is received by Uj

• Agent Uj will send Ui an acknowledgement with tj > ti (logical clock property) => metric
will decrease by 1

Additional steps for complete proof:
• Also need to verify that Ui request will be at the head of its queue (similar argument)

5

Ui.knownT[j] < ti (where ⟨reqi, ti⟩ is the request from Ui)

__

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Optimization #1 - if request sent with later timestamp than received, no ack needed

Optimization #2 (Ricart-Agrawala): merge release messages with replies
• Receive req: add to reqQ || send <acki, ti> to Uj only in certain conditions:

- if not requesting access to CS nor in CS
- if requesting CS and Uj timestamp is smaller than Ui request

• When Ui exits CS, send release (clears all deferred acknowledgements)

• Idea: eventually, the pending request will be granted and we will send a <release>
message, which will serve as the acknowledgement

Optimizations on Lamport’s Algorithm

6

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Optimization #1 - if request sent with later timestamp than received, no ack needed

Optimization #2 (Ricart-Agrawala): merge release messages with replies

Optimization #3 (Maekawa): request permission from a subset of agents [SS94]
• Ui only sends requests to a subset of sites Ri, chosen such that (∀i,j : Ri ∩ Rj ≠ {})

• Rough idea: every pair of agent has an agent that “mediates” between the pair
• Each agent sends only one ack at time; wait until a release is received => mediating

agents can only grant permission if they haven’t granted permission to another agent
• Proof is more complicated, but many fewer messages required

Timing analysis [SS94]
• Response time = amount of time to  

execute critical section (if no queue)

• Sync delay: Ui exits CS to Uj enters CS

• T = transport time: E = execution time

Optimizations on Lamport’s Algorithm

7

ll = low load condition  
 (one req at a time)
hl = high load cond. 
 (Ui seldom in NC)

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Token-Based Approaches to Mutual Exclusion
Simple token ring: send token clockwise (CW) around ring
• Problem: potentially long sync delays (especially in low load)

Token ring with requests: add request message type
• Minimize sync delay by waiting for requests to arrive (CCW)

• Both approaches require  
existence of ring topology

8

SendReq (Try → CS) RecvReq

RecvToken

hungry = Ui wants resource
asked = token requested
holder = token is with Ui
using = Ui in critical section

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Token Tree Algorithm (Raymond)

9

U1

U2

U4 U5

U3

U6 U7

Basic idea: pass request toward token & token toward request
• Maintain a tree with root being agent with token

• Each agent gets requests and passes them toward token

• Agent with token either
- enters CS (if earliest request)
- passes token to node w/ earlier request

• Passing the token also updates the direction  
of links (so that root stays with the token)

• Invariant: graph is (rooted) tree, root at token

Question: how do we prove this works?
• Safety: no two nodes are in CS at same time (easy)

• Progress: need to show that all requesting nodes eventually get access
- Trick (as usual): figure out a metric that captures this

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Remarks on Token Tree Algorithm
Algorithm

1. If node wants CS, doesn’t hold token and requestQ is empty, send request toward
the root (= token location) and adds request to its requestQ

2. If agent receives request, place on requestQ and pass message toward the token
3. When root receives request, send token toward request and update parent link
4. When agent receives the token, remove top entry in requestQ, send token to that

entry, and update parent link. If requestQ is non-empty, send request to (new) parent
- Necessary step since we need token back to send to next entry in queue

5. Agent enters critical section when it has the token and its entry is at top of requestQ
6. After site has finished execution in critical session, got to step 4

Basic idea behind the proof [SS94]
• Agents execute requests in first come first serve (FCFS) order

• Let Ui = agent requesting access, Uh = agent holding the token
- Always exists path Ui, Ui1, Ui2, … Uik-1, Uik, Uh
- When Uh gets request from Uik, there are two possibilities

• Uik-1 is at the top of Uik’s requisite => send token there => chain gets shorter
• Some other agent Uj is at top queue => send token there first
• Can show Uik will eventually get token back => will eventually get to Uik-1 (⤳)

10

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Comparisons between different algorithms

11

Timing analysis [SS94]
• Response time = amount of time to  

execute critical section (if no queue)
• Sync delay: Ui exits CS to Uj enters CS

• T = transport time: E = execution time

• ll = low load condition (one req at a time)
• hl = high load condition (Ui seldom in NC)

Richard M. Murray, Caltech CDSCS 142, 1 Nov 2017

Key ideas:
• Distributed protocol for allow access to  

a shared resource (“critical section”)
• Two approaches: distributed atomic variables 

(Lamport + variants) or token-based
• User process specifications:

• System specifications:
- Safety: no two users (Ui) are in critical  

section (CS) at the same time
- Progress: all agents will get a chance  

(as long as they keep requesting)

Friday: problem solving session (board talk)

Next week: specification refinement, conflict resolution (dining philosophers)

12

Summary: Mutual Exclusion

TRY next TRY ∨ CS
TRY ⤳ CS

Composition 
properties:

