
CS 142: Lecture 4.1
Time, Clocks, and Synchronization

Richard M. Murray
21 October 2019

Goals:
• Asynchronous computation → distributed (multi-agent) computation
• Introduce logical and vector clocks to keep track of event ordering

Reading:
• P. Sivilotti, Introduction to Distributed Algorithms, Chapter 5
• L. Lamport, “Time, Clocks, and the Ordering of Events in Distributed Sys-

tems”, CACM 21(7) p.558–565, 1978.

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Where We Are In the Course
Weeks 1-3: UNITY programs
• Predicate calculus, equivalence, quantification [HW #1]

• Program execution (UNITY semantics) [HW #2]

• Stability properties (next, stable, invariant, unless) [HW #2]
• Progress properties (transient, ensures, leadsto) [HW #3]

• Induction (metrics) and proofs of correctness [HW #3, 4]

Week 4: Intro multi-agent systems
• Logical clocks and vector clocks [HW #4]

• Diffusing computations [HW #4]

Week 5: Mutual exclusion (not covered on the midterm)
• Restrict access to a resource to a single process

• User processes + control protocols (composition)

2
M
id
te
rm

P next Q

a a

transient(Q)

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Models for distributed systems
• Fixed set of agents (processes) + fixed set of directed channels

• Represent by a directed graph: vertex = agent, edge = (directed) channel

Agents and channels
• Agent: a message- 

passing automaton
• Channel: sequence of  

messages, initially empty
• State transitions:

- Change state without  
sending or receiving a message

- Change agent state and send a message on a channel
- Receive a message on a channel and change agent state

• Channel can be FIFO, TCP-like (out of sequence), or UDP-like (dropped messages)

Challenges:
• How do we write programs that require “synchronization” (agreement on time/order)?
• How do we reason about correctness of a program with channels?

Distributed (Multi-Agent) Systems

3

0

2

3
1

4
Agent

M3

M2

M1

Channel

message

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

System State for a Multi-Agent System
Definition of system state:

• Global state = state of each agent + state of each channel (current messages in queue)

Possible actions on this state
• Local change of state: agent i updates  

its state = assignment action

• Sending a message: agent i sends 
message to agent j:

- Local agent updates its state  
(eg, msg pending → msg sent)

- Channel adds msg to queue
• Receiving a message: agent j receives 

message from agent i:
- Channel removes msg from queue
- Receiving agent updates local  

state (eg, store message info)

Execution semantics
• Any enabled action can be executed at any time

• Receive action is enabled whenever a channel message queue is not empty

Σ1 × ⋯ × ΣN × Qc1
× ⋯ × QcM

4

Note: msg  
reordering

“Space-time diagram”

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Causality in Distributed Communications (Lamport, ‘78)
Partial ordering: A → B (“happened before”)
• If A and B are events in the same  

process, then A → B if A occurs first
• If A is the sending of a message by one  

process and B is the receipt of the same  
message by another process, then A → B

• Some events cannot be ordered

Logical clocks (Lamport notation)

• Let be a clock for process that  
assigns a number to an event A

• Define = if B is event in

• Clock condition: for any two events A, B:  
if A → B then <

Remarks
• Events are partially ordered: can compare some events but not all events
• Example from diagram: p1 → q3 but p3 and q3 are not related
• Clocks are not unique (can choose any set of integers with appropriate relations)

• If A → B and B → C then A → C; interpret A → B as “A can causally effect B”

Ci⟨A⟩ Pi

C⟨B⟩ Cj⟨B⟩ Pj

C⟨A⟩ C⟨B⟩

5

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Basic channel model: FIFO queue (messages delivered in order sent)

Safety properties
• Basic invariant: messages in a channel are delivered in the order the were sent
• Sequence interpretation: let c.sent and c.received be the sequence of messages sent

and received (respectively) on a channel
• Property 1: c.received is an initial prefix of c.sent

• Property 2: Messages are never lost:

• Example: c.sent = [10, 20, 30, 40] and c.received = [10, 20]

Liveness
• All messages eventually get sent:

Comments
• Message-passing systems versus shared variables: once a message is sent, it

cannot be deleted
• Channel model assumes TCP-like protocol; UDP is also possible (how?)

UNITY Channel Modeling (and Properties)

6

invariant ()c.received ⊑ c.sent

symbol for initial prefix

stable ()sequence ⊑ c.sent

(sequence ⊑ c.sent) ⇝ (sequence ⊑ c.received)

https://en.wikipedia.org/wiki/File:Mm1_queue.svg

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Logical Clocks
Basic idea: “synchronize” clocks between processes
• Make use of the fact that a message arrives after it was sent

• Attach local clock to each message => get information about other processes

Space-time diagram (= “timeline”)
• Graph must be acyclic (why: _________)

Logical clocks
• Increment local clock on each action

(including send and receive)
• Timestamp each message with the local

clock time of the sender
• Receiver ensures its local clock is greater

than the timestamp of any received msg

Properties
• If A → B then clock(A) < clock (B)
• If A and B are not causally related, then 

clocks cannot be compared

7

tim
e

Process P Q R

c

c

d

a

channel id

Send event Receive eventInternal event

Tp= 2

Tp= 3

Tp= 6

Tp= 1

Tp= 0 Tq= 4

Tq= 5

Tq= 6

Tq= 7

Tq= 8Tp= 7

Tr = 0

Tr = 2

Tr = 4

Tr = 6

Tr = 8

T
m = 5

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Algorithm for Implementing Logical Clock
Program running on each agent

Invariant:

8

sequential execution

program for agent j (instantiate for all agents)

treat “send” as new event

treat “rcv” as new  
event

add message to queue

remove message 
from queue

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Vector Clocks
Goal: try to find a protocol such that
• Do this by creating a partial order: won’t be possible to order every pair of events

Basic idea: each process keeps track of the last time it heard from other processes
• Each clock maintains vector of timestamps for each process in the system

• Increment local timestamp 
for every event (including 
send and receive)

• Local update: just update 
local (logical) clock

• Received message:  
take max between local 
clock and timestamp; 
update local clock entry

Properties of vector clocks
• Can define partial order within each process

time(A) < time(B) ⟹ A → B

9

8 7 9 3

vtime.m = [6, 2, 9, 3]

vclock.3

vclock.2

time for each process

Note: P1 and P4 not shown

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Algorithm for Implementing a Vector Clock

10

element-wise max

vclock.i.j = (vclock[i])[j] = jth entry of ith processes vector clock
vclock.i = vclock[i]= ith processes vector clock

Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Vector Clock Example (from Sivilotti)

Invariant: the following sets of properties are always true

11

0 0 2

2 0 2

local clock for process is always  
bigger than remote estimates of clock

mj = message from jth process

3 0 2 4 1 2

0 0 3

0 2 0

1 3 0

Richard M. Murray, Caltech CDSCS 142, 27 Nov 2017

Summary: Time, Clocks, and Synchronization
Channel model: FIFO, lossless, directed
Events, system timelines and logical time
• Can’t assume process clocks agree

• Make use of “logical time”

Algorithm for setting logical time

Properties

Vector clocks:

12

vtime

Wed: gossip algorithms

