CS 142: Lecture 4.1 ﬂm@
Time, Clocks, and Synchronization

Richard M. Murray
21 October 2019

Goals:
* Asynchronous computation — distributed (multi-agent) computation
e Introduce logical and vector clocks to keep track of event ordering

Reading:
e P. Sivilotti, Introduction to Distributed Algorithms, Chapter 5

e L. Lamport, “Time, Clocks, and the Ordering of Events in Distributed Sys-
tems”, CACM 21(7) p.558-565, 1978.

Where We Are In the Course

Weeks 1-3: UNITY programs
® Predicate calculus, equivalence, quantification [HW #1]
e Program execution (UNITY semantics) [HW #2]
e Stability properties (next, stable, invariant, unless) [HW #2]
® Progress properties (transient, ensures, leadsto) [HW #3]
e |Induction (metrics) and proofs of correctness [HW #3, 4]

Week 4: Intro multi-agent systems

® | ogical clocks and vector clocks [HW #4] 3 5
e Diffusing computations [HW #4]
Week 5: Mutual exclusion (not covered on the midterm)
ansient(Q)

e Restrict access to a resource to a single process
® User processes + control protocols (composition) (Va:acG: {P} a {Q})

< e active
N o ¢ f ~ Tuser

initiator \0 NC 7 TRY N CS

~
idle \ !

/
user mutex layer

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 2

Distributed (Multi-Agent) Systems

Models for distributed systems
® Fixed set of agents (processes) + fixed set of directed channels
e Represent by a directed graph: vertex = agent, edge = (directed) channel

Agents and channels) PR | ' < [PE—— message
e Agent. a message-

passing automaton 4) Agent
® Channel: sequence of 1 4

messages, initially empty : 3 -
e State transitions: 2 " Channel

- Change state without
sending or receiving a message

- Change agent state and send a message on a channel
- Receive a message on a channel and change agent state
® Channel can be FIFO, TCP-like (out of sequence), or UDP-like (dropped messages)

Challenges:
® How do we write programs that require “synchronization” (agreement on time/order)?
® How do we reason about correctness of a program with channels?

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 3

System State for a Multi-Agent System

Definition of system state: 2; X --- X 2y X O, X - X Q.

e Global state = state of each agent + state of each channel (current messages in queue)

Q

Possible actions on this state

® | ocal change of state: agent i updates
its state = assignment action

e Sending a message: agent i sends
message to agent ;:

- Local agent updates its state
(eg, msg pending — msg sent)
- Channel adds msg to queue

® Receiving a message: agent j receives
message from agent i:

- Channel removes msg from queue

- Receiving agent updates local
state (eg, store message info)

process P
process
process R

Note: msg
reordering

ke
o
—-
Ne]
~
o
.1
S

Execution semantics
e Any enabled action can be executed at any time

® Receive action is enabled whenever a channel message queue is not empty

“Space-time diagram”

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 4

Causality in Distributed Communications (Lamport, ‘78)

Q

Partial ordering: A — B (“happened before”)

e [f Aand B are events in the same
process, then A — B if A occurs first

e |[f Aiis the sending of a message by one
process and B is the receipt of the same
message by another process, then A— B

® Some events cannot be ordered

process P
process
process R

Logical clocks (Lamport notation)

e Let C(A) be a clock for process P, that
assigns a number to an event A

o Define C(B) = C(B) if B is eventin P;

® Clock condition: for any two events A, B:
if A— B then C(A) < C(B)

Remarks
® Events are partially ordered: can compare some events but not all events
® Example from diagram: p1 — g3 but p3 and g3 are not related
® Clocks are not unique (can choose any set of integers with appropriate relations)
e fA— B and B — Cthen A— C; interpret A— B as “A can causally effect B”

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 5

UNITY Channel Modeling (and Properties)

Basic channel model: FIFO queue (messages delivered in order sent)

Safety properties
® Basic invariant.: messages in a channel are delivered in the order the were sent

® Sequence interpretation: let c.sent and c.received be the sequence of messages sent
and received (respectively) on a channel

e Property 1: c.received is an initial prefix of c.sent e symbol for initial prefix

invariant (c.received L c.sent)

e Property 2: Messages are never lost: A
stable (sequence C c.sent)
Waiti Servi
e Example: c.sent = [10, 20, 30, 40] and c.received = [10, 20] area’ node

https://en.wikipedia.org/wiki/File:Mm1_queue.svg

Liveness
e All messages eventually get sent:
(sequence C c.sent) - (sequence C c.received)

Comments

® Message-passing systems versus shared variables: once a message is sent, it
cannot be deleted

® Channel model assumes TCP-like protocol; UDP is also possible (how?)

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 6

Logical Clocks

Basic idea: “synchronize” clocks between processes
® Make use of the fact that a message arrives after it was sent
e Attach local clock to each message => get information about other processes

channel id A Space-time diagram (= “timeline”)
e Graph must be acyclic (why:)

Logical clocks

® Increment local clock on each action
(including send and receive)

® Timestamp each message with the local
clock time of the sender

® Receiver ensures its local clock is greater
than the timestamp of any received msg

time —
_I

© ©

[[

N W o

T
T.=4 Properties
T,= T =5 ©®If A= Bthen clock(A) < clock (B)
_ = e |f Aand B are not causally related, then
T,=1 |
TT -0 clocks cannot be compared

T,=0 | T,=4 I r

Process P Q R @ Internal event @ Send event Receive event

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 7

Algorithm for Implementing Logical Clock

Program running on each agent

Program LogicalClock j «—— program for agent j (instantiate for all agents)
var 7, k : processes,

ch.j.k : channel from j to k,

clock.y : logical time of 7,

time.A : logical time of A,

initially clock.j =0 sequential execution
assign treat “send” as new event

local event A — clock.j := clock.j + 1
; time.A := clock.j /

| send event A — clock.j := clock.j + 1
(to k) ; time. A, time.m := clock.j, clock.j
; ch.j.k:=chjk|m «— add message to queue
| rcvevent A — clock.j := max (time.m, clock.j) + 1 +—_ o
(m from k) ; time.A, ch.j.k := clock.j, tail(ch.j.k) g\?eartﬂ eV as new
Invariant: ™\ remove message
(VA,j : Aoccurs at j : time.A < clock.j) from queue

AN (Vm,j,k: mechjk: (FA: Aoccurs at j : time.A =time.m))
AN (VA,B: A— B = time.A<time.B)

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS

Vector Clocks

Goal: try to find a protocol such that time(A) < time(B) — A — B
® Do this by creating a partial order. won’t be possible to order every pair of events

Basic idea: each process keeps track of the last time it heard from other processes
® Each clock maintains vector of timestamps for each process in the system

e Increment local timestamp
for every event (including vclock.3 [6[2]9]|3| «— time for each process

send and receive)

P
® | ocal update: just update ’ A ,
local (logical) clock vtime.m = [6, 2, 9, 3]
¢ Received message: B C
take max between local b <

clock and timestamp; velock.2 18lel2 |1 8|7l913
update local clock entry

"time" —=
Properties of vector clocks Note: P1 and P4 not shown
e Can define partial order within each process
vtime.A = vtime.B = (Vi :: vtime.A.i = vtime.B.i)
vtime. A < vtime.B = (Vi :: vtime.A.i < vtime.B.i)
vtime. A < vtime.B = vtime. A < vtime.B A vtime.A # vtime.B

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 9

Algorithm for Implementing a Vector Clock

Program VectorClock j

var 7, k : processes, 61219]3
ch.j.k : channel from j to k, S
m : message, A
A : event,
velock.j : vector time of 7, ﬁ ¢
-/

vtime.A : vector time of A,
initially velock.j.; =1 81621 2021?22
AN (Yk: k+#j: velock.j.k=0)

assign time” =
local event A — velock.jy.j = clock.j.j + 1
; vtime.A = vclock.j
| send event A — velock.j.j = velock.j.j + 1
(to k) : vtime.A, vtime.m := vclock.j,vclock.j
; ch.j.k :=ch.j.k | m % element-wise max
| rev event A — vclock.j := max (vtime.m,vclock.j)
(m from k) : vclock.j.j == velock.j.7 + 1

: vtime. A, ch.j.k := vclock.j, tail(ch.j.k)
vclock.i = vclock[i]= ith processes vector clock
vclock.i.j = (vclock]i])[j] = jth entry of ith processes vector clock

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS 10

Vector Clock Example (from Sivilotti)

0/10|1(|0|0O]|2 01013
[\ N\ [\ [\
P, = =
P, o >
0
Pl o oo
1100 21012 310121141112

Invariant: the following sets of properties are always true
. . . local clock for process is always
> Kk < . : :
Visk i velock k.j < velock.j.j) bigger than remote estimates of clock

(
(Vj, k,mj 2 vtime.mj.k < wvclock.jk) «—m 30 m; = message from jth process
(VA;, By :: Aj — By, = vtime.A; < vtime.By,)

(VA;, B :: Aj — By, < vtime.A;.j < vtime.By.j)

CS/IDS 142,21 Oct 2019 Richard M. Murray, Caltech CDS I

Summary: Time, Clocks, and Synchronization

VAR

p —O—6

Channel model: FIFO, lossless, directed P

FAR
N\

Events, system timelines and logical time

e Can’t assume process clocks agree P
e Make use of “logical time”
A — B = time.A < time.B

Pl
Algorithm for setting logical time
"time" —=
local event A — clock.j := clock.j + 1
; time.A := clock.j
| send event A — clock.j := clock.j + 1
(to k) : time.A, time.m = clock.j, clock.j
; chjk:=chjk | m , Wed: gossip algorithms
| rcv event A — clock.j := max (time.m, clock.j) + 1 o
active

(m from k) ; time.A,ch.j.k := clock.j, tail(ch.j.k) o;—\o
Pl'OpertIes initiator —
(VA,j : Aoccurs at j : time.A < clock.j) idle

AN (Vm,j,k: mechjk: (FA: Aoccurs at j : time. A =timem))
AN (VA,B:: A— B = time.A < time.B)

Vector clocks: A — B = vtime. A < vtime.B

CS 142,27 Nov 2017 Richard M. Murray, Caltech CDS 12

