
CS 142: Lecture 4.1 
Time, Clocks, and Synchronization

Richard M. Murray 
21 October 2019 

Goals: 
• Asynchronous computation → distributed (multi-agent) computation 
• Introduce logical and vector clocks to keep track of event ordering 

Reading:  
• P. Sivilotti, Introduction to Distributed Algorithms, Chapter 5 
• L. Lamport, “Time, Clocks, and the Ordering of Events in Distributed Sys- 

tems”, CACM 21(7) p.558–565, 1978.
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Where We Are In the Course
Weeks 1-3: UNITY programs 
• Predicate calculus, equivalence, quantification [HW #1] 

• Program execution (UNITY semantics) [HW #2] 

• Stability properties (next, stable, invariant, unless) [HW #2] 
• Progress properties (transient, ensures, leadsto) [HW #3] 

• Induction (metrics) and proofs of correctness [HW #3, 4] 

Week 4: Intro multi-agent systems 
• Logical clocks and vector clocks [HW #4] 

• Diffusing computations [HW #4] 

Week 5: Mutual exclusion (not covered on the midterm) 
• Restrict access to a resource to a single process 

• User processes + control protocols (composition)
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Models for distributed systems 
• Fixed set of agents (processes) + fixed set of directed channels 

• Represent by a directed graph: vertex = agent, edge = (directed) channel 

Agents and channels 
• Agent: a message- 

passing automaton 
• Channel: sequence of  

messages, initially empty 
• State transitions: 

- Change state without  
sending or receiving a message 

- Change agent state and send a message on a channel 
- Receive a message on a channel and change agent state 

• Channel can be FIFO, TCP-like (out of sequence), or UDP-like (dropped messages) 

Challenges: 
• How do we write programs that require “synchronization” (agreement on time/order)? 
• How do we reason about correctness of a program with channels?

Distributed (Multi-Agent) Systems
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System State for a Multi-Agent System
Definition of system state:  

• Global state = state of each agent + state of each channel (current messages in queue) 

Possible actions on this state 
• Local change of state: agent i updates  

its state = assignment action 

• Sending a message: agent i sends 
message to agent j:  

- Local agent updates its state  
(eg, msg pending → msg sent) 

- Channel adds msg to queue 
• Receiving a message: agent j receives 

message from agent i: 
- Channel removes msg from queue 
- Receiving agent updates local  

state (eg, store message info) 

Execution semantics 
• Any enabled action can be executed at any time 

• Receive action is enabled whenever a channel message queue is not empty

Σ1 × ⋯ × ΣN × Qc1
× ⋯ × QcM
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Note: msg  
reordering

“Space-time diagram”
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Causality in Distributed Communications (Lamport, ‘78)
Partial ordering: A → B (“happened before”) 
• If A and B are events in the same  

process, then A → B if A occurs first 
• If A is the sending of a message by one  

process and B is the receipt of the same  
message by another process, then A → B 

• Some events cannot be ordered 

Logical clocks (Lamport notation) 

• Let  be a clock for process  that  
assigns a number to an event A 

• Define  =  if B is event in   

• Clock condition: for any two events A, B:  
if A → B then  <  

Remarks 
• Events are partially ordered: can compare some events but not all events 
• Example from diagram: p1 → q3 but p3 and q3 are not related 
• Clocks are not unique (can choose any set of integers with appropriate relations) 

• If A → B and B → C then A → C; interpret A → B as “A can causally effect B”

Ci⟨A⟩ Pi

C⟨B⟩ Cj⟨B⟩ Pj

C⟨A⟩ C⟨B⟩
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Basic channel model: FIFO queue (messages delivered in order sent) 

Safety properties 
• Basic invariant: messages in a channel are delivered in the order the were sent 
• Sequence interpretation: let c.sent and c.received be the sequence of messages sent 

and received (respectively) on a channel 
• Property 1: c.received is an initial prefix of c.sent 

• Property 2: Messages are never lost: 

• Example: c.sent = [10, 20, 30, 40] and c.received = [10, 20] 

Liveness 
• All messages eventually get sent: 

Comments 
• Message-passing systems versus shared variables: once a message is sent, it 

cannot be deleted 
• Channel model assumes TCP-like protocol; UDP is also possible (how?)

UNITY Channel Modeling (and Properties)
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invariant ( )c.received ⊑ c.sent

symbol for initial prefix

stable ( )sequence ⊑ c.sent

(sequence ⊑ c.sent) ⇝ (sequence ⊑ c.received)

https://en.wikipedia.org/wiki/File:Mm1_queue.svg



Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Logical Clocks
Basic idea: “synchronize” clocks between processes 
• Make use of the fact that a message arrives after it was sent 

• Attach local clock to each message => get information about other processes 

Space-time diagram (= “timeline”) 
• Graph must be acyclic (why: _________) 

Logical clocks 
• Increment local clock on each action 

(including send and receive) 
• Timestamp each message with the local 

clock time of the sender 
• Receiver ensures its local clock is greater 

than the timestamp of any received msg 

Properties 
• If  A → B then clock(A) < clock (B) 
• If A and B are not causally related, then 

clocks cannot be compared
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Algorithm for Implementing Logical Clock
Program running on each agent 

Invariant:
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sequential execution

program for agent j (instantiate for all agents)

treat “send” as new event

treat “rcv” as new  
event

add message to queue

remove message 
from queue



Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Vector Clocks
Goal: try to find a protocol such that  
• Do this by creating a partial order: won’t be possible to order every pair of events 

Basic idea: each process keeps track of the last time it heard from other processes 
• Each clock maintains vector of timestamps for each process in the system 

• Increment local timestamp 
for every event (including 
send and receive) 

• Local update: just update 
local (logical) clock 

• Received message:  
take max between local 
clock and timestamp; 
update local clock entry 

Properties of vector clocks 
• Can define partial order within each process

time(A) < time(B) ⟹ A → B
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vtime.m = [6, 2, 9, 3]

vclock.3

vclock.2

time for each process

Note: P1 and P4 not shown



Richard M. Murray, Caltech CDSCS/IDS 142, 21 Oct 2019

Algorithm for Implementing a Vector Clock
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element-wise max

vclock.i.j = (vclock[i])[j] = jth entry of ith processes vector clock
vclock.i = vclock[i]= ith processes vector clock
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Vector Clock Example (from Sivilotti)

Invariant: the following sets of properties are always true
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local clock for process is always  
bigger than remote estimates of clock

mj = message from jth process 
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Summary: Time, Clocks, and Synchronization
Channel model: FIFO, lossless, directed 
Events, system timelines and logical time 
• Can’t assume process clocks agree 

• Make use of “logical time” 

Algorithm for setting logical time 

Properties 

Vector clocks: 
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vtime

Wed: gossip algorithms 


