
CS 142: Lecture 3.2 
Reasoning about Programs: Examples 

Richard M. Murray 
16 October 2019 

Goals: 

¥Walk through some examples small programs and prove correctness 

¥Example 1: FindMax (from Sivilotti) 

¥Example 2: AverageConsensus 

¥Example 3 (if time): RoboFlag Drill 

Reading:  

¥P. Sivilotti, Introduction to Distributed Algorithms, Chapter 4 

¥(Optional) E. Klavins, ÒA computation and control language for multi-
vehicle systems,Ó Proceedings of the 48th IEEE Conference on Decision 
and Control, pp. 4133Ð4139, 2003. DOI 10.1109/CDC.2003.1271797
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Example: FindMax

Structure of the proof 

• Fixed point: identify the conditions under which the algorithm terminates 

-   

• Invariant: set of constraints on the behavior of the program 

-   

- Combined with FP, this means that if we terminate at FP then r = M 

• Metric: upper or lower bounded function used to track progress 

- metric: r (current maximum) 

- Never decreases and must increase at some point if r < M
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Specification 

• Safety: stable (r = M) 

• Progress: true  !  (r = M) 
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FindMax Proof Outline

Safety : stable(r = M) (once we reach the fixed point we will stay there => terminate) 

• Same idea as earliest meeting time property shown in Homework #2 

Progress : true !  (r = M) 

• Use restricted form of induction theorem (Sivilotti, Section 3.5) 

• For FindMax, we take P = true, L = r, Q = {r = M} [note: changed M to L] 

• Need to show  
(1) for any action, the value!

or r does not get smaller 
(2) we cannot stay at r = m!

forever (eg, transient (r=m)) 

• r = m next  r ! m !  r = M is true for!
all actions (by defÕn of max) => !
just need to show transient  property

3

Use metric w/
upper bound

!L L

L

L



Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

Task: show that transient(r = k) 

• Problem: this is only true for as long as r < M 

Instead: show that r = k is transient as long as r < M

FindMax Proof: r < M is transient

4

{  predicate calculus  }

Let m be index such that A[m] = M

with m selected so that A[m] = M

since max(r,M)>k => max(r,M) !=k

OR true
from deÞnition of max

  M  

  M  

  M  

 M 
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FindMax Proof: Showing Termination

Because we changed the transient property, canÕt directly  use Theorem 11 

• Need to prove a variant that fits our situation 

• (Good example of how the proof of Theorems 10-12 in Sivilotti can be carried out) 

Show that true !  (r = M)
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¥ Proved earlier than stable(r ! k)
¥ r = k "  r canÕt get smaller

¥ r " k eventually "  r must 
eventually become > k
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Example #2: Average Consensus

Structure of the proof 

• Fixed point: identify the conditions under which the algorithm terminates 

-  FP = {xi = xj for all pairs i, j} 
- Note that the fixed point doesn’t say we reach the average 

• Invariants: set of constraints on the behavior of the program 

- Claim: invariant (avg x) AND invariant (var x) 

- Avg A invariant "  if we reach the fixed point, then we must have xi = average(x) 

• Metric: upper or lower bounded function used to track progress 

- Metric: variance = " i (xi - A)2  [A = average of values] 

- Lower bounded by zero "  if we can show it always decreases, we will be done 

• Final result: show the for any #, each xi will eventually be within # of the mean
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Program AverageConsensus
constant N { number of agents}

G {interconnection graph}
0 < ! < 1 { averaging factor}

var x : array of N numbers
assign

!
! i, j : (i, j ) ! G : xi := ! xi + (1 " ! )xj

# xj := ! xj + (1 " ! )xi )
"
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Proof Obligations for AverageConsensus
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1. If variance is non-zero then it decreases: " K > 0 : V = K !  V < K 

• This is stronger than invariance of K since it says that the variance will get smaller 
• DoesnÕt bound how fast the decrease will occur => we may never terminate 

2. Variance decreases by geometric factor !: " K > 0 : V = K !  V < β K 

• Since V decreases by geometric factor, can show (eventually) have V arbitrarily small 

3. Final result - variance can be made arbitrarily small: true !  V < ε

Program AverageConsensus
constant N { number of agents}

G {interconnection graph}
0 < ! < 1 { averaging factor}

var x : array of N numbers
assign

!
! i, j : (i, j ) ! G : xi := ! xi + (1 " ! )xj

# xj := ! xj + (1 " ! )xi )
"

_____

_____

_____

V = K !  V < K                
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Proof Obligations for AverageConsensus

2. Variance decreases by geometric factor !: " K > 0 : V = K !  V < β K 

• Claim: # j such that                                   {if not, then canÕt have V = K) 

• Assume xj > A and find some k such that xk < A (must exist since A = average) 

• Now sort all of the variables in decreasing order 

• Claim: there exists adjacent indices u, v such that xu - xv ! ( xj-xk)/N 

- Worst case is that all numbers between xj and xk are evenly spaced ⇒ (xj-xk)/N 

• For these indices we have that 

• Next: show that replacing any pair by average reduces variance by factor of  

• Represent out list in decreasing order, calling out xu and xv 

• Claim: V = K !  V < β K 

- If we switch any pairs with indices i, j $ u or i, j ! v then bounds remain unchanged 

- If we switch u, v or any pairs ÒoutsideÓ u, v then we get reduction by at least β
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(xj ! A)2 "
!

K/N

xi1 � xi2 � · · · � xj � · · · � xk � · · · � xin

xi1 � xi2 � · · · � xu � xv � xin�1 · · · � xin

! = 1 /N 3

(xu ! xv ) "
xj ! xk

N
=# (xu ! xv )2 "

(xj ! xk )2

N 2 "
K
N 3 =

V
N 3
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Proof Obligations for AverageConsensus

1. If variance is non-zero then it decreases: " K > 0 : V = K !  V < K 

• This is stronger than invariance of K since it says that the variance will get smaller 
• DoesnÕt bound how fast the decrease will occur => we may never terminate 

2. Variance decreases by geometric factor !: " K > 0 : V = K !  V < β K 

• Since V decreases by geometric factor, can show (eventually) have V arbitrarily small 

3. Final result - variance can be made arbitrarily small: true !  V < ε 

• From (2), we have that V = K !  V < β K !  V < β2 K !  V < β3 K … 

• Choose m such that βm < ε ⇒ after m ÒiterationsÓ (of leads-to) we will achieve bound 

Going back to the overall structure of the proof 

• Fixed point: FP = {x[i] = x[j] for all pairs i, j} 

• Invariants: average and variance  

- Avg invariant => if we reach the fixed point, then we must have x[i] = average(x) 

• Metric: variance = \sum_i {(x[i] - M)^2} 

- Lower bounded by zero => if we can show it always decreases, we will be done 

• Final result: show the for any #, each x[i] will eventually be within # of the mean
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RoboFlag Drill

r(i, j) = 1 if defender i 
cannot reach incoming 
robot i in time to 
intercept

Will switching increase 
the number of incoming 
robots we can intercept?
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Safety (Defenders do not collide) [invariant] 

Stability (switch predicate stays false) [fixed point] 

Progress (we eventually reach a fixed point) [metric]  

• Let % be the number of blue robots that are too far away to reach their red robots 

• Let & be the total number of conflicts in the current assignment 

• Define the metric that captures ÒenergyÓ of current state (V = 0 is desired) 

• V implements lexicographic ordering: (ρ1, β1) > (ρ2, β2) if ρ1 > ρ2 or ρ1=ρ2 $ β1 > β2 

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.
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V =
!"

n
2

#
+ 1

$
! + " ! =

n!

i =1

n!

j = i +1

" (i, j ) where " (i, j ) =

"
1 if x! ( i ) > x ! ( j )

0 otherwise
! =

n!

i =1

r (i, i )

next Âswitchi,i +1

zi < z i +1 next zi < z i +1

next  V < m 
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Summary: Reasoning about Programs

Key elements of a specification 

• Safety: properties that should always be true 

• Progress: properties that should eventually be true 

Key elements of a proof 

• Fixed points: points at which the computation terminates 

• Invariants: properties preserved during execution 

• Metric: bounded function used to measure progress 

WhatÕs next: 

• Move from non-deterministic computation (UNITY)!
to distributed computation (still UNITY, but w/ messages) 
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