
CS 142: Lecture 3.2
Reasoning about Programs: Examples

Richard M. Murray
16 October 2019

Goals:

¥Walk through some examples small programs and prove correctness

¥Example 1: FindMax (from Sivilotti)

¥Example 2: AverageConsensus

¥Example 3 (if time): RoboFlag Drill

Reading:

¥P. Sivilotti, Introduction to Distributed Algorithms, Chapter 4

¥(Optional) E. Klavins, ÒA computation and control language for multi-
vehicle systems,Ó Proceedings of the 48th IEEE Conference on Decision
and Control, pp. 4133Ð4139, 2003. DOI 10.1109/CDC.2003.1271797

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

Example: FindMax

Structure of the proof

• Fixed point: identify the conditions under which the algorithm terminates

-

• Invariant: set of constraints on the behavior of the program

-

- Combined with FP, this means that if we terminate at FP then r = M

• Metric: upper or lower bounded function used to track progress

- metric: r (current maximum)

- Never decreases and must increase at some point if r < M

2

Specification

• Safety: stable (r = M)

• Progress: true ! (r = M)

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

FindMax Proof Outline

Safety : stable(r = M) (once we reach the fixed point we will stay there => terminate)

• Same idea as earliest meeting time property shown in Homework #2

Progress : true ! (r = M)

• Use restricted form of induction theorem (Sivilotti, Section 3.5)

• For FindMax, we take P = true, L = r, Q = {r = M} [note: changed M to L]

• Need to show
(1) for any action, the value!

or r does not get smaller
(2) we cannot stay at r = m!

forever (eg, transient (r=m))

• r = m next r ! m ! r = M is true for!
all actions (by defÕn of max) => !
just need to show transient property

3

Use metric w/
upper bound

!L L

L

L

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

Task: show that transient(r = k)

• Problem: this is only true for as long as r < M

Instead: show that r = k is transient as long as r < M

FindMax Proof: r < M is transient

4

{ predicate calculus }

Let m be index such that A[m] = M

with m selected so that A[m] = M

since max(r,M)>k => max(r,M) !=k

OR true
from deÞnition of max

 M

 M

 M

 M

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

FindMax Proof: Showing Termination

Because we changed the transient property, canÕt directly use Theorem 11

• Need to prove a variant that fits our situation

• (Good example of how the proof of Theorems 10-12 in Sivilotti can be carried out)

Show that true ! (r = M)

5

¥ Proved earlier than stable(r ! k)
¥ r = k " r canÕt get smaller

¥ r " k eventually " r must
eventually become > k

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

Example #2: Average Consensus

Structure of the proof

• Fixed point: identify the conditions under which the algorithm terminates

- FP = {xi = xj for all pairs i, j}
- Note that the fixed point doesn’t say we reach the average

• Invariants: set of constraints on the behavior of the program

- Claim: invariant (avg x) AND invariant (var x)

- Avg A invariant " if we reach the fixed point, then we must have xi = average(x)

• Metric: upper or lower bounded function used to track progress

- Metric: variance = " i (xi - A)2 [A = average of values]

- Lower bounded by zero " if we can show it always decreases, we will be done

• Final result: show the for any #, each xi will eventually be within # of the mean

6

Program AverageConsensus
constant N { number of agents}

G {interconnection graph}
0 < ! < 1 { averaging factor}

var x : array of N numbers
assign

!
! i, j : (i, j) ! G : xi := ! xi + (1 " !)xj

xj := ! xj + (1 " !)xi)
"

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

Proof Obligations for AverageConsensus

7

1. If variance is non-zero then it decreases: " K > 0 : V = K ! V < K

• This is stronger than invariance of K since it says that the variance will get smaller
• DoesnÕt bound how fast the decrease will occur => we may never terminate

2. Variance decreases by geometric factor !: " K > 0 : V = K ! V < β K

• Since V decreases by geometric factor, can show (eventually) have V arbitrarily small

3. Final result - variance can be made arbitrarily small: true ! V < ε

Program AverageConsensus
constant N { number of agents}

G {interconnection graph}
0 < ! < 1 { averaging factor}

var x : array of N numbers
assign

!
! i, j : (i, j) ! G : xi := ! xi + (1 " !)xj

xj := ! xj + (1 " !)xi)
"

V = K ! V < K

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

Proof Obligations for AverageConsensus

2. Variance decreases by geometric factor !: " K > 0 : V = K ! V < β K

• Claim: # j such that {if not, then canÕt have V = K)

• Assume xj > A and find some k such that xk < A (must exist since A = average)

• Now sort all of the variables in decreasing order

• Claim: there exists adjacent indices u, v such that xu - xv ! (xj-xk)/N

- Worst case is that all numbers between xj and xk are evenly spaced ⇒ (xj-xk)/N

• For these indices we have that

• Next: show that replacing any pair by average reduces variance by factor of

• Represent out list in decreasing order, calling out xu and xv

• Claim: V = K ! V < β K

- If we switch any pairs with indices i, j $ u or i, j ! v then bounds remain unchanged

- If we switch u, v or any pairs ÒoutsideÓ u, v then we get reduction by at least β

8

(xj ! A)2 "
!

K/N

xi1 � xi2 � · · · � xj � · · · � xk � · · · � xin

xi1 � xi2 � · · · � xu � xv � xin�1 · · · � xin

! = 1 /N 3

(xu ! xv) "
xj ! xk

N
=# (xu ! xv)2 "

(xj ! xk)2

N 2 "
K
N 3 =

V
N 3

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019

Proof Obligations for AverageConsensus

1. If variance is non-zero then it decreases: " K > 0 : V = K ! V < K

• This is stronger than invariance of K since it says that the variance will get smaller
• DoesnÕt bound how fast the decrease will occur => we may never terminate

2. Variance decreases by geometric factor !: " K > 0 : V = K ! V < β K

• Since V decreases by geometric factor, can show (eventually) have V arbitrarily small

3. Final result - variance can be made arbitrarily small: true ! V < ε

• From (2), we have that V = K ! V < β K ! V < β2 K ! V < β3 K …

• Choose m such that βm < ε ⇒ after m ÒiterationsÓ (of leads-to) we will achieve bound

Going back to the overall structure of the proof

• Fixed point: FP = {x[i] = x[j] for all pairs i, j}

• Invariants: average and variance

- Avg invariant => if we reach the fixed point, then we must have x[i] = average(x)

• Metric: variance = \sum_i {(x[i] - M)^2}

- Lower bounded by zero => if we can show it always decreases, we will be done

• Final result: show the for any #, each x[i] will eventually be within # of the mean

9

Richard M. Murray, Caltech CDSEECI, Mar 09

RoboFlag Drill

r(i, j) = 1 if defender i
cannot reach incoming
robot i in time to
intercept

Will switching increase
the number of incoming
robots we can intercept?

Richard M. Murray, Caltech CDSEECI, Mar 2011

Safety (Defenders do not collide) [invariant]

Stability (switch predicate stays false) [fixed point]

Progress (we eventually reach a fixed point) [metric]

• Let % be the number of blue robots that are too far away to reach their red robots

• Let & be the total number of conflicts in the current assignment

• Define the metric that captures ÒenergyÓ of current state (V = 0 is desired)

• V implements lexicographic ordering: (ρ1, β1) > (ρ2, β2) if ρ1 > ρ2 or ρ1=ρ2 $ β1 > β2

• Can show that V always decreases whenever a switch occurs

Properties for RoboFlag program

Robots are "far enough" apart.

11

V =
!"

n
2

#
+ 1

$
! + " ! =

n!

i =1

n!

j = i +1

" (i, j) where " (i, j) =

"
1 if x! (i) > x ! (j)

0 otherwise
! =

n!

i =1

r (i, i)

next Âswitchi,i +1

zi < z i +1 next zi < z i +1

next V < m

Richard M. Murray, Caltech CDSCS/IDS 142, 16 Oct 2019 12

Summary: Reasoning about Programs

Key elements of a specification

• Safety: properties that should always be true

• Progress: properties that should eventually be true

Key elements of a proof

• Fixed points: points at which the computation terminates

• Invariants: properties preserved during execution

• Metric: bounded function used to measure progress

WhatÕs next:

• Move from non-deterministic computation (UNITY)!
to distributed computation (still UNITY, but w/ messages)

0

2

3
1

4 Agent

M3

M2

M1

Channel

message

