CS/IDS 142: Lecture 2.2 Ams
Safety Properties

Richard M. Murray
9 October 2019

Goals:
* Define safety properties, program invariants
 New properties: next, stable, invariant

Reading:
e P. Sivilotti, Introduction to Distributed Algorithms, Section 3.3

The ‘Stable’ Property

Definition: stable(P)
® |[nformal: once P becomes true, it remains true
e Formally: stable(P) = P next P

® Note: stable(P) does not mean that P is true
for all (or even any) program executions

When do we use stable in a proof?
® Termination: stable({p})
e Often combined with progress (Wed + W3)

- Show that if we satisfy some conditions
then we eventually get to a good set of
states (and stay there)

Some useful results (will prove on the homework) stable
e stable(P) A stable(Q)) = stable(P A Q)

- Interpretation: if P is stable and Q is stable, then at the
point that both of them are true, they will both remain true

e stable(P) A stable()) = stable(P V Q)
- Note: not true that
stable(P) V stable()) = stable(P V Q) ot stable

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS 2

Which of the following formulas are true?

There can be an edge

stable(P) A (P C Q) — stable(Q) <«—— from a vertex which is in Q
and not in P to a vertex

outside Q
stable(P) A (Q C P) — stable(Q)

VP : stable(reachable(P))

(P C Q) A stable(QQ) = reachable(P) C @ P

_ Q

Reachable(P) is the smallest stable set that includes P
® Reachable(P) = set of points that we can reach from states that satisfy predicate P
e Proof sketch (exercise: turn into a formal proof = sequence of implications/equivals)
- Let O =reachable(P). Clear that P C () and stable(Q)
- Suppose Q' is a smaller set (' C Q) with P C Q' and stable(Q’)
- Q' C Q Nstable(QQ) = Q = reachable(P) C @’ Q=0
e Algorithm for finding reachable(P): start with P add neighbors until you stop growing

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS

Examples: Properties for Average Consensus

Program AverageConsensus

constant N {number of agents}
G {interconnection graph}
var x : array of N numbers
assign
(02,5 : j € Nz zli] == azfi] + (1 — a)z[j]
| alj] = awlf] + (1 - a)afi])

What are some stable properties for this program? [assume a = 1/2]
o stable(z; < 2V)?

If time, add proof of the last property
e stable(z; +z; < 29 + LE‘?) ? here?

e stable(z; < maxz)) ?

o stable((+i:0<i< N —-1:2;)<(+i:0<i<N-—1:127))?

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS

The ‘Invariant’ Property

A predicate P is invariant if it is always true
invariant(P) = initially(P) A stable(P)
e Invariants are a critical part of proofs; establish the
key properties that a problem always satisfies

® [nvariants are not unique; a program can have
many invariants

Some examples of useful invariants
® Amount of memory required is less than M
® \alues of a variable (eg, address register) is in a given range

Proving properties about invariants comes down to evaluating Hoare triples

initially(P) A (Va:a € G: {P}a{P})
Example:
® For average consensus,

invariant((+i:0§i§N—1::B,L-):(—i—i:OgigN—l:a;?))

Reachability and invariants
e Recall that reachable(P) is the smallest stable set of vertices that includes P. Hence:

invariant (reachable(init)) invariant(/) = reachable(init) C [

CS/IDS 142,9 Oct 2017 Richard M. Murray, Caltech CDS

Which of the following formulas are true?

invariant(P) A (P C @) = invariant(Q) Transition from Q
to NOT Q

invariant(P) A invariant(Q)
-

invariant(P ﬂ Q)

invariant(P) V invariant(Q)
-

invariant(P U Q)

CS/IDS 142,9 Oct 2017 Richard M. Murray, Caltech CDS

Example: FindMax

Let M = (Maxz : 0<z < N : Alz]). Prove that r <M is an invariant

1. initially.(r < M)

Program FindMax
r = A[0] var A :array 0..N —1 of int,
= { Al0j<M } T :int
r<M initially r = A[0]
assign
2. stable.(r < M) (J]z:0<z<N-1: r:=max(r,Alz]))

stable.(r < M)

(r< M) next (r <M)

(Va:: {r<M} a {r<M})
{ definition of program }
(Vz: 0<z <N : {r<M} r:=mazx(r,Alz]) {r<M})
{ assignment axiom }
(Vz: 0<z <N : r<M= max(r, A[x]) <M)
L X =max(x,y) j
(Vz: 0<z<N:7r<M = r<M)
{ predicate calculus }
true

CS/IDS 142,9 Oct 2017 Richard M. Murray, Caltech CDS

Example: RoboFlag Drill

1y \ I I
7 A
roy v I
n ") !
711 \ I
11 ! '\
\ 1\
1 1 {
\) Iy

Defensive Zone

EECI, Mar 09

Red (1)
Initial | x; € [a,b] Ay; > ¢
Commands | y; >d @ y, =y; — ¢
y; <0 & x) €la,bl Ny, > c
Prea(n) = +i- Red(1)
Blue(7)
Initial | z; € [a,b] A z; < zj11
Commands | 2; < Ta) A2 < Zig1 —0 @ 2, = 2 +0
2 > Ty N2i > 2zi—1+0 1 2z =2 — 0
Ppiye(n) =+ Blue(7)

Richard M. Murray, Caltech CDS

RoboFlag Control Protocol

Defensive Zone

v
a(j) is too far down v
\Y/ . ‘ for i|‘ro get \\\
o 1T Yo (5) < |%; — Ta(j)
r(i,J) { 0 otherwise)
o
l

switch(i,j) = r(i,7) +7r(7,1) <r(i, i)+,)
Vo (r(49) +7(,1) = (i 8) +7(5,7)
NTa(i) > Ta(j)
Proto(i)
Tnitial | i £ j = a(i) £ a(j)
Commands | switch(i,i+1) : a(i) = a(i+ 1)
a(i+1) = ali)

Pproto(n) =+ 1P7°0t0()

’l,_

EECI, Mar 09

Richard M. Murray, Caltech CDS

\
LV
\ -
,

-
\

o
j

Properties for RoboFlag program

Safety (Defenders do not collide) Y

z; < ziy1 next z; < 241 Yy
Stability (switch predicate stays false)
Vi.y; > 20 N2+ 20 < zj41 A _'SwitChi7i+1 next —switch; ;41 Ak

— _J / p
~—

Robots are "far enough" apart.

Defensive Zone

Progress (we eventually reach a fixed point)] .
e et p be the number of blue robots that are too far away to reach their red robots
® | et 3 be the total number of conflicts in the current assignment
® Define the metric that captures “energy” of current state (V = 0 is desired)

y Y if , .

i—1 i=1 j—it1 0 otherwise
e Can show that V always decreases whenever a switch occurs

Vi.zi +20m < z;gq Adj . swilch; ;41 AV = m next V<m

Next week

EECI, Mar 201 | Richard M. Murray, Caltech CDS 10

What Goes Wrong: ZA002, Nov 2010

Official Word from Boeing: ZA002 787 Dreamliner fire and smoke details

By David Parker Brown, on November 10th, 2010 at 3:46 pm

For the last day there are been bits and
pieces of information coming from Boeing,
inside sources and different media outlets on
ZA002's sudden landing due to reported
smoke in the cabin. Boeing has just released
an official statement putting some of the
rumors to rest and explaining what they
know of ZA002's recent emergency landing
in Laredo, TX.

Boeing confirms that ZA002 did lose primary
electrical power that was related to an on
board electrical fire. Due to the loss, the
Ram Air Turbine (RAT), which provides back
up power (phofo of RAT from ZA003) was
deployed and £llowed the flight crew to land

replaced. They are checking the surrounding areas for any additional damages. At thi
still being investigated and might take a few days until we have more answers.

~

\\\\
\

\\\\\\

\ .\\\\\\

Ram Air Turbine
(RAT) deployed and
allows safe landing

IFAC World Congress 2014 Richard M. Murray, Caltech CDS

Loss of primary
electrical power =>

cockpit goes “dark”

Hoare triple: {P} a {Q}

CS 142,2 Oct 2017

Summary: Reasoning About Programs

P next Q stable(P)

Richard M. Murray, Caltech CDS

Defensive Zone

a

Initial tools for reasoning about program properties

e UNITY approach: assume that any (enabled)
command can be run at any time

e Hoare triple: show that all (enabled) actions satisfying
a predicate P will imply a predicate Q

e “Lift” Hoare triple to define next:
(Va:a€eG: {P} a {Q})
e Stability: stable(P) = P next P
® |nvariants: invariant(P) = initially(P) A stable(P)

