CS/IDS 142: Lecture 2.1
Reasoning About Programs

Richard M. Murray
7 October 2019

Goals:
* Introduce the concept of proving correctness of programs
* New concepts: Hoare triples, assignment axiom, stable operator

Reading:
e P. Sivilotti, Introduction to Distributed Algorithms, Section 3.1-3.3

Last Week: Models of Computation

UNITY model provides (seemingly) simple description of programs
® Program = variables + actions [assignments] (that’s it!)
e Guarded assignment (g — a) allows modeling of finite state automata
® Distributed programs captured by nondeterministic execution model
® Termination = reaching a fixed point (variables remain constant)

Next: how to we prove that specifications are satisfied?
® A1: exhaustive testing [works for simple systems]
e A2: model checking [for specific instantiation]
e A3: formal proof [often generalizable]

-

Fri: how to prove things using predicate calculus
and quantification (review + some new stuff)

This week: reasoning about program behavior
and safety properties (invariants)

ALE r

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS

Examples to Consider

FindAverage (average consensus) c .
onsensus 1S

® Given a set of N sensors on a graph, x,(n) reached when:
would like to agree on the value of ‘ 1< .
xi(n)zﬁz x,;(0), Vi

the average measurements =

e Example: agree that it is too cold
and warm up the room

¢ Q1: what protocol should we implement
to solve this problem?

® Q2:is it always possible to agree?

n: Time index
N: number of
nodes

ChooseDefenders g
® Given a set of initial assignments in the “RoboFlag drill”, 6

10 a

communicate with left and right neighbors and switch -
assignments such that we end up with no “crossed” assignments , , 1

® Q1: What are the properties we want to guarantee?
- Termination: program terminates (variables remain constant) :
- Correctness: only fixed points are the desired ones

® Q2: What could go wrong? 2
- Deadlock: get stuck in a state (= undesired fixed point) JFEEL LEE L

3

- Livelock: never terminate (eg, assignments “oscillate”) e

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS 3

Example: Average Consensus

Problem setup
® Variables: local estimate of average, initialized to local measurement
® Assignments: two agents communicate and share information

Program AverageConsensus
constant N {number of agents}
G {interconnection graph}
a:0<a<l
var x : array of N numbers
assign / neighbors of

(02,5 : j € N;:zli] == azfi] + (1 — a)z[j]
| z[j] == az[j] + (1 — a)z[i]))

Specification
e Show that we converge to a consensus (everyone agrees on average value)
® |n practice, usually good enough to show that we get close within finite time

Why do we need a “proof”’?
e \Want to understand conditions under which this is not true (eg, directed graphs)
® Can extend to understand more interesting cases (eg, what happens if someone lies)

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS

Properties of Programs

Notation: property(P) or property(P, Q) or P property Q
® A property operates on a set of states that satisfy a formula (predicate) P (and/or Q)

e The property is true if it holds for all possible executlons
Reasoning about properties using graphs

® Formulas define subsets of the state space e

e Can reason about whether a properties holds

by looking at how the transitions map to the
(sets of states representing) properties

Reasoning about properties using formulas
stable.(r < M)

(r <M) next (r <M)

(Va :: {r<M} a {r<M})
{ definition of program }

(Ve : 0<z< N : {r<M} r:=mazx(r,Alz]) {r<M}) Example properties
= { assignment axiom } transient(P)
(Ve : 0<z <N :)
stable(Q)
Can also combine representations (P next Q)

(P C Q) Astable(QQ) = reachable(P) C @

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS 5

Reasoning About Actions

How are we going to prove things?
e A: show that sets of properties hold for all executions

Two main parts of a proof: safety and liveness (or progress)
e Safety: show that bad things don’t (ever) happen.
e Liveness: show that good things eventually do happen

® Roughly: can show that all specifications break down into
safety and liveness

Notation: Hoare triple - {P} a {Q}
® P = precondition (predicate), a = program action, Q =
postcondition (predicate)
® |nterpretation: the triple evaluates to true if for any program

state in which P holds, if we take the action a then Q will hold
after the action is executed

Assignment axiom: {P} x := E {Q}
® |n what state must we being execution in order for Q to hold
after executing x := E?

e \Written another way: find those states for which [P — Q%]

/
predicate Q with x replaced by E

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS 6

Reasoning About Guarded Actions

Hoare triple with a guarded action: {P} g —» x:=E {Q}
® \What we need to show depends on whether the guard is true or false
® g = true: same as assignment
e g = false: need Q to be satisfied

(PANg= Q) AN(PA-g= Q)

Example {:c>y=7} x>y — T,Y =Y,T {LE>3}

predicate Q with x replaced by E

(x>y=TNz>y = y>3) A (z>y=7AN ~(z>y) = = >3)
&= { antecedent strengthening of = : [(X = Z) = (X AY = 2Z)] }
(y=7=>y>3) AN (z>y=7AN-(x>y) = z>3)

= { 7>3 }

z>y=7ANz>y)= >3 Recal: z>y=7 = z>yAy=717
= { definition of — }

r>y=7ANz<yl=> >3 r>YyNy=7TNx>y = y>3
< - (y=7N(@x>y) = (y>3)

c>yYyNzxc<y = >3
X Y Z

false = z > 3
{ property of = : [false = X = true| }
true

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS

CS/IDS142,7 Oct 2017

The Next Relation: P next Q

Use to reason about properties of a program G as it executes
PnextQ = (Va:aeG: {P} a {Q})
e P and Q are predicates on states

e next is a binary relation between predicates @Cv
P next Q in terms of graphs means that P

® (1) for all edges (u, v) in a graph, if uisin Pthen visin Q,
® (2) furthermore for all uin P, u is also in Q (why:)

Some useful properties of next (prove in HW #2)

(Pnext Q) A (QC Q) = (PnextQ) Note: [P — Q]

/ , and P C @ capture
(Pnext @) A (PPCP) = (P nextQ) same concept

RoboFlag Drill examples (z = defender pos’n, y = attacker height)
e Defenders never collide

z; < ziy1 next z; < 241
e |f attackers are far enough away, we won’t switch back and forth

Vi.y; > 20 Nz + 20 < 2,41 A —switch; ;41 next —switch; i1

Richard M. Murray, Caltech CDS

0

\ 1
\/ \] 1 1
C e { \ 1 1
A} \
/ 1

Q

Defensive Zone

a

Stable

Definition: stable(P)
® |[nformal: once P becomes true, it remains true
e Formally: stable(P) = P next P

® Note: stable(P) does not mean that P is true
for all (or even any) program executions

When do we use stable in a proof?
® Termination: stable({p})
e Often combined with progress (Wed + W3)

- Show that if we satisfy some conditions
then we eventually get to a good set of
states (and stay there)

Some useful results (will prove on the homework) stable
e stable(P) A stable(Q)) = stable(P A Q)

- Interpretation: if P is stable and Q is stable, then at the
point that both of them are true, they will both remain true

e stable(P) A stable()) = stable(P V Q)
- Note: not true that
stable(P) V stable()) = stable(P V Q) ot stable

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS 9

Which of the following formulas are true?

There can be an edge

stable(P) A (P C Q) — stable(Q) <«—— from a vertex which is in Q
and not in P to a vertex

outside Q
stable(P) A (Q C P) — stable(Q)

VP : stable(reachable(P))

(P C Q) A stable(QQ) = reachable(P) C @ P

_ Q

Reachable(P) is the smallest stable set that includes P
® Reachable(P) = set of points that we can reach from states that satisfy predicate P
e Proof sketch (exercise: turn into a formal proof = sequence of implications/equivals)
- Let O =reachable(P). Clear that P C () and stable(Q)
- Suppose Q' is a smaller set (' C Q) with P C Q' and stable(Q’)
- Q' C Q Nstable(QQ) = Q = reachable(P) C @’ Q=0
e Algorithm for finding reachable(P): start with P add neighbors until you stop growing

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS 10

Examples: Properties for Average Consensus

Program AverageConsensus

constant N {number of agents}
G {interconnection graph}
var x : array of N numbers
assign
(02,5 : j € Nz zli] == azfi] + (1 — a)z[j]
| alj] = awlf] + (1 - a)afi])

What are some stable properties for this program? [assume a = 1/2]
o stable(z; < 2V)?

e stable(z; +z; < 29 + LU?) ?

e stable(z; < maxz)) ?

o stable((+i:0<i< N —-1:2;)<(+i:0<i<N-—1:127))?

CS/IDS142,7 Oct 2017 Richard M. Murray, Caltech CDS

Hoare triple:

CS/IDS142,7 Oct 2017

Summary: Reasoning About Programs

P next Q Stable(P) Defensive Zone

Initial tools for reasoning about program properties

e UNITY approach: assume that any (enabled)
command can be run at any time

e Hoare triple: show that all (enabled) actions satisfying
a predicate P will imply a predicate Q

e “Lift” Hoare triple to define next:
Pnext@Q = Ma:a€eG:{P}a{Q})
e Stability: stable(P) = P next P
e \Wed: finish stability and introduce liveness properties

P} a{Q}

Richard M. Murray, Caltech CDS

a b

