

CS/IDS 142: Lecture 10.2 Bitcoin Properties and Analysis

Richard M. Murray 4 December 2019

Goals:

- Describe what is known about correctness of Bitcoin
- Analyze double spent attacks and "orphan races"

Reading:

- Bitcoin: A peer-to-peer electronic cash system, Satoshi Nakamoto. <u>http://bitcoin.org/bitcoin.pdf</u>, 2008.
- A. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, *Bitcoin and Cryptocurrency Technologies*. Princeton University Press, 2017. Chapter 1 (optional) and Chapter 2. <u>http://bitcoinbook.cs.princeton.edu</u>
- [optional] J. Garay and A. Kiayias and N. Leonardos, The Bitcoin Backbone Protocol: Analysis and Applications, Cryptology ePrint Archive, Report 2014/765, <u>https://eprint.iacr.org/2014/765</u> (revised 1 Jul 2019)

Summary: Distributed Ledger and Bitcoin

Mining

Transactions

Sources: Bitcoin.org; Bitcoin Ladder

C. Inton, staff, 09/12/2015

REUTERS

- Bitcoin implements a consensus protocol to agree on valid transactions
- Priority in proposed blockchains is determined by length of proposed blockchain
- Authenticated signatures => no forgery, but can still have "double spend" attacks

CS 142, 27 Nov 2017

Formal Analysis of Distributed Ledger (1 of 2)

No formal analysis of the correctness of the Bitcoin protocol is yet available

- Safety properties are available, but not guarantee of progress
- Most proofs focus on showing the prefix of honest peers is stable

Problem specification (following Garay, Kiayias, Leonardos)

- Safety: All honest peers will have the same prefix for some depth k
- Progress: A conflict-free transaction will eventually be deeply confirmed in the blockchain of an honest peer

Formal definitions and analysis:

- Let C be a blockchain and let C^{rk} be the chain with the last k blocks removed
- Let n = number of players, t = number of traitors, $\mu = t/(n-t)$
- Common-Prefix Property: For any two honest players P1 and P2 adopting chains C1, C2 and round r1 = r2, it holds that C1^{rk} = C2^{rk}
- Chain Quality Property: For any host party P with chain C, it holds that for any *l* consecutive blocks of of C, the ratio of adversarial blocks is at most μ
- Chain Growth Property: For any honest party P with chain C it holds that for any s rounds there are at least τ s blocks added to the chain (τ = chain growth parameter)

Formal Analysis of Distributed Ledger (2 of 2)

Bitcoin backbone protocol

- Read instruction [M1]: return content of chain
- Insert instruction [M2]: extend chain, solve proofof-work, and broadcast extended chain to all
- Validate instruction [M3]: receive newly extended chain and adopt if better than local chain
- Note: miners agree on prefix to chain, but not on latest transactions

Properties of the protocol

- Likelihood that common prefix not present drops exponentially in length of chain
- Exponentially unlikely that adversary contributed to chain as the chain gets longer

Note: all properties are in terms of probabilities...

otocol A1]:hain A2]: A1]: A1]: A2]: A2]: A2 A3 A2 A3 A3A3

Double Spend Attacks

Steps in a double spend attack

- Broadcast actual transaction with merchant that we want to attack
- Broadcast fraudulent transaction or secretly mine branch that builds on latest block w/ conflicting transaction
- Wait until transaction has ben confirmed by the merchant
- If fraudulent transaction is in longest chain before merchant gets enough confirmations ⇒ don't deliver service
- If merchant receives confirmations, extend secretly mined branch until it is longer than public branch
- Broadcast secretly mined branch, and since it has the longest chain, it is accepted

Txv = transaction that seemingly confirms payment for service claimed, but is then invalidated.

Txa = transaction that attacker broadcasts to other peers and is included in blockchain in the end.

Goal: determine likelihood that an attacker can succeed in *k* rounds of blocks

Analyzing Double Spent Attacks (1 of 2)

Modeling a solo miner

- Difficulty D determines the difficulty of finding a valid block
- Hash-rate $h \Rightarrow ht$ hashes in time t
- Binomial distribution in discrete space
- Probability of any hash satisfying PoW condition is small $(\frac{1}{2^{32}D})$
- Approximate with Poisson distribution, $\lambda = \frac{ht}{2^{32}D}$
- Time between consecutive blocks is exponentially distributed (general property of Poisson process)

Defeating Double Spends

- Merchant waits for a few confirmations (about 6) before delivering service §
- Media confirmation time
 = 10 min ⇒ ~60 minutes

Richard M. Murray, Caltech CDS

Analyzing Double Spent Attacks (2 of 2)

Probability that an attacker can catch up

- *p* = probability that an honest node mines a block
- q = probability that the attacker mines a block
- q_z = probability that attackers catches up if he is z blocks behind
- Analysis similar to "Gambler Ruin" problem
 - Exponential drop in probability as the gap increases

Probability of a Double Spend succeeding

- We assumed the honest chain is *z* blocks ahead.
- Expected number of blocks attacker has mined = Poisson distribution with $\lambda = z (q/p)$
- Probability of attacker catching up with k blocks inserted up to time z =
 - probability that attacker inserted k blocks up to time z
 - probability that attacker catches up if he is z-k blocks behind
- Sum over all possible number of blocks that attacker could have inserted

$$\sum_{k=0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} \cdot \begin{cases} (q/p)^{(z-k)} & \text{if } k \le z \\ 1 & \text{if } k > z \end{cases} \longrightarrow 1 - \sum_{k=0}^{z} \frac{\lambda^k e^{-k}}{k!} (1 - (q/p)^{(z-k)}) \end{cases}$$

$$q_z = egin{cases} 1 & p \leq q \ (q/p)^z & p > q \end{cases}$$

Numerical calculations / HW example

10% computing power

- z=0 P=1.0000000
- z=1 P=0.2045873
- z=2 P=0.0509779
- z=3 P=0.0131722
- z=4 P=0.0034552
- z=5 P=0.0009137
- z=6 P=0.0002428
- z=7 P=0.0000647
- z=8 P=0.0000173
- z=9 P=0.0000046
- z=10 P=0.0000012
- Need 5 confirmations to be 99.9% confident

30% computing power

- z=0 P=1.0000000
- z=5 P=0.1773523
- z=10 P=0.0416605
- z=15 P=0.0101008
- z=20 P=0.0024804
- z=25 P=0.0006132
- z=30 P=0.0001522
- z=35 P=0.0000379
- z=40 P=0.0000095
- z=45 P=0.0000024
- z=50 P=0.0000006
- Need 24 confirmations to be 99.9% confident

HW: use a simpler model of attack

- No secret chain, single attack, two broadcasts
- Graph = network topology (=> who gets the message first)
- (a) What is probability of A versus B in chain

"Orphaned" Blocks

How can attackers (or miners) make sure their blocks are included in case of tie

- Orphaned blocks created when two miners produce blocks at similar times
- Alternatively, can also be caused by attacker (eg, via double spend attempt)
- "Orphan" blocks do have parents, but parent not part of longest chain
- If you are a miner/attacker, you want to "win" orphan races as often as possible
- Look at data from what blocks actually get incorporated into Bitcoin blockchain

- Blocks that get relayed to many other nodes are more likely to get included in the chain
- Blocks that arrive quickly at their first relay are more likely be be included in the chain
- Lesson: helps to be in a well-connected, fast part of the network...

https://tradeblock.com/blog/bitcoin-network-capacity-analysis-part-6-data-propagation

Propagation Speed and Orphan Races

• Orphan rate is roughly 1% (1.3 blocks/day)

150

125

100

75

50

25

• As blocks get larger, more latency => need to optimize # of transactions/block

Block size implications

- Longer block sizes may be required as number of transactions increases
- But miners are not incentivized to create large blocks (will lose orphan races)

Summary: Distributed Ledger and Bitcoin

Mining

Transactions

Sources: Bitcoin.org; Bitcoin Ladder

C. Inton, staff, 09/12/2015

Rest of the week:

• Fri: final exam review

REUTERS

CS 142 - Distributed Computing

Instructors: Richard Murray and Mani Chandy

PICK UP HANDOUTS AT LECTURE HALL ENTRANCES

Announcements

- HW #8 is due 6 Dec (Fri) at 5 pm; extensions until 8 Dec (Sun), 5 pm
- Final exam: out on 6 Dec (Fri) at 9 am; due on 13 Dec (Fri) at 5 pm
 - Same format as midterm (open book/notes, 2-3 hrs, take home)
 - Piazza will be frozen on 10 Dec (Tue) at ~6 pm
 - Solutions to HW #8 will be posted by 7 Dec (Tue) at ~6 pm (NLT 8 pm)
- Recitation sections this week and next
 - 2 Dec (Mon), 5-6 pm in 243 ANB
 - 3 Dec (Tue), 5-6 pm in 243 ANB
 - 5 Dec (Thu), 5-6 pm in 243 ANB
- 9 Dec (Sun), 5-6 pm in 106 ANB
- 10 Dec (Mon), 5-6 pm in 243 ANB
- 11 Dec (Tue), 5-6 pm in 243 ANB