Machine Learnt Black Boxes for Physical and Materials Sciences

Kaushik Bhattacharya and Tom Miller

CMS 273, Caltech, 1/11/19
Broad scope of computational molecular/materials sciences

- Solar energy conversion reactions
- Protein folding in cells
- Biological enzyme reactions
- Battery Applications
 - Anode (-)
 - Cathode (+)
 - Electrolyte

Involves black-box calculation of key quantities
- Energy $\mathcal{H}\Psi = E\Psi$
- Conductivity, Stiffness, Reactivity...

High Computational Cost
Studies involve many black-box evaluations, leading to $>10^6$ CPU costs

Data-Driven Strategy
- We will use available data to:
 1. Preserve accuracy
 2. Reduce computational cost
 3. Guide discovery

Dendrite formation at anode surface
- Design of electrolyte materials
Project Opportunities for CMS 273

- Project will explore systems at the classical, quantum, and continuum levels, using:
 - Gaussian Process Regression
 - Deep Neural Nets
 - Active Learning
 - Automated feature selection and refinement

- Want to learn more?
 - Talk to Kaushik or Tom directly or via email.
 - General overview: https://aip.scitation.org/doi/10.1063/1.5043213
 - Recent papers: DOI: 10.1021/acs.jctc.8b00636; arxiv.org/abs/1901.03309