Observation: mussel beds exhibit an abrupt lower boundary

Old paradigm: tides provide a spatial refuge from predation; large mussels are in a "size refuge"

New evidence: predators can take prey at varying rates throughout the intertidal zone; largest predators can take largest prey

Ecological processes involved beg a dynamic model.

$\begin{array}{c} x-h, \\ y+h \end{array}$	$x, \\ y+h$	$x + h, \\ y + h$
$\begin{array}{c} x-h,\\ y\end{array}$	<i>x, y</i>	x+h, y
$\begin{array}{c} x-h, \\ y-h \end{array}$	$x, \\ y-h$	$x+h, \\ y-h$

Observations suggest that rates of recruitment and predation depend on configuration of prey. This suggests a spatially explicit model.