CDS 270-3 Frontiers in control / Science and control theory

Richard Murray, Hideo Mabuchi, and the Caltech community

- The axiomatic spectrum of sciences
- Concepts and methods from control theory
- The role of theory in empirical science
- Future directions in Control and Dynamical Systems

www.cds.caltech.edu/~murray/courses/cds270-3

The axiomatic spectrum of sciences

Mathematics

We invent rules and investigate their logical consequences

Axiomatic, theory-driven

Complexity necessitates

abstraction, empiricism

Computer Science

Physics (mostly)

We "know" the basic rules (discovered them long ago) and want to show exactly how they account for observed phenomena

Chemistry, Astronomy

Cell/structural/molecular biology

Neuroscience, Environmental science

We hope that such complex systems can be understood in their own terms, without need of explicit derivation from basic rules Empirical, experiment-driven

Engineering methodology

- synthesis: building systems from parts
- identification: inferring quantitative models from data
- validation: designing experiments to test models

- empirical science
- multiscale science

The role of theory in empirical science

Traditionally, empirical scientists have used theory to:

- work out the logical consequences of hypotheses
- avoid jumping to conclusions
- design strict tests of a quantitative model
- design experiments that focus on a single hypothesis

We hope that CDS theory can also be used to provide new modes for understanding "why" certain natural complex systems have the structures that they do:

- robustness necessary for life, appears in multiscale picture
- evolvability necessary for adaptability in life, technology

we want this class to consider all these things

Multiscale science

Course philosophy and logistics

- "subject" presentations by science and engineering faculty
- form *interdisciplinary* teams of course participants
- "proposal" presentations at end of term
- theory and modeling discussion sessions?

<u>Proposals</u>: teams consisting of CDS students plus scientists and/or engineers should formulate a research plan for how CDS-type theory can be applied in subject areas covered by the faculty presentations. Specific theorems/methods should be related to specific questions of scientific or engineering interest.