April 25, 2001

Reliability and Robustness
——————

® Languages, Models, and Style

® Reliability
— Models of computation
— Formal methods and analysis

® Robustness

® Rice’s theorem: “Everything interesting about general
programs is uncomputable”

PRL PRL.2 April 25, 2001

Reliability
——————————————————————

® Scheduling

— Problem: Find the earliest time for three people to
meet

— Algorithm: Send email with earliest possible meeting
time, until the choice converges

PRL PRL.3 April 25, 2001

Scheduling

® Pass a note

® Fach time, write
next possible
time on or after
the time on the
note

April 25, 2001

PRL PRL.4

Scheduling model
————— e

® UNITY (Chandy & Misra)
— A program is a set of assignments
— Assignments are evaluated in arbitrary, fair, order

® Three people F, G, H, with schedules 1, g, h
— f, g, h are monotonically increasing
— “idempotent” (f(t) = f(f(t))

Program P>
initiall y t = 0
assign t < f(t)
[t —g(t)
| t — h(t)

end

Does it work?
————— e

® Prove it
® Find the smallest t where t=f(t), t=g(t), t=h(t)
® An invariant: at all times, for any s<t, s is not a possible
meeting time
— Base case: trivial

— Induction step: if f(t)>t, then all times s<f(t) are not
possible meeting times

PRL PRL.6 April 25, 2001

Robustness
—————

® Tweak the program by adding uncertainty

Program P>
lnltlally t=0 Wrong!
assignt — f(t)
|t —g(t)
| t — h(t)
[t—t+1
end

PRL PRL.7 April 25, 2001

A simplified timeline

Operating Systems

Unix
ENIAC Mainframes CTSS _
<\ Windows
MULTICS
_ MacOS
Operations systems (telephones)
1ESS | 30 million
5EESS lines of code

Languages

FORTRAN B C

ASM Algol

1943 1973

PRL PRL.8 April 25, 2001

Current state
A ——————— e

® Very large systems (10s of millions of lines) 108

® Programming languages, applications, operating
systems based on 70s technology

® Highly interconnected, loosely coupled

machines 106

® Physical locality

1969 2000

PRL PRL.9 April 25, 2001

Distributed computing
————————

® Distributed programming is fundamentally different from
serial programming

— Computation is isolated
— Nondeterministic
— Faulty

® What are models of distributed programs?

PRL PRL.10 April 25, 2001

Models
—————————

® A modelis the mathematical concept that determines the
structure and architecture of a system

— UNITY: a system is a collection of assignment
statements

— Simple model; easy to prove safety of a system
— Not compositional

PRL PRL.11 April 25, 2001

Other models
——— e
® CSP: sequential communicating processes
— An assembly language of distributed programs

Message

¢/

Process

PRL PRL.12 April 25, 2001

A better model
S ——————

® Modular “pluggable” components

® Compositionality guaranteed by the model

PRL PRL.13 April 25, 2001

Applications from components
S ————————

® Protocols guarantee virtual
synchrony between
processes

Protocols ® Each component has a set of
properties

® Compositionality guarantees
properties are preserved in
the system

\

Network

PRL PRL.14 April 25, 2001

Processes are automata
A ————————————

® Each process has a state
® A set of actions in reaction to the environment

® Safety properties are invariants of the automaton

® Each property of a system is defined by an automaton

® Virtual synchrony
— All processes act in logical lock-step
— Consistency is guaranteed

— Implementation requires
* FIFO message ordering
* Synchronous fault detection

PRL PRL.15 April 25, 2001

A FIFO automaton
—————————————

FIFO

Actions: SEND(m), RECV(m), for m € M

State: sent € M List, initially empty,
received € M List, initially empty

SEND(m)

Eff: append m to sent

RECV(mM)
Pre: |received| < |sent|
sent| |received| + 1] = m

Eff: append m to received

PRL PRL.16 April 25, 2001

A VIEW automaton
——————————————

EVS_VIEW

State: for each p € PID:
all-viewids, € View Set, initially {vy}
EVS-NEWVIEW,, (V)
Pre: let v’ = current-view, in
v.id > v'.id h
p € v.set h

Vq € v.set.
if pred-view, ,, # 1 then
pred-view, ,, = v’ V pred-view, ,,.set N v'.set = {}
Eff: all-views, = all-views, U {v}

NUPRL

PRL PRL.17 April 25, 2001

Complete virtual synchrony
————— e

EVS = GROUP_FIFO N VIEW N VIEW_MSG
NUPRL

® The mathematics guarantees that the composed system
preserves properties

— Allprocesses observe FIFO message order
— All processes observe the same set of faults

PRL PRL.18 April 25, 2001

Formal automation
e —

| Application | ® Protocols are pluggable
_p P! components
E] " common case © ~70 components, 1000s
L ' p = protocols
N &~ ‘ -
e 'l in order
: i| broadcast
o0e 1| data
= | !

- | small
—.P\Q‘g/P

Network

PRL PRL.19 April 25, 2001

Extensible compilers

Theorem
Prover

PRL PRL.20 April 25, 2001

Problems and paths
——————

® Formal methods provide tools
— models to help understand problems
— compilers to automatically generate code
— guarantees about reliability

® But, the tools are hard to use
— Deep knowledge of logic and semantics

® How do we apply the knowledge?

PRL PRL.21 April 25, 2001

FC: a “functional” C compiler
——————

® C programs are ubiquitous
— But they are poorly understood
— They have weak properties
— Not compositional

® But they are everywhere

® FC: provide a formal foundation for C programs

PRL PRL.22 April 25, 2001

FC
————

® Model: the A-calculus e = vlei(er) | Av.e
— Simple
— Functional
— Safe

® Compiler is formal; it can be extended

(Av.ey) ep — eylex/v]

PRL PRL.23 April 25, 2001

Extensions
e

® Programs are safe
— No program accesses memory that it does not own,
— No program executes code that it does not own
— (Programs may still self-destruct)

® C allows
— arbitrary coercion
— pointer arithmetic

® The critical step in to introduce checking (some of it at run
time)

PRL PRL.24 April 25, 2001

Safety

® No need for the kernel-user
distinction

® OS can be stripped down all
the way to the hardware

® System design is a matter of
choice (and performance)

thin, distributed kernel

PRL PRL.25 April 25, 2001

Distributed systems
——————————s e

® The problem was how to design and use heavily-
connected distributed systems (and maintain reliability)

® Three parts:

— Process mobility: processes should migrate to
resources

— Distributed virtual synchronous operations
— Heterogeneous multi-language environments

PRL PRL.26 Apl’” 25, 2001

Multi-language environments
———————————

Theorem prover
Reasoning
Automation
Optimization

machine code

PRL PRL.27 April 25, 2001

Robustness
————— e

® A definition: the result of a computation should change
only a little if

— the input is changed a little
— the program is changed a little
® Topological definition
— The program should define a continuous function

PRL PRL.28 April 25, 2001

P-Time functions

® A P-time complete problem is feed-forward circuit
evaluation

o }
ST D
})&D D

PRL PRL.29 April 25, 2001

NP-hard functions
—————————

® 3SAT: determine if there is a steady-state of a circuit with
feedback

® There is no reasonable topology in which to define
continuity (unless P=NP)

— NP-hard problems are not robust by definition

PRL PRL.30 April 25, 2001

