
PRL April 25, 2001PRL.1

PRL April 25, 2001PRL.2

Reliability and Robustness

• Languages, Models, and Style

• Reliability
– Models of computation
– Formal methods and analysis

• Robustness

• Rice’s theorem: “Everything interesting about general
programs is uncomputable”

PRL April 25, 2001PRL.3

Reliability

• Scheduling
– Problem: Find the earliest time for three people to

meet
– Algorithm: Send email with earliest possible meeting

time, until the choice converges

PRL April 25, 2001PRL.4

Scheduling

• Pass a note

• Each time, write
next possible
time on or after
the time on the
note

Rice

May 18

PRL April 25, 2001PRL.5

Scheduling model

• UNITY (Chandy & Misra)
– A program is a set of assignments
– Assignments are evaluated in arbitrary, fair, order

• Three people F, G, H, with schedules f, g, h
– f, g, h are monotonically increasing
– “idempotent” (f(t) = f(f(t))

Program P2

initiall y t 0
assign t Ã f t

j t Ã g t

j t Ã h t

end

PRL April 25, 2001PRL.6

Does it work?

• Prove it

• Find the smallest t where t=f(t), t=g(t), t=h(t)

• An invariant: at all times, for any s<t, s is not a possible
meeting time

– Base case: trivial
– Induction step: if f(t)>t, then all times s<f(t) are not

possible meeting times

PRL April 25, 2001PRL.7

Robustness

• Tweak the program by adding uncertainty

Program P2

initially t 0
assign t Ã f t

j t Ã g t

j t Ã h t

j t Ã t 1
end

Wrong!

PRL April 25, 2001PRL.8

A simplified timeline

Operating Systems

1ESS

5ESS

Operations systems (telephones)

Languages

ASM

FORTRAN

Algol

C

19731943

ENIAC Mainframes CTSS

MULTICS

Unix

Windows

MacOS

30 million
lines of code

PRL April 25, 2001PRL.9

108

106

4

1969 2000

Current state

• Very large systems (10s of millions of lines)

• Programming languages, applications, operating
systems based on 70s technology

• Highly interconnected, loosely coupled
machines

• Physical locality

PRL April 25, 2001PRL.10

Distributed computing

• Distributed programming is fundamentally different from
serial programming

– Computation is isolated
– Nondeterministic
– Faulty

• What are models of distributed programs?

PRL April 25, 2001PRL.11

Models

• A model is the mathematical concept that determines the
structure and architecture of a system

– UNITY: a system is a collection of assignment
statements

– Simple model; easy to prove safety of a system
– Not compositional

PRL April 25, 2001PRL.12

Other models

• CSP: sequential communicating processes
– An assembly language of distributed programs

Process

Message

PRL April 25, 2001PRL.13

A better model

• Modular “pluggable” components

• Compositionality guaranteed by the model

PRL April 25, 2001PRL.14

Applications from components

• Protocols guarantee virtual
synchrony between
processes

• Each component has a set of
properties

• Compositionality guarantees
properties are preserved in
the system

REL

FIFO

CAU

TOT

Application

Network

Protocols

PRL April 25, 2001PRL.15

Processes are automata

• Each process has a state

• A set of actions in reaction to the environment

• Safety properties are invariants of the automaton

• Each property of a system is defined by an automaton

• Virtual synchrony
– All processes act in logical lock-step
– Consistency is guaranteed
– Implementation requires

✴ FIFO message ordering
✴ Synchronous fault detection

PRL April 25, 2001PRL.16

A FIFO automaton

fifo

Actions: send m , recv m , form 2M

State: sent 2M List, initially empty,
received 2M List, initially empty

send m

Eff: appendm to sent

recv m

Pre: jreceivedj < jsentj
sent jreceivedj 1 m

Eff: appendm to received

PRL April 25, 2001PRL.17

A VIEW automaton

evs_view

State: for each p 2 PID:
all-viewidsp 2 View Set , initially fvpg

evs-newviewp v

Pre: let v0 current-viewp in

v:id > v0:id h1
p 2 v:set h2
8q 2 v:set: h3

if pred-viewq;v ? then
pred-viewq;v v0

_ pred-viewq;v :set\ v0:set fg

Eff: all-viewsp all-viewsp [fvg
nuprl

PRL April 25, 2001PRL.18

Complete virtual synchrony

• The mathematics guarantees that the composed system
preserves properties

– All processes observe FIFO message order
– All processes observe the same set of faults

EVS ´ group_fifo\ view\ view_msg

nuprl

PRL April 25, 2001PRL.19

Formal automation

• Protocols are pluggable
components

• ~70 components, 1000s
protocols

Application

Network

common case
P =

in order
broadcast
data
small

P

P'

¬P

¬P'

PRL April 25, 2001PRL.20

Extensible compilers

Front-end

Back-end

IR

Theorem
Prover

Source code

Axiomatic semantics
Operational semantics
Type theory semantics
Type theory

Optimized machine code

PRL April 25, 2001PRL.21

Problems and paths

• Formal methods provide tools
– models to help understand problems
– compilers to automatically generate code
– guarantees about reliability

• But, the tools are hard to use
– Deep knowledge of logic and semantics

• How do we apply the knowledge?

PRL April 25, 2001PRL.22

FC: a “functional” C compiler

• C programs are ubiquitous
– But they are poorly understood
– They have weak properties
– Not compositional

• But they are everywhere

• FC: provide a formal foundation for C programs

PRL April 25, 2001PRL.23

FC

• Model: the λ-calculus

– Simple
– Functional
– Safe

• Compiler is formal; it can be extended

e :: v j e1 e2 j ¸v:e

¸v:e1 e2 -! e1 e2=v

PRL April 25, 2001PRL.24

Extensions

• Programs are safe
– No program accesses memory that it does not own,
– No program executes code that it does not own
– (Programs may still self-destruct)

• C allows
– arbitrary coercion
– pointer arithmetic

• The critical step in to introduce checking (some of it at run
time)

PRL April 25, 2001PRL.25

Safety

• No need for the kernel-user
distinction

• OS can be stripped down all
the way to the hardware

• System design is a matter of
choice (and performance)

thin, distributed kernel

Linux kernel

X11vi

PRL April 25, 2001PRL.26

Distributed systems

• The problem was how to design and use heavily-
connected distributed systems (and maintain reliability)

• Three parts:
– Process mobility: processes should migrate to

resources
– Distributed virtual synchronous operations
– Heterogeneous multi-language environments

PRL April 25, 2001PRL.27

Multi-language environments

Python front-endCDS front-end

ML front-end C front-end

IR Generation

Optimizations

Back-ends

Theorem prover
Reasoning
Automation
Optimization

machine code

PRL April 25, 2001PRL.28

Robustness

• A definition: the result of a computation should change
only a little if

– the input is changed a little
– the program is changed a little

• Topological definition
– The program should define a continuous function

PRL April 25, 2001PRL.29

P-Time functions

• A P-time complete problem is feed-forward circuit
evaluation

PRL April 25, 2001PRL.30

NP-hard functions

• 3SAT: determine if there is a steady-state of a circuit with
feedback

• There is no reasonable topology in which to define
continuity (unless P=NP)

– NP-hard problems are not robust by definition

