CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CDS 202 Problem Set #8

R. Murray Winter 2004

Issued: 3 Mar 04 Due: 10 Mar 04

Reading: Boothby, VI.1–2 (except Reimannian mfds portion), VI.4–VI.5

- 1. Let ω be an *n*-form on a compact, orientable, smooth manifold M. Assume that we have two atlases for M, each with an associated partition of unity. Show that $\int_M \omega$ is defined, independent of choice of atlas.
- 2. Let $H^n \subset \mathbb{R}^n$ be an *n*-dimensional half space and let $\phi : W \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth function such that $\phi|_{W \cap H^n} = 0$. Show that $D\phi(x) = 0$ for all $x \in W \cap H^n$.
- 3. [Guillemin and Pollack, page 185, #3] Use the generalized Stokes' theorem to prove the divergence theorem: let W be a compact domain in \mathbb{R}^3 with smooth boundary and let $\vec{F} = (f_1, f_2, f_3)$ be a smooth vector field on W. Then

$$\int_{W} (\operatorname{div} \vec{F}) dx dy dz = \int_{\partial W} (\vec{n} \cdot \vec{F}) dA.$$

(Here \vec{n} is the outward normal to ∂W . See GP for extra hints.)