CALIFORNIA INSTITUTE OF TECHNOLOGY

Control and Dynamical Systems
CDS 202
R. Murray

Problem Set \#5
Issued: 9 Feb 04
Winter 2004
Due: $\quad 17$ Feb 04
Reading: Boothby, IV.7-IV. 8 (Frobenius' Theorem)

1. Consider the following vector fields on \mathbb{R}^{3} :

$$
X(x)=\frac{\partial}{\partial x_{2}}-x_{1} \frac{\partial}{\partial x_{3}} \quad Y(x)=\frac{\partial}{\partial x_{1}} .
$$

Let $x_{0}=(0,0,0)$. Show that $\phi_{h}^{-Y} \circ \phi_{h}^{-X} \circ \phi_{h}^{Y} \circ \phi_{h}^{X}\left(x_{0}\right)=h^{2} \phi^{[X, Y]}\left(x_{0}\right)$.
2. Show that if Δ is a distribution of the form

$$
\Delta=\operatorname{span}\left\{X_{1}, \ldots, X_{d}\right\}
$$

and we have $\left[X_{i}, X_{j}\right] \in \Delta$ for all i, j then for any $X, Y \in \Delta,[X, Y] \in \Delta$. That is, to check involutivity of a distribution, we need only check that the pairwise brackets between basis elements lie in the distribution.
3. [Boothby, page 164, \#4] Let $N \subset M$ be a submanifold and let $X, Y \in \mathcal{X}(M)$ be vector fields such that $X_{p}, Y_{p} \in T_{p} N$ for $p \in N$. Show that $[X, Y]_{p} \in T_{p} N$ for all $p \in N$.
4. [Boothby, page 164, \#5] Let $F: M \rightarrow N$ be a smooth submersion of M onto N. Show that $F^{-1}(q)$ for all $q \in N$ are the leaves of a foliation on M.
5. Let $\operatorname{ad}_{X} Y:=[X, Y]$ and define $\operatorname{ad}_{X}^{k} Y:=\left[X, \operatorname{ad}_{X}^{k-1} Y\right]\left(\right.$ i.e. $\operatorname{ad}_{X}^{k} Y$ contains k copies of $\left.X\right)$. Define a set of distributions on M, a smooth n-dimensional manifold, as

$$
\Delta_{i}=\operatorname{span}\left\{Y, \operatorname{ad}_{X} Y, \ldots, \operatorname{ad}_{X}^{i} Y\right\}
$$

Show that if Δ_{n-1} is full rank (i.e. $\left.\Delta_{n-1}(x)=T_{x} M\right)$ and Δ_{n-2} is involutive, then Δ_{i} is involutive for all $i=1, \ldots, n-1$.
6. Let $S O(3)$ be the set of 3×3 orthogonal matrices with determinant +1 . The tangent space of $S O(3)$ at the identity is given by the set of skew-symmetric matrices of the form

$$
\widehat{\omega}=(\omega)^{\wedge}=\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] .
$$

(a) Show that the tangent space $T_{R} S O(3)$ consists of matrices of the form $\widehat{\omega} R$ where $\widehat{\omega}$ is skew-symmetric.
(b) Show that the flow of a vector field $g(R)=\widehat{\omega} R$ is given by $\phi_{t}(R)=\exp (\widehat{\omega} t) R$ where \exp is the matrix exponential.
(c) Show that the Lie bracket between two vector fields $g_{1}(R)=\widehat{\omega}_{1} R$ and $g_{2}(R)=\widehat{\omega}_{2} R$ is given by

$$
\left[g_{1}, g_{2}\right](R)=\left(\omega_{1} \times \omega_{2}\right)^{\wedge} R,
$$

where \times is the cross product in \mathbb{R}^{3}. (Hint: you may use the "fact" that $[X, Y](x)=$ $\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{2}}\left(\phi_{\epsilon}^{Y} \phi_{\epsilon}^{X}-\phi_{\epsilon}^{X} \phi_{\epsilon}^{Y}\right)(x)$ if you need to).

