CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CDS 202 Problem Set #5

R. Murray Winter 2004

Reading: Boothby, IV.7–IV.8 (Frobenius' Theorem)

1. Consider the following vector fields on \mathbb{R}^3 :

$$X(x) = \frac{\partial}{\partial x_2} - x_1 \frac{\partial}{\partial x_3}$$
 $Y(x) = \frac{\partial}{\partial x_1}.$

Let $x_0 = (0, 0, 0)$. Show that $\phi_h^{-Y} \circ \phi_h^{-X} \circ \phi_h^Y \circ \phi_h^X(x_0) = h^2 \phi^{[X,Y]}(x_0)$.

2. Show that if Δ is a distribution of the form

$$\Delta = \operatorname{span}\{X_1, \ldots, X_d\}$$

and we have $[X_i, X_j] \in \Delta$ for all i, j then for any $X, Y \in \Delta$, $[X, Y] \in \Delta$. That is, to check involutivity of a distribution, we need only check that the pairwise brackets between basis elements lie in the distribution.

- 3. [Boothby, page 164, #4] Let $N \subset M$ be a submanifold and let $X, Y \in \mathcal{X}(M)$ be vector fields such that $X_p, Y_p \in T_pN$ for $p \in N$. Show that $[X, Y]_p \in T_pN$ for all $p \in N$.
- 4. [Boothby, page 164, #5] Let $F: M \to N$ be a smooth submersion of M onto N. Show that $F^{-1}(q)$ for all $q \in N$ are the leaves of a foliation on M.
- 5. Let $\operatorname{ad}_X Y := [X, Y]$ and define $\operatorname{ad}_X^k Y := [X, \operatorname{ad}_X^{k-1} Y]$ (i.e. $\operatorname{ad}_X^k Y$ contains k copies of X). Define a set of distributions on M, a smooth n-dimensional manifold, as

$$\Delta_i = \operatorname{span}\{Y, \operatorname{ad}_X Y, \dots, \operatorname{ad}_X^i Y\}.$$

Show that if Δ_{n-1} is full rank (i.e. $\Delta_{n-1}(x) = T_x M$) and Δ_{n-2} is involutive, then Δ_i is involutive for all i = 1, ..., n-1.

6. Let SO(3) be the set of 3×3 orthogonal matrices with determinant +1. The tangent space of SO(3) at the identity is given by the set of skew-symmetric matrices of the form

$$\widehat{\omega} = (\omega)^{\wedge} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}.$$

- (a) Show that the tangent space $T_R SO(3)$ consists of matrices of the form $\hat{\omega}R$ where $\hat{\omega}$ is skew-symmetric.
- (b) Show that the flow of a vector field $g(R) = \hat{\omega}R$ is given by $\phi_t(R) = \exp(\hat{\omega}t)R$ where exp is the matrix exponential.
- (c) Show that the Lie bracket between two vector fields $g_1(R) = \hat{\omega}_1 R$ and $g_2(R) = \hat{\omega}_2 R$ is given by

$$[g_1, g_2](R) = (\omega_1 \times \omega_2)^{\wedge} R,$$

where \times is the cross product in \mathbb{R}^3 . (Hint: you may use the "fact" that $[X, Y](x) = \lim_{\epsilon \to 0} \frac{1}{\epsilon^2} (\phi_{\epsilon}^Y \phi_{\epsilon}^X - \phi_{\epsilon}^X \phi_{\epsilon}^Y)(x)$ if you need to).

Issued: 9 Feb 04 Due: 17 Feb 04