CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CDS 202 Problem Set #3

Issued: 26 Jan 04 Due: 2 Feb 04

R. Murray Winter 2004

Reading:

Boothby, Sections II.6–II.7 and III.4–III.5

Problems:

1. Recall from lecture how we defined a coordinate neighborhood (ϕ, U) for a manifold M:

$U \subset M \subset \mathbb{R}^k$	M:m dimensional mfd
	U : open subset of M
$\phi \downarrow$	\tilde{U} : open subset of \mathbb{R}^m
$\tilde{U} \subset \mathbb{R}^m$	ϕ : diffeomorphism of \tilde{U} onto U

If M is an embedded manifold in \mathbb{R}^k (k > m) then the definition of the diffeomorphism ϕ can be confusing at first glance. For instance, it would seem that ϕ should map an open set of \mathbb{R}^k onto an open set of \mathbb{R}^m , but this is impossible if ϕ is a diffeomorphism. The proper interpretation is that ϕ smoothly extends to a map $\Phi: V \to \mathbb{R}^m$ (where $U = M \cap V, V \subset \mathbb{R}^k$ open), such that $\Phi|_U$ is a diffeomorphism onto \tilde{U} . We will explore these concepts in this exercise using $M = S^1$ and N = 2.

Let $S^1 \subset \mathbb{R}^2$ be the set given by

$$S^{1} = \{ x \in \mathbb{R}^{2} : x^{T}x = 1 \}.$$

(a) Construct the stereographic projection $\Phi : \mathbb{R}^2 \to \mathbb{R}$ which maps $S^1 - \{N\}$ to the real line as shown in the figure below. $\{N\}$ denotes the "north pole", i.e., x = (0, 1).

- (b) Let $U = S^1 \{N\}$ and define $\phi = \Phi|_U$. Construct the map $\phi^{-1} : \mathbb{R} \to U \subset \mathbb{R}^2$ and show that it is a smooth mapping.
- (c) Show that ϕ is a bijection by verifying that

i. the map $\Phi \circ \phi^{-1} : \mathbb{R} \to \mathbb{R}$ is the identity;

ii. $\phi^{-1} \circ \Phi$ is the identity when restricted to U.

(d) The tangent space at a point $p \in U$ is defined as

$$T_p S^1 := \operatorname{Im} \left(d\phi_{\phi(p)}^{-1} \right).$$

Show that this vector subspace of \mathbb{R}^2 can be identified with vectors tangent to S^1 at p. Hence, when talking about a tangent vector of $S^1 \subset \mathbb{R}^2$ it makes sense to only consider vectors in $\text{Im}(d\phi^{-1})$.

(e) Show that $d\phi_p: T_pS^1 \to \mathbb{R}$ is an isomorphism by verifying that

i.
$$d\Phi_p \cdot d\phi_{\phi(p)}^{-1} = I \in \mathbb{R};$$

ii. $\left(d\phi_{\phi(p)}^{-1} \cdot d\Phi_p \right) \Big|_{T_p S^1} = \mathrm{id}.$

Use these calculations to interpret the symbol $d\phi_p$.

2. [Guillemin and Pollack, page 18, #2]

Suppose that P is an l-dimensional submanifold of M where the differentiable structure on P is inherited from M. That is, if $o(\phi, U)$ is a coordinate chart on M then $(\phi|_P, P \cap U)$ is a coordinate chart on P. Let $z \in P$. Show that there exists a local coordinate system $\{x_1, \ldots, x_k\}$ defined in a neighborhood U of z in M such that $P \cap U$ is defined by the equations $x_{l+1} = 0, \ldots, x_k = 0$.

- 3. [Guillemin and Pollack, page 18, #6]
 - (a) If f and g are immersions, show that $f \times g$ is.
 - (b) If f and g are immersions, show that $g \circ f$ is.
 - (c) If f is an immersion, show that its restriction to any submanifold of its domain is an immersion.
 - (d) When dim $M = \dim N$, show that immersions $f : M \to N$ are the same as local diffeomorphisms.
- 4. [Guillemin and Pollack, page 18, #7]
 - (a) Show that $g: \mathbb{R}^1 \to S^1$ defined by $g(t) = (\cos 2\pi t, \sin 2\pi t)$ is a local diffeomorphism.
 - (b) Show that $G: \mathbb{R}^2 \to S^1 \times S^1$ defined by $G = g \times g$ is a local diffeomorphism.
 - (c) Show that if L is a line in \mathbb{R}^2 then the restriction $G: L \to S^1 \times S^1$ is an immersion and if L has irrational slope then G is one-to-one on L.
- 5. [Boothby, page 46, #5 and #6] Prove the following two corollaries of the implicit function theorem:
 - (a) Let W be an open subset of \mathbb{R}^n and $F: W \to \mathbb{R}^n$. If df_x is nonsingular at every point $x \in W$, then F is an open mapping of W. That is, it carries W and open subsets of W to open subsets of \mathbb{R}^n .
 - (b) A necessary and sufficient condition for the C^{∞} map F to be diffeomorphism from W to F(W) is that it be injective and df_x be nonsingular at every point $x \in W$.