# CALIFORNIA INSTITUTE OF TECHNOLOGY 

Control and Dynamical Systems
CDS 202
R. Murray

Problem Set \#2
Issued: 21 Jan 04
Winter 2004
Due: 26 Jan 04
Reading:

Boothby, Chapter I and Sections III.1-III. 3
Note: Most of the problems are taken from the exercises in Guillemin and Pollack. If you read Guillemin and Pollack, be warned that they treat manifolds slightly differently, using parameterizations instead of coordinate charts.

## Problems:

1. [Guillemin and Pollack, page 5, \#3]

Let $M, N$, and $P$ be smooth manifolds and let $f: M \rightarrow N$ and $g: N \rightarrow P$ be smooth maps.
(a) Show that the composite map $g \circ f: M \rightarrow P$ is smooth.
(b) Show that if $f$ and $g$ are diffeomorphisms, so is $g \circ f$.
(You may use the fact that the composition of smooth functions between open subsets of Euclidian spaces are smooth.)
2. [Boothby II.1.2] Using stereographic projection from the north pole $N(0,0,+1)$ of all of the standard unit sphere in $\mathbb{R}^{3}$ except $(0,0,+1)$ determine a coordinate neighborhood $U_{N}, \phi_{N}$. In the same way determine by projection from the south pole $S(0,0,-1)$ a neighborhood $U_{S}, \phi_{S}$ (see figure in Boothby). Show that these two neighborhoods determine a $C^{\infty}$ structure on $S^{2}$. Generalize to $S^{n-1}$.
3. [Guillemin and Pollack, page 6, \#17]

The graph of a map $f: M \rightarrow N$ is the subset of $M \times N$ defined by

$$
\operatorname{graph}(f)=\{(p, f(p)): p \in M\}
$$

Define $F: M \rightarrow \operatorname{graph}(f)$ by $F(p)=(p, f(p))$. Show that if $f$ is smooth, $F$ is a diffeomorphism; thus graph $(f)$ is a manifold if $M$ is.
4. [Guillemin and Pollack, page 6, \#18]
(a) An extremely useful function $f: \mathbb{R} \rightarrow \mathbb{R}$ is

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Prove that $f$ is smooth.
(b) Show that $g(x)=f(x-a) f(b-x)$ is a smooth function, positive on $(a, b)$ and zero elsewhere. (Here $a<b$.) Then

$$
h(x)=\frac{\int_{-\infty}^{x} g d x}{\int_{-\infty}^{\infty} g d x}
$$

is a smooth function satisfying $h(x)=0$ for $x<a, h(x)=1$ for $x>b$ and $0<h(x)<1$ for $x \in(a, b)$.
$h$ is called a bump function.
5. [Guillemin and Pollack, page 12, \#4]

Prove that if $f: M \rightarrow N$ is a diffeomorphism then at each point $p, d f_{p}$ is an isomorphism between tangent spaces.

