CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

	$CDS \ 102$		
R. Murray	Problem Set $\#1$	Issued:	7Jan 04
Winter 2004		Due:	21Jan 04

Reading:

Abraham, Marsden, and Ratiu, Ch 1.

Optional: For a review of basic set operations see Halmos, *Naive Set Theory*. For a more "start from nothing" approach, see Suppes, *Axiomatic Set Theory*.

Notes:

Unless otherwise stated, \mathbb{R}^n will be assumed to have the usual topology.

Problems:

1. (a) Consider $[0, 2\pi)$ and $\mathbb{S}^1 = \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ as subsets of \mathbb{R} and \mathbb{R}^2 , respectively, and equip these sets with the relative topology. Define a map

 $f: [0, 2\pi) \to \mathbb{S}^1$ $x \mapsto (\cos x, \sin x)$

Is f a homeomorphism? Why or why not?

- (b) Let S be a set. Is the identity map from S with the discrete topology to S with the trivial topology continuous? a homeomorphism?
- 2. Show that a continuous bijection from a compact space to a Hausdorff space is always a homeomorphism. [*Hint:* Use the fact that a compact subspace of a Hausdorff space is closed.]
- 3. (a) Are the rational numbers a closed subset of \mathbb{R} ? Why or why not?
 - (b) The set of rational numbers, \mathbb{Q} , is a subset of \mathbb{R} and hence inherits the usual metric on \mathbb{R} to become a metric space itself. Is it a complete metric space?
- 4. Let $f: X \to \mathbb{R}$ be a continuous map and let X be compact. Show that f is bounded. That is, show that there exists M > 0 such that $|f(x)| \le M$ for every $x \in X$.
- 5. [Abraham, Marsden, and Ratiu, Exercise 1.2C, page 12] Show that every separable metric space is second countable.